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Abstract

In this paper, we debate queueing systems with N-policy and single vacation. We consider these
systems when the vacation times have Erlang distribution. Moreover, we adapted the input by
studying two different kinds: first, an ordinary Poisson input, and second, type 2 geometric batch
input. We derive the probability generating function of the number of units in the system in two
cases by using fluctuation analysis.
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1. Introduction

Many applications in industry such as digital communication, computer network, and inventory
systems require the sever takes a rest after a bussy period and returns to his job when the system’s
units reach a specific threshold. For example, consider a production system, where production does
not begin until some particularized raw N of stuff is stored in the system during the idle time [10].
The original investigation of batch arrival queue with N-policy was made by Lee and Srinivasan
[19]. They performed a system to get the optimal stationary operating policy under a proper linear
cost formation besides other inquiries. Following Lee et al. [18] have considered this type of widely
throughout various manners. In particular, some viewpoints of this system have also been analyzed
by Chae and Lee [21], Teghem [25], Medhi [23], Kalita and Choudhury [16], and Choudhury and
Baruah [9].
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Numerous studies are dedicated to batch arrival systems under different vacation policies because
of their interdisciplinary nature. Many scholars, involving Baba [4], Choudhury [7, 8], Lee et al.
[20, 21], Rosenberg and Yechiali [24], Madan and Abu-Dayyeh [22] and Teghem [26], and others have
analyzed batch arrival queue under different vacation policies.

In this work, we derive the probability generating function (in short, pgf) of the number of units
in the N-policy queue with signal vacation. This work is done by using fluctuation theory when the
vacation time has Erlang distribution, and the input is ordinary Poisson in the first case, and in the
second one, it is type 2 geometric. The paper presents essential concepts related to our work in the
second section, and then we begin with our goals in the third section.

2. Formal Description

One of the main objectives of this section is the analysis of the queueing process {Q(t); t > 0}
giving the cumulative number of units in the system at any time t > 0. This process, along with
all other related processes, will be considered on a probability space (Ω, F(Ω), P ). We define the
queueing process as right continuous.

2.1. Preliminaries

Let us start with significant definitions that help to progress in our targets. The materials of this
definition are from many different works corresponding to Dshalalow, see [2, 3, 5, 11, 16].

Definition 2.1. Let (Ω, F (Ω) , P ) be a probability space, where F (Ω) is σ-algebra, then any arbi-
trary monotone nondecreasing family {Ft; t ≥ 0} of sub-σ-algebras in F (Ω) is called filtration.

Filtration is often associated with an extended history of a particular stochastic process.

Definition 2.2. A stochastic process Xt is said to be Ft-adapted if for each t ≥ 0, the function w 7→
X (t, w) is Ft-measurable, i.e., given a fixed t, for every Borel set A⊆ R, the set {w : X (t, w) ∈ A}
is an element of Ft.

Definition 2.3. Let (Ω, F (Ω) ,Ft, P ) be a filtered probability space. A r.v. T is called a stopping
time if for any t ≥ 0, the event {T ≤ t} belongs to Ft.

Definition 2.4. A point process {tn;n = 1, 2, . . . , } on the positive real axis is an a.s. monotone
increasing sequence of stopping times and so-call arrival times. Associated with point process {tn},
the counting process Nt defined as

Nt = N ([0, t]) =
∞∑
k=1

1[0,t] (tk) =
∞∑
k=1

εtk ([0, t]),

which gives the number of arrivals in the time interval [0, t] and εa is a unit (or Dirac) mass, defined
as

εa (A) =

{
1 a ∈ A

0 a ̸∈ A

where a is a real number, and A is a Borel set.

Definition 2.5. Let {t1, t2, . . .} be a point process on the positive real axis and let Nt be the as-
sociated counting processes defined on a filtered probability space (Ω, F (Ω) ,Ft, P ). The point and
counting processes are called (ordinary) Poisson if Nt obeys the three postulates:
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(i) Independent increments property.
For 0 < s < t, the increment Nt −Ns is independent of Fs.

(ii) Stationary increments property
Let (a, b] be an interval such that 0 ≤ a < b. Then, Nb −Na ∈ [Nb−a].

(iii) There is a positive constant λ such that for each t > 0, the distribution of Nt is Poisson with
parameter λt, i.e.

P = {Nt = k} = e−λt (λt)
k

k!
, k = 0, 1, . . .

The constant λ is called the rate or intensity of Nt. Obviously, λ is the mean number of arrivals in
a unit time interval.

Definition 2.6 (Laplace-Stieltjes transform). Let τ is a nonnegative r.v. then

β (θ) = E
[
e−θτ

]
is called the Laplace-Stieltjes transform of r.v.τ .

Note that if m(θ) is the mgf (moment generating function) of r.v.τ , then β (θ) = m (−τ) . Moreover,
if τ is a nonnegative r.v. with β (θ) and independence of Poisson r.v. Nτ with parameter λ, then the
joint transform

E
[
zNτ e−θτ

]
= β (θ + λ (1− z ))

Definition 2.7 (Marked Poisson Process). Let Nt be Poisson counting process and T := {t1, t2, . . .}
be the associated point process. Suppose X = {X1, X2, . . .} is a sequence of iid real-valued r.v.’s with
a common pgf a(z ) s.t. X is independent of T , then

ζ =
∞∑
k=1

Xkετk

is marked Poisson process. Consequently, this marked point process is with position independent
marking, and it has independent and stationary increments. Moreover, its pgf is given as compound
Poisson r.v. by

E
[
z ζ
]
= eλ(a(z )−1)τ

and the joint transform
E
[
z ζe−θτ

]
= β

(
θ + λ (1− a(z ))

)
2.2. Queues With Bulk Input

The input is bulk if it is modeled as a marked process. Let us assume that our system has bulk
input defined as a marked Poisson process (X, τ) driven by a Poisson point process τ = {τk : k =
1, 2, . . .} with the intensity λ of arriving points τk’s. The arriving points τk’s carry batches customers
of random sizes Xk such that X = {Xk : k = 1, 2, ..} is a sequence of iid r.v′s with the following pgf
and expectation

a (z ) = EzX =
∞∑
j=0

ajz
j, a = EX, a0 = 0

Let us suppose that the Poisson marked process with position independent marking. That means
{Xk} is independent of the point process {τk}. Let Qn be the number of customers in the queue
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upon departure of the nth customer at the time Tn, n = 0, 1, . . . Then {Qn} is a chain with the
following transitions:

Qn+1 =

{
Qn − 1 + Vn+1, Qn > 0

XWn − 1 + Vn+1, Qn = 0

where XWn is the first batch arriving after the time Tn. Apparently, {Qn} is a time-homogeneous
Markov chain embedded in {Q(t)} upon departure epochs. The TPM of {Qn} it is a △2 -matrix.
Hence, the chain is irreducible and aperiodic. Moreover, we need to find the following

Pi (z ) = E
[
zQ1
∣∣Q0 = i

]
=

{
E
[
z i−1+V1

]
, i > 0

E
[
zXWn−1+V1

]
, i = 0

=

{
z i−1β (λ− λa (z )) , i > 0

z−1a (z ) β (λ− λa (z )) , i = 0

According to Abolnikov and Dukhovny (Abolnikov and Dukhovny, Markov chains with transition
delta-matrix: ergodicity conditions, invariant probability measures and applications 1991), we need
to check on P

′
1 (1−) .

P
′

1 (1−) = β
′
(0) (−λ) a

′
(1) = aλb = ρ.

where β
′
(0) = −b, a

′
(1) = a and ρ is the offered load with the condition ρ < 1. Therefore, {Qn} is

recurrent positive, and then this chain is ergodic. To find pgf of distribution of Qn, we have

P (z ) =
∞∑
i=0

piPi(z ) = p0z
−1a (z ) β (λ− λa (z )) + z−1β (λ− λa (z ))

∞∑
i=1

piz
i

By solving the above, we get the generalized Pollaczed-Khinchine formula

P (z ) = p0β (λ− λa (z ))
a(z )− 1

z−β (λ− λa (z ))

To find p0, we can use the fact P (1−) = 1, then L′Hospital rule to find p0 = 1− λab.

2.3. Discrete fluctuation theory

A marked delayed renewal process with position dependent marking is defined as a random walk
with this formula

ζ =
∞∑
k=1

Xkετk

and associated with the following delayed renewal point process

ξ =
∞∑
k=1

ετk

where Xk are the increments (marks) of the process that occur at the separate times τk. Because
of delaying, the inter-renewal times are independent, and all except for τ0 = △0 are identically
distributed. The marks Xk are called position-dependent if Xk may depend on ∆k = τk − τk−1, but
given this inter-renewal time, Xk is conditionally independent of all previous increments Xi, i < k,
and of the previous inter-renewal time.
We assume that the sequence {τn : n = 0, 1, 2} is a nondecreasing monotone. Consequently, there is
no clustering, and this is leading us to the associated counting process Nt =

∑∞
k=0 1[0, t] is continuous
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in probability. Moreover, we presume that the marks Xk’s are nonnegative integer-valued r.v. ’s, and
they have some joint transforms

γ (z , θ) = EzX1e−∆1θ|z | ≤ 1, Re θ ≥ 0,

γ0 (z , θ) = EzX0e∆0θ, |z | ≤ 1, Re θ ≥ 0,

We will focus on the behavior of this random walk when the marking component

Ak = X0 + . . .+Xk

increases over fixed level N . To do that, we will introduce the following random index

υ = inf {n : An = X0 + . . .+Xn ≥ N}

at which the collective marks Aυ crosses threshold N . Similarly, the r.v.τυ will be the first passage
time of this random walk.
We want to find the next joint transform:

Φν = Φν (u , υ, ϑ, θ) = EξνuAν−1υAνe−ϑτν−1−θτν−1 . (2.1)

To verify a directed value of the functional Φν , first, we propose the secondary set of random indices

{ν(k) = inf{n : X0 + . . .+Xn > k}, k = 0, 1, . . .}

as well as the set of the functionals{
Φν(k) = Eξν(k)uAν(k)−1υAν(k)e

−ϑτν(k)−1
−θτν(k) , k = 0, 1, . . .

}
(2.2)

Observing from (2.14) and (2.16) that

ν = ν (N − 1) . (2.3)

Next, we define the operator

Dk {f (k)} (x) :=
∞∑
k=0

xkf (k) (1− x) , ∥x∥ < 1. (2.4)

And the inverse operator can return f , if we use it for every k:

Dk
x (Dp {f(p)} (x)) = f(k), k = 0, 1, . . . (2.5)

where the inverse Dk is given as

k 7−→ Dk
xφ (x, y) =

{
limx→0

1
k!

∂k

∂xk

[
1

1−x
φ (x, y)

]
, k ≥ 0

0 k < 0
(2.6)

Therefore, we can restore Φν(N−1) = Φν by employing DN−1 to DpΦν(p).
In the following theorem, we will discuss the important features of the inverse operator Dk which are
indicated in the subsequent work.

Theorem 2.8 ( Properties of Operator Dk). Let Dk be the inverse operator of Dk as above
equation (2.6), then the following properties are true
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(i) Dk is a linear functional.
(ii) Dk

x (1 (x)) = 1, where 1 (x) = 1 for all x ∈ R
(iii) Let g be an analytic function at zero. Then, it holds true that

Dk
x

(
xjg (x)

)
= Dk−j

x g (x) . (2.7)

(iv) In particular of (iii), if j = k, we have

Dk
x

(
xkg (x)

)
= g (0) . (2.8)

(v) Let a (x) =
∑∞

i=0 aix
i. Then

Dk
x (a (x)) =

k∑
i=0

ai and Dk
x (a (xy)) =

k∑
i=0

aiy
i (2.9)

(vi) For any real number b it holds true that

Dk
x

{
1

1− bx

}
=

{
1−bk+1

1−b
, b ̸= 1

k + 1, b = 1
(2.10)

(vii) For any real number a and for a positive integer n, except for a = n = 1, it holds true that

Dk
x

{
1

(1− ax)n

}
=

{∑k
j=0

(
n+j−1

j

)
aj except for a = n = 1

k + 1, a = n = 1
(2.11)

(viii) For two real numbers a and b it holds

Dk
x

{
1

1− bx

1

(1− ax)n

}
=

{
1

1−bx

∑k
j=0

(
n+j−1

j

) (
aj − bk+1

(
a
b

)j)
, b ̸= 1∑k

j=0

(
n+j−1

j

)
aj (k − j + 1) , b = 1

(2.12)

The following theorem is essential to our further works.

Theorem 2.9 (The Key Fluctuation Theorem). Let the following functionals be given as

γ : = γ (xuυ, ϑ+ θ) , γ0 : = γ0 (xuυ, ϑ+ θ) , (2.13)

Γ : = γ (xυ, θ) , Γ1 : = γ (υ, θ) , (2.14)

Γ0 : = γ0 (xυ, θ) , Γ1
0 : = γ0 (υ, θ) . (2.15)

Then, it holds true that

Φ∗ (x) = Dp(Φν(p) (x)) = Γ1
0 − Γ0 +

γ0ξ

1− γξ

(
Γ1 − Γ

)
, (2.16)

and the functional Φν meets the following

Φν = Φν (u, υ, ϑ, θ) = EξνuAν−1υAνe−ϑτν−1−θτν−1 ,

= DN−1
x

(
Γ1
0 − Γ0 +

γ0ξ

1− γξ

(
Γ1 − Γ

)) (2.17)

Corollary 2.10. Let ξ = u = 1, ϑ = 0, then

Φν = EυAνe−θτν = γ0 (υ, θ)− (1− γ (υ, θ))DM−1
x

(
γ0(xυ, θ)

1− γ(xυ, θ)

)
(2.18)

and if τ0 = ∆0 = 0 and X0 = A0 = i ≥ 0, then γ0 (υ, θ) = υi and

Φν = EυAνe−θτν = υi − υi (1− γ (υ, θ))DM−1
x

(
xi 1

1− γ (xυ, θ)

)
(2.19)
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2.4. An N-Policy Queue

The server turns out to be idle in the system if the queue declines to zero. Nevertheless, the next
busy period does not begin with the early reaching batch unless it meets a certain positive number
N . The server returns maintenance, and the queue size Av and τv can be established by the formula

Φv = EzAve−θτv = z i − z i
(
1− Γ1

)
DN−1−i

x

(
1

1− Γ

)
Since the number of units in the queue is zero, then i = 0.

Φv = EzAve−θτv = 1− (1− γ (z , θ))DN−1
x

(
1

1− γ (zx, θ)

)
where

γ (z , θ) = a (z )
λ

λ+ θ

and the marginal transform

α(z ) = EzAv = 1− [1− a (z )] DN−1
x

(
1

1− a (xz )

)
and to create Kendall’s formula, we start with

Qn+1 =

{
Av − 1 + V1, Qn = 0

Qn−1 − 1 + V1, Qn > 0

to get the subsequent

Pi (z ) = E
[
zQ1
∣∣Q0 = i

]
=

{
z−1α (z ) β (λ− λa (z )) , i = 0

z i−1β (λ− λa (z )) , i > 0

Thus, the pgf of this system

P (z ) =
∞∑
i=0

piPi(z ) = p0α (z ) z−1β (λ− λa (z )) + z−1β (λ− λa (z ))
∞∑
i=1

piz
i

By making only some steps, we find

P (z ) = p0β (λ− λa (z ))
α (z )− 1

z−β (λ− λa (z ))

and

p0 =
1− λab

α
=

1− ρ

α

where
α := EAv = α′(z )|z = 1
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2.5. An N-Policy Queue with the Single Vacation

In this system with bulk input and N-Policy, the server goes on a single vacation trip when the
queue reaches to zero. Moreover, he returns to resume entirely if there are N units at least in the
buffer. It is clear that the random walk process explaining the scheme on the idle period is now
delayed. To formalize this system, we have

Φv = EzAve−θτv = Γ1
0 −

(
1− Γ1

)
DN−1

x

(
Γ0

1− Γ

)
= γ0 (z , θ)− (1− γ (z , θ))DN−1

x

(
γ0 (xz , θ)

1− γ (xz , θ)

)
,

where
γ0 (z , θ) = G (θ + λ− λa (z ))

and
G (θ) = Ee−θτ0

The latter equation is LST of the single vacation time. The complement state is the same as that in
the N-Policy system. We suppose that our busy times are exponentially distributed and independent
of the bulk input. That means

γ (z , θ) =
λ

λ+ θ
a (z )

Therefore, we have

α (z ) = EzAv = G (λ− λa (z ))− [1− a (z )]DN−1
x

{
G(λ− λa(xz )

1− a (xz )

}
and to give Kendall’s formula, we begin with

Qn+1 =

{
Av − 1 + V1, Qn = 0

Qn − 1 + V1, Qn > 0

to find the following

Pi (z ) = E
[
zQ1
∣∣Q0 = i

]
=

{
z−1α (z ) β (λ− λa (z )) , i = 0

z i−1β (λ− λa (z )) , i > 0

Thus, the pgf of this model

P (z ) = p0α (z ) z−1β (λ− λa (z )) + z−1β (λ− λa (z ))
∞∑
i=1

piz
i

By doing few procedures, we see that

P (z ) = p0β (λ− λa (z ))
α (z )− 1

z−β (λ− λa (z ))

and

p0 =
1− λab

α
=

1− ρ

α
where

α := EAv = α′ (z )|z=1
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3. Applications on an N-Policy Queue with Single Vacation

In this section, we will discuss the mean goals of our work. First of all, we want to derive pgf
of the number of units for this system when the input is ordinary Poisson, and the vacation time is
Erlang with parameter (r, µ). Second of all, we obtain the input batches are type 2 geometric with
vacation time is Erlang (r, µ).

3.1. Ordinary Poisson input with Erlang vacation time

We will obtain an explicit formula for pgf of this model when the input is ordinary Poisson, and
the vacation time is Erlang with parameter (r, µ). Consequently, we note

a(z ) = z ) and G (λ− λa (z )) =

[
µ

µ+ (λ− λz )

]r
=

1[
1− λ

µ
(z−1)

]r
To find α(z ), we need to derive it by using property (viii) in Theorem 2.8

DN−1
x

[
G(λ− λa(zx)

1− a(zx)

]
= DN−1

x

 1[
1− λ

µ
(zx− 1)

]r 1

1− zx


=

1

1− z

N−1∑
j=0

(
r + j − 1

j

)(λ

µ
z

)j

− zN−1+1

( −λ
µ
z

z

)j


=
1

1− z

N−1∑
j=0

(
r + j − 1

j

)(
λ

µ

)j (
z j − zN

)
So, we get the following formula

α (z ) =
∞∑
j=0

(
r + j − 1

j

)(
λ

µ

)j

(z−1)j −
N−1∑
j=0

(
r + j − 1

j

)(
λ

µ

)j (
z j − zN

)
To catch α, we have

α = α′ (z )|z=1 =
N−1∑
j=0

(
r + j − 1

j

)(
λ

µ

)j

(j −N)

To find P (z ), we need to obtain the LST given below

β (λ− λz ) =
µ

µ+ (λ− λz )
=

µ

µ− λ (z−1)
=

1

1− λ
µ
(z−1)

and

β (λ− λz )

z−β (λ− λz )
=

1
z

β(λ−λz )
− 1

=
1

(z−1)
(
1− λ

µ
z
)

So, the pgf of the model is given as

P (z ) = p0
α (z )− 1

(z−1)
(
1− λ

µ
z
)
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where p0 is given as below

p0 =
1− λ

µ

α

3.2. Type 2 Geometric Input Batches with Erlang Vacation Time

We keep working on our assumption that the vacation time is Erlang with parameter (r, µ). How-
ever, we focus on system input by presuming the input batches are distributed type 2 geometrically.
We will gain precise expression for pgf of this model. We start with the following

G (θ) =

(
µ

µ+ θ

)r

and a (z ) =
p

1− qz
=⇒ 1− a (z ) =

q(1− z )

1− zq

So, we have the LST as below

G (λ− λa (z )) =
1

(1 + λ
µ
q)r

(1− zq)r[
1− (1+λ

µ)q
1+λ

µ
q
z

]r
To get α(z ), we require to obtain it by using some properties (v) and (viii) in Theorem 2.8

DN−1
x

[
G (λ− λa (zx))

[1− a (zx)]

]
= DN−1

x

 1

(1 + λ
µ
q)r

(1− zq)r

[1− (1+λ
µ)q

1+λ
µ
q
z ]r

1− xzq

q (1− xz )


=

1(
1 + λ

µ
q
)r

q

1

1− z

N−1∑
i=0

(−qz )i
N−i−1∑
j=0

(
r + j − 1

j

)
(
1 + λ

µ

)
q(

1 + λ
µ
q
)
j (

z j − zN−i
)

Hence, we obtain the following result

α (z ) =
1(

1 + λ
µ
q
)r
 (1− zq)r

(1− (1+λ
µ)q

(1+λ
µ
q)
z )r

− 1

(1− zq)

N−1∑
i=0

(−1)i
N−i−1∑
j=0

(
r + j − 1

j

)
⋆


(
1 + λ

µ

)
q(

1 + λ
µ
q
)
j (

z j+i − zN
)

To find α, we think of

α = α
′
(z )
∣∣∣
z=1

=
r
(
p− λ

µ
q2
)

(
1 + λ

µ
q
)
p3

− 1

p

N−1∑
i=0

N−i−1∑
j=0

(
r + j − 1

j

)
(−1)iqi+j

(
1 + λ

µ

)j
(
1 + λ

µ
q
)r+j (j + i−N)

To obtain P (z ), we want to get the LST given below

β (λ− λa (z ))

z−β (λ− λa (z ))
=

1− zq

(z − 1)

1

1−
(
1 + λ

µ

)
qz
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Therefore, the pgf of version is presented the same as

P (z ) = p0
1− zq

1−
(
1 + λ

µ

)
qz

α (z )− 1

(z − 1)

where p0 is provided such as follow

p0 =
1− λq

µp

α

4. Conclusion

In this article, we obtain directed expressions of pgf of the number of units in the N-policy queue
with a single vacation corresponding to different input and vacation times. Firstly, we assume that
the input of the line is ordinary Poisson, and the vacation time of the server has Erlang distribution.
Secondly, we suggest that the input is type 2 geometric and the same later vacation time. This work
is done using fluctuation theory.
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