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Abstract

In this paper, two types of diseases in the predator population in an ecological model are proposed
and analyzed. The first (SIS infectious disease) transmitted horizontally, spread by contact between
susceptible individuals and infected individuals. And the second (SI disease) is transmitted vertically
from mothers to offspring with the effect of an external source (environmental effect). No transmis-
sion of the diseases can happen from predator to prey by predation or contact. Linear functional
response and Holing type-II for describing the predation of the susceptible and the infected preda-
tors respectively also linear incidence for describing the transition of diseases are used. All possible
equilibrium points were analyzed for this model. Locally and globally dynamics of the model have
been discussed, numerical simulation is used to investigate the effect of the diseases on the system’s
dynamics.

Keywords: Eco-epidemiological model, SI disease, SIS epidemic disease, Prey-predator model,
Lyapunov function.

1. Introduction

The previous belief was that only humans face epidemics. It turns out that animals, especially
wild ones, face a range of diseases, from Ebola to cancer and even the plague. In recent decades,
the extent of the impact of epidemics and their spread on both humans and animals has become
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clear and the extent of the danger of these epidemics on life in general. Scientific studies in their
medical or other aspects have become obligated to find a clear map with clear details of the course
of these epidemics and the relationship of these epidemics in humans or animals at the same level,
because of these epidemics that there is a mutual risk in some of them as a result of some epidemics
related to infection and development between races of the same sex or mixing direct and indirect
between different ethnicities. The study of disease prevalence between humans and animals is known
as the epidemiological model, and there are several researchers who have independently studied the
dynamics of mathematical environmental and epidemiological models [1, 8, 9, 10, 11, 12, 15, 18, 13].
Anderson and May [2] studied the link between the Lotka-Volterra prey-predator model with the
infectious disease as well as the prevalence by contact among the population of prey without repro-
duction in infected prey.

Many types of epidemics are discussed on ecological models contain SI, SIS and SIR epidemic
disease in one species for example [17, 20, 14], while researchers study spread of two epidemic disease
in the same species for example [21, 6]. Further diseases can be spread in different ways among
the individuals of the population, one of the most common way to prevalence infectious disease
among infected and susceptible is by contact in the population, but there are no doubt that the
environment play a vital role of spread these diseases which called an external sources for example
of these researches are [16, 5].

The most recent models take into account random environments [7], and sometimes periodic
structures [3]. The novelty in the study of two epidemics in the predator population is the destination
of Fabio et al. [19].

In this paper, an eco- epidemiological model containing two types of diseases in the predator
population have been presented, the first SIS with horizontal transmission and the second SI with
vertical transmission, without intersection with each other in the same individuals of a predator
population. Moreover, there is no spread of disease between predators and prey.

2. The mathematical model formulation

The ecosystem study proposed in this section included a prey, P (T ) a total population density
of prey at time T, which interacting with susceptible predators S(T ) a total population at time
T, H(T ) infected predators at time T with disease (SIS) and V (T ) infected predators at time T
with disease (SI). A cross between diseases cannot occur in the same individual from a predator
population. There is no spread of diseases between prey and predators. Moreover, the first disease
(SIS) is transmitted horizontally between individuals of the predator population by contact. The
second disease (SI) spreads vertically and also the influence of the external source (environmental
sources) on the occurrence of this disease, the following assumptions are now adopted in formulating
the basic environmental epidemiology model.

(1) The prey species, reproduction logistically with carrying capacity kp, (kp > 0) and intrinsic
growth rate denoted by r, (r > 0).

(2) There are (SIS and SI diseases) in the predator population which divided the population in to
the following:

(i) According to the Lotka–Voltera type of functional response susceptible predators con-
sumed the prey via predation rate a < 0 and participate part of this food with conversion
rate 0 < e1 < 1 with natural rate of death due to absence of prey, d1 > 0.

(ii) The first disease (SIS disease) is passing within the same species by contact (horizontally)
with an infected individual at infection rate θ > 0 and recovery rate γ > 0, (means that
the infected individual becomes susceptible again). Furthermore, the infected predators
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consumed the prey individuals according to Hollying type-II of functional response with
maximum attack rate c1 > 0 and half saturation b1 > 0 that participate part of this
food with conversion rate 0 < e2 < 1 . with natural rate of death in absence of prey ,
d2 > 0.

(iii) The second disease (SI disease) has the ability to pass vertically from mothers to new
individuals (vertically) at an infection rate β > 0. As well as to the effect of an external
source (environmental influence) that causes disease among predators with an external
source rate α > 0. The infected predators consumed the prey individuals according to
Hollying type-II of functional response with maximum attack rate c2 > 0 and half
saturation b2 > 0 that participate part of this food with conversion rate 0 < e3 < 1,
with rate of death due to infected disease d3 > 0.

In consonance to the previous assumptions, the following set of equations can represented the pro-
posed model.

dP

dT
= rP

(
1− P

kp

)
− aPS − C1PH

b1 + P
− C2PV

b2 + P
,

dS

dT
= e1aPS + γH − θSH − βSV − αS − d1S,

dH

dT
= θSH − γH − d2H +

e2C1PH

b1 + P
,

dV

dT
= βSV + αS − d3V +

e3C1PV

b21 + P
.

(1.1)

Accompanied by initial conditions P (0) ≥ 0, S (0) ≥ 0, H (0) ≥ 0, V (0) ≥ 0, that there are
seventeen parameters which can be reduced to make the model easy to deal with it by dimensionless
parameters and variables to simplify the system.

t = rT, p =
P

Kp

, s =
S

Kp

, h =
H

Kp

, v =
V

Kp

,

u1 =
a kp
r
, u2 =

c1

r
, u3 =

c2

r
, u4 =

b1

kp
, u5 =

b2

kp
, u6 =

e1akp
r

, u7 =
γ

r
, u8 =

θkp
r
,

u9 =
βkp
r
, u10 =

α

r
, u11 =

d1

r
, u12 =

d2

r
, u13 =

e2c1

r
, u14 =

d3

r
, u15 =

e3c2

r

By accordance with the following dimensionless system:

dp

dt
= p (1− p)− u1ps−

u2ph

u4 + p
− u3pv

u5 + p
= f1 (p, s, h, v) ,

ds

dt
= u6ps+ u7h− u8sh− u9sv − (u10 + u11) s = f2 (p, s, h, v) ,

dh

dt
= u8sh− u7h− u12h+

u13ph

u4 + p
= f3 (p, s, h, v) ,

dv

dt
= u9sv + u10s− u14v +

u15pv

u5 + p
= f4 (p, s, h, v) .

(1.2)

With p (0) ≥ 0, s (0) ≥ 0, h (0) ≥ 0, v (0) ≥ 0. Note that there is reduced in number of the parame-
ters from seventeen in the system (2.1) to fifteen in the system (1.2). It is easy to exam about all the
functions of the system (1.2) are continuous and have continuous partial derivatives on the following
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positive four dimensional spaceR4
+ =

{
(p, s, h, v) ∈ R4

+ : p (0) ≥ 0, s (0) ≥ 0, h (0) ≥ 0, v (0) ≥ 0
}

. So the solution of the system (1.2) exists and unique. Moreover with the non-negative initial con-
ditions all the solutions of the system (1.2)) are uniformly bounded as illustrated in the following
theorem:

Theorem 1.1. All the solutions of the system (1.2) which initiate in R4
+ are uniformly bounded.

Proof . let (p(t), s(t), h(t), v(t)) be any solution of the system (1.2) with non-negative initial condition
(p0, s0, h0, v0) ∈ R4

+.
From 1st equation of system (1.2) we have:

dp

dt
≤ p (1− p) .

Through the theory of differential inequality [4], we get:

lim
t→∞

sup p(t) ≤ 1

Define the function
M (t) = p (t) + s (t) + h (t) + v(t).

Therefore,

dM

dt
= p (1− p)− (u1 − u6)ps− (u2 − u13)

ph

u4 + p
− (u3 − u15)

pv

u5 + p
− u12h− u14v − u11s.

So, according to the biological facts always u1 > u6 , u2 > u13 , u3 > u15 we get:

dM

dt
≤ 2p− (p+ u11s+ u12h+ u14v),

therefore dM
dt
≤ 2− sM, where D = min {1, u11, u12, u14} , then M (t) ≤ 2

D
+ (M0− 2

D
)e−Dt .

Then

lim
t→∞

M(t) ≤ 2

D
,

so 0 ≤M (t) ≤ 2
D
, ∀ t > 0.

Hence the solutions of the system (1.2) are uniformly bounded. �

2. The existence of equilibrium points

In this section, it appears there are at most in system (1.2) six equilibrium points which will be
studied of the stability at each of these points, explicit computation appears as follow:

(i) E0 = (0, 0, 0, 0) exists always.

(ii) The equilibrium point E1 = (1, 0, 0, 0) exists always.

(iii) The equilibrium point E2 = (p̂, ŝ, 0, 0) where, p̂ = u11

u6
, and ŝ = u6−u11

u1u6
, exists provided that:

u6 > u11, (2.1)
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(iv) The Equilibrium Point E3 =
(
p̄, s̄, h̄, 0

)
p̄ is unrivaled and positive solution of the following equation:

A1p
3 + A2p

2 + A3p+ A4 = 0, (2.2a)

where,

A1 = u8 (u12 − u13) ,

A2 = (u7 + u12 − u13) [u2u6 − u8 (1− u4) + u1 (u12 − u13)] + u8[u7 (1− u4) + u4u12],

A3 = (u7 + u12 − u13) [u1u4 (u7 + 2u12)− u4u8 − u2 (u10 + u11)]

+ u4u7u8 (2− u4) +u4 (u7 + u12) [u2u6 − u1u7 − u8 (1− u4)],

A4 = u2
4u7u8 − u4 (u7 + u12) [u4 (u8 − u1u12) + u2 (u10 + u11)].

s̄ =
(u7 + u12 − u13) p̄+ u4 (u7 + u12)

u8 (u4 + p̄)
, h̄ =

(u4 + p̄) [1− p̄− u1s̄]

u2

Exist provided the following conditions:

u12 > u13 (2.2b)

p̄ < 1, (2.2c)

s̄ <
1− p̄
u1

, (2.2d)

u4 < 1, (2.2e)

u2u6 + u1 (u12 − u13) < u8 (1− u4) , (2.2f)

(u7 + u12 − u13) [u2u6 + u1 (u12 − u13)− u8 (1− u4)] < −u8[u7 (1− u4) + u4u12], (2.2g)

u2u6 < u1u7 + u8 (1− u4) , (2.2h)

u1u4 (u7 + 2u12) < u4u8 + u2 (u10 + u11) , (2.2i)

(u7 + u12 − u13) [u1u4 (u7 + 2u12)− u4u8 − u2 (u10 + u11)]+u4 (u7 + u12) ?

[u2u6 − u1u7 − u8 (1− u4)] > − u4u7u8 (2− u4) , (2.2j)

u8 > u1u12, (2.2k)

u2
4u7u8 < u4 (u7 + u12) [u4 (u8 − u1u12) + u2 (u10 + u11)], (2.2l)

(v) The equilibrium point E4 = (¯̄p, ¯̄s, 0, ¯̄v) ,
¯̄p is unrivaled and positive solution of the following equation:

B1p
3 +B2p

2 +B3p+B4 = 0, (2.3a)

Where,

B1 = −u6u9,

B2 = u6[u9 (1− u5)− u3u6 − u1 (u14 − u15)] + u9u11,

B3 = u5u6 (u9 − u1u14) + u10[u9 (1− u5)− u3u6]− (u10 + u11) [u9 (1− u5)− 2u3u6 − u1 (u14 + u15)],

B4 = u5u9u10 − (u10 + u11) [u5 (u9 − u1u14) + u3u11],

¯̄v =
u6 ¯̄p− (u10 + u11)

u9

, ¯̄s =
(1− ¯̄p) (u5 + ¯̄p)− u3 ¯̄v

u1 (u5 + ¯̄p)
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Exists provided the following conditions:

u10 + u11

u6

< ¯̄p < 1, (2.3b)

(1− ¯̄p) (u5 + ¯̄p) > u3 ¯̄v, (2.3c)

u5 < 1, (2.3d)

u9 (1− u5) > 2u3u6 + u1 (u14 − u15) , (2.3e)

u14 > u15, (2.3f)

u9 > u1u14, (2.3g)

u5u6 (u9 − u1u14) + u10[u9 (1− u5)− u3u6] > (u10 + u11) [u9 (1− u5)− 2u3u6 − u1 (u14 + u15)],
(2.3h)

u5u9u10 > (u10 + u11) [u5 (u9 − u1u14) + u3u11]. (2.3i)

(vi) The positive equilibrium point E5 =
(
p̃, s̃, h̃, ṽ

)
,

p̃ is unrivaled and positive solution of the following equation:

F1p
7 + F2p

6 + F3p
5 + F4p

4 + F5p
3 + F6p

2 + F7p+ F8 = 0, (2.4a)

Where,

F1 = R11 (u7R3 − u8R1) ,

F2 = R18 + (R3R12 +R4R11)− u8 (R1R12 +R2R11) ,

F3 = R19 + (R3R13 +R4R12)− u8 (R1R13 +R2R12) +R24,

F4 = R20 + (R3R14 +R4R13)− u8 (R1R14 +R2R13) +R25,

F5 = R21 + (R3R15 +R4R14)− u8 (R1R15 +R2R14) +R26,

F6 = R22 + (R3R16 +R4R15)− u8 (R1R16 +R2R15) +R27,

F7 = R23 + (R3R17 +R4R16)− u8 (R1R17 +R2R16) +R28,

F8 = R17 (R4 − u8R2) +R29,

R1 = u7 + u12 − u13,

R2 = u4 (u7 + u12) ,

R3 = u8,

R4 = u4u8,

R5 = u10R1,

R6 = u10 (u5R1 +R2) ,

R7 = u5u10,

R8 = R3 (u14 − u15)− u9R1,

R9 = u14 (u5R3 +R4)− u9 (u5R1 +R3)− u15R4,

R10 = u5 (u14R4 − u9R2) ,

R11 = −u7R3R8,

R12 = −u7[R8[(u4R3 +R4) + u1R1 −R3 (1− u5)] +R3R9],

R13 = u7[R8[u5R3 + (u4R3 +R4) (1− u5)− u1u5R1 − u4R4 − u1 (u4R1 +R2)]−R9[R3 (1− u5)

+ (u4R3 +R4) + u1R1]−R3 (R10 + u3R5)],
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R14 = u7[R8[u5 (u4R3 +R4) + u4R4 (1− u5)− u1u5 (u4R1 +R2)− u1u4R2]

+R9[u5R3 + (u4R3 +R4) (1− u5)− u1u5R1 − u4R4 − u1 (u4R1 +R2)]

+R10[(u4R3 +R4) + u1R1 −R3 (1− u5)]− u3[R3R6 +R5 (u4R3 +R4)]],

R15 = u7[u4u5R8 (R4 − u1R2) +R9[u5 (u4R3 +R4) + u4R4 (1− u5)− u1u5 (u4R1 +R2)− u1u4R4]

+R10[u5R3 + (u4R3 +R4) (1− u5)− u1u5R1 + u4R4 − u1 (u4R1 +R2)]− u3[R3 (R7

+u4R6) +R4 (R6 + u4R5)]],

R16 = u7[u4u5R9 (R4 − u1R2) +R10[u5 (u4R3 +R4)− u4R4 (1− u5)− u1[u5 (u4R1 +R2) + u4R2]]

− u3[R7 (u4R3 +R4) + u4R6]],

R17 = u4u7[u5R10 (R4 − u1R2)− u3R4R7],

R18 = u2u6R1R3R8,

R19 = u2u6[R8[(R1R4 +R2R3) + u5R1R3] +R1R3R9],

R20 = u2u6[R8[R2R4 + u5 (R1R4 +R2R3)] +R9[(R1R4 +R2R3) + u5R1R3] +R1R3R10],

R21 = u2u6[u5R2R4R8 +R9[R2R4 + u5 (R2R3 +R1R4)] +R10[(R1R4 +R2R3) + u5R1R3]],

R22 = u2u6[u5R2R4R9 +R10[R2R4 + u5 (R1R4 +R2R3)]],

R23 = u2u5u6R2R4R10,

R24 = −u2R1R3[(u10 + u11)R8 + u9R5],

R25 = −u2[(u10 + u11) [R8[R2R3 +R1 (u5R3 +R4) +R1R3R9]] + u9[R3 (R1R6 +R2R5)

+R1R5 (u5R3 +R4)]],

R26 = −u2[(u10 + u11) [R8[R2 (u5R3 +R4) + u5R1R4] +R9[R2R3 +R1 (u5R3 +R4)] +R1R3R10]

+ u9[R3 (R1R7 +R2R6) + (u5R3 +R4) (R1R6 +R2R5) + u5R1R4R5]],

R27 = −u2[(u10 + u11) [u5R2R4R8 +R9[u5 (R1R4 +R2R3) +R2R4] +R10[R2R3 +R1 (u5R3 +R4)]]

+ u9[(R1R7 +R2R6) (u5R3 +R4) + u5R4 (R1R6 +R2R5)]],

R28 = −u2[(u10 + u11) [u5R2R4R9 +R10[R2 (u5R3 +R4) + u5R1R4]] + u9[R2R7 (u5R3 +R4)

+ u5R4 (R1R7 +R2R6)]],

R29 = −u2R2R4[(u10 + u11)R10 + u9R7],

š =
u4 (u7 + u12) + (u7 + u12 − u13) p̃

u8 (u4 + p̌)
, ṽ =

u10s̃

u14 − u9s̃− u15p̃
u5+p̃

and

h̃ =
(u4 + p̃)[(u5 + p̃)(1− p̃− u1s̃)− u3ṽ]

u2(u5 + p̃)
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Exist if in addition to the conditions (2.2b), (2.2b) and (2.2f), the following conditions hold:

u14 > u9s̃+
u15p̃

u5 + p̃
, (2.5a)

1 > p̃+ u1s̃, (2.5b)

(u5 + p̃) (1− p̃− u1s̃) > u3ṽ, (2.5c)

R3 (u14 − u15) > u9R1, (2.5d)

u14 (u5R3 +R4) > u9 (u5R1 +R2) + u15R4, (2.5e)

u14R4 > u9R2, (2.5f)

(u4R3 +R4) + u1R1 > R3 (1− u5) , (2.5g)

u5R3 + (u4R3 +R4) (1− u5) > u1u5R1 + u4R4 + u1 (u4R1 +R2) , (2.5h)

u1R1 + (u4R3 +R4) > R3 (1− u5) , (2.5i)

R8[u5R3 + (u4R3 +R4) (1− u5)− u1u5R1 − u4R4 − u1 (u4R1 +R2)]

> R9[u1R1 + (u4R3 +R4)−R3 (1− u5)] +R3 (R10 + u3R5) , (2.5j)

u5 (u4R3 +R4) + u4R4 (1− u5) > u1u5 (u4R1 +R2) + u1u4R2, (2.5k)

R8[u5 (u4R3 +R4) + u4R4 (1− u5)− u1u5 (u4R1 +R2)− u1u4R2]

+R9[u5R3 + (u4R3 +R4) (1− u5)− u1u5R1 − u4R4 − u1 (u4R1 +R2)]

> u3[R3R6 +R5 (u4R3 +R4)]−R10[(u4R3 +R4) + u1R1 −R3 (1− u5)], (2.5l)

R4 > max {u1R2, u8R2} , (2.5m)

u4u5R8 (R4 − u1R2) +R9[u5 (u4R3 +R4) + u4R4 (1− u5)− u1u5 (u4R1 +R2)− u1u4R4]

+R10[u5R3 + (u4R3 +R4) (1− u5)− u1u5R1 + u4R4 − u1 (u4R1 +R2)]

> u3[R3 (R7 + u4R6) +R4 (R6 + u4R5)], (2.5n)

u5 (u4R3 +R4) + u4R2 > u4R4 (1− u5) + u1[u5 (u4R1 +R2)], (2.5o)

u4u5R9 (R4 − u1R2) +R10[u5 (u4R3 +R4)− u4R4 (1− u5)− u1[u5 (u4R1 +R2) + u4R2]]

> u3[R7 (u4R3 +R4) + u4R6], (2.5p)

u5R10 (R4 − u1R2) > u3R4R7, (2.5q)

R18 − u8 (R1R12 +R2R11) < − (R3R12 +R4R11) , (2.5r)

R4R12 > −R3R13, (2.5s)

R2R12 > −R1R13, (2.5t)

R19 − u8 (R1R13 +R2R12) < −[(R3R13 +R4R12) +R24], (2.5u)

R20 − u8 (R2R13 +R1R14) < −[(R4R13 +R3R14) +R25], (2.5v)

R21 − u8 (R2R14 +R1R15) < −[(R4R14 +R3R15) +R26], (2.5w)

R22 − u8 (R2R15 +R1R16) < −[(R4R15 +R3R16) +R27], (2.5x)

R23 − u8 (R2R16 +R1R17) < −[(R4R16 +R3R17) +R28], (2.5y)

R17 (R4 − u8R12) > −R29, (2.5z)
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3. The local stability analysis

In this section, the local stability analysis of system 1.2 has been discussed by computing the
Jacobian matrix J (p, s, h, v) of system 1.2 about each of the previous equilibrium points.

J =


1−2p−u1s− u2u4h

(u4+p)2
− u3u5v

(u5+p)2
−u1p

−u2p
u4+p

−u3p
u5+p

u6s u6p−u8h−u9v−(u10+u11) u7−u8s −u9s
u13u4h

(u4+p)2
u8h u8s−(u7+u12)+

u13p
u4+p

0

u5u15v

(u5+p)2
u9v+u10 0 u9s−u14+

u15p
u5+p


� Analysis of the local stability to system 1.2 at E0 = (0, 0, 0, 0)

At E0 = (0, 0, 0, 0), the Jacobian matrix of system 1.2 is

J0 = J(E0) =


1 0 0 0
0 − (u10 + u11) u7 0
0 0 − (u7 + u12) 0
0 u10 0 −u14


Then the characteristic equation of J0 is given by:

(1− λ) (− (u10 + u11)− λ) (− (u7 + u12)− λ) (−u14 − λ) = 0,
λ0p = 1 > 0, λ0s = − (u10 + u11) < 0, λ0h = − (u7 + u12) < 0 and λ0v = −u14 < 0.
Therefore, E0 is unstable.

� Analysis of the local stability to system 1.2 at E1 = (1, 0, 0, 0)

At E1 = (1, 0, 0, 0) , the Jacobian matrix of system 1.2 as follow:

J1 = J(E1) =


−1 −u1 − u2

u4+1
− u3

u5+1

0 u6 − (u10 + u11) u7 0
0 0 − (u7 + u12) + u13

u4+1
0

0 u10 0 −u14 + u15

u5+1

 ,

The characteristic equation of J1 take the form as following:

(−1− λ) (u6 − (u10 + u11)− λ)
(
− (u7 + u12) + u13

u4+1
− λ
)(
−u14 + u15

u5+1
− λ
)

= 0, so, λ1p = −1 <

0, λ1s = u6 − (u10 + u11) , λ1h = − (u7 + u12) + u13

u4+1
and λ1v = −u14 + u15

u5+1
.

Therefore, E1 = (1, 0, 0, 0) locally asymptotically stable provided the following conditions hold

u6 < (u10 + u11) , (3.1)

(u7 + u12) >
u13

u4 + 1
, (3.2)

u14 >
u15

u5 + 1
. (3.3)

It is unstable otherwise.

� Analysis of the local stability to system 1.2 at E2 = (p̂, ŝ, 0, 0)
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At E2 = (p̂, ŝ, 0, 0) , the Jacobian matrix of system 1.2 is

J2 = J(E2) =


−u11

u6
−u1p̂

−u2p̂
u4+p̂

−u3p̂
u5+p̂

u6ŝ −u10 u7 − u8ŝ −u9ŝ

0 0 u8ŝ− (u7 + u12) + u13p̂
u4+p̂

0

0 u10 0 u9ŝ− u14 + u15p̂
u5+p̂


The characteristic equation of J2 take the form as following:

(b33 − λ) [λ3 + L1λ
2 + L2λ+ L3] = 0.

So, either
(b33 − λ) = 0, which gives λ2h = u8ŝ− (u7 + u12) + u13p̂

u4+p̂
< 0, provided that

(u7 + u12) > u8ŝ+
u13p̂

u4 + p̂
(3.4)

Or

λ3 + L1λ
2 + L2λ+ L3 = 0, (3.5)

where:

L1 = − (b11 + b22 + b44) ,

L2 = b11b22 + b44 (b11 + b22)− b24b42 − b12b21,

L3 = b24 (b11b42 − b14b21) + b44 (b12b21 − b11b22) .

Using Routh Hurwitz criterion implies that equation (3.5) has roots where real part is negative if
and only if: L1 > 0, L3 > 0 and ∆ = (L1L2 − L3)L3 > 0.
Now, Li > 0, i = 1, 3 the conditions satisfied below:

u14 > u9ŝ+
u15p̂

u5 + p̂
, (3.6a)

b11b42 > b14b21, (3.6b)

Straightforward computation shows that: ∆̂ = L1L2 − L3 = Q̂1 − Q̂2, where,

Q̂1 = (b11 + b22) [−b11b22 − b44 (b11 + b22 + b44) + b12b21] + b24b42 (b11+b22) ,

Q̂2 = b14b21b42,

So, ∆ > 0 on the authority of both conditions (3.6a) as long as the condition below:

Q̂1 > Q̂2. (3.6c)

Therefore, E2 is locally asymptotically stable, however, it is unstable otherwise.

� Analysis of the local stability to system 1.2 at E3 =
(
p̄, s̄, h̄, 0

)
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At E3 =
(
p̄, s̄, h̄, 0

)
, the Jacobian matrix of system (1.2) as follows:

J3 = J(E3) =


1− 2p̄− u1s̄− u2u4h̄

(u4+p̄)2
−u1p̄

−u2p̄
u4+p̄

−u3p̄
u5+p̄

u6s̄ u6p̄− u8h̄− (u10 + u11) u7 − u8s̄ −u9s̄
u13u4h̄
(u4+p̄)2

u8h̄ 0 0

0 u10 0 u9s̄− u14 + u15p̄
u5+p̄


The characteristic equation of J3 take the form as following:

λ4 +M1λ
3 +M2λ

2 +M3λ+M4 = 0, (3.7a)

where,

M1 = − (c11 + c22 + c44) ,

M2 = c44 (c11 + c22)− c13c31 − c23c32 − c12c21 − c24c42 + c11c22,

M3 = c44 (c13c31 + c23c32 + c12c21 − c11c22) + c13 (c22c31 − c21c32)− c23 (c12c31 − c11c32)

− c42 (c14c21 − c11c24) ,

M4 = c44[c23 (c12c31 − c11c32) + c13 (c21c32 − c22c31)]− c31c42 (c14c23 + c13c24) ,

Using Routh Hurwitz criterion implies equation (3.7a) has roots where real part is negative if and
only if: Mi > 0, i = 1, 3 and ∆ = (M1M2 −M3)M3 −M2

1M4 > 0. Now, Mi > 0, i = 1, 3
provided that the conditions satisfied below:

1 < 2p̄+ u1s̄+
u3u5v̄

(u5 + p̄)2 , (3.7b)

u6p̄ < u8h̄+ (u10 + u11) , (3.7c)

u9s̄+
u15p̄

u5 + p̄
< u14, (3.7d)

u7

u8

< s̄, (3.7e)

u8h̄

(
1− 2p̄− u1s̄−

u2u4h̄

(u4 + p̄)2

)
> −u1p̄

(
u13u4h̄

(u4 + p̄)2

)
, (3.7f)

c44[c23 (c12c31 − c11c32) + c13 (c21c32 − c22c31)] > c31c42 (c14c23 + c13c24) , (3.7g)

Straightforward computation shows that: ∆ = Q̄1 − Q̄2, where,

Q̄1 = {c44 (c13c31 + c23c32 + c12c21 − c11c22) + c13 (c22c31 − c21c32)− c23 (c12c31 − c11c32)

− c42 (c14c21 − c11c24)}{c11[c12c21 − c22 (c11 + c44)− c44 (c11 + c22)] + c31 (c11c13 + c12c23)

+ c22[c12c21 + c23c32 + c24c42 − c22 (c11 + c44)] + c44[c24c42 − c44 (c11 + c22)]}+ c31c42 (c11 + c22 + c44)2

(c14c23 + c13c24) ,

Q̄2 = −c44 (c11 + c22 + c44)2[c23 (c12c31 − c11c32) + c13 (c21c32 − c22c31)] + c21 (c13c32 + c14c42)

{c44[c13c31 + c23c32 + c12c21 − c11c22] + c13 (c22c31 − c21c32)− c23 (c12c31 − c11c32)− c42 (c14c21 − c11c24)} ,

So, ∆ > 0 on the authority of conditions (3.7b)-(3.7g) as long as the condition below:

Q̄1 > Q̄2, (3.7h)

Therefore, E3 is locally asymptotically stable, however, it is unstable otherwise.
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� Analysis of the local stability to system 1.2 at E4 = (¯̄p, ¯̄s, 0, ¯̄v)

At E4 = (¯̄p, ¯̄s, 0, ¯̄v) , the Jacobian matrix of system (1.2) as follows

J4 = J(E4) =


1− 2¯̄p− u1 ¯̄s− u3u5 ¯̄v

(u5+¯̄p)2
−u1 ¯̄p −u2 ¯̄p

u4+¯̄p
−u3 ¯̄p
u5+¯̄p

u6 ¯̄s 0 u7 − u8 ¯̄s −u9 ¯̄s

0 0 u8 ¯̄s− (u7 + u12) + u13 ¯̄p
u4+¯̄p

0
u5u15 ¯̄v
(u5+¯̄p)2

u9 ¯̄v + u10 0 u9 ¯̄s− u14 + u15 ¯̄p
u5+¯̄p


The characteristic equation of J4 take the form as following:

(d33 − λ) [λ3 +N1λ
2 +N2λ+N3] = 0. (3.8)

So, either
(d33 − λ), which gives λ4h = u8 ¯̄s− (u7 + u12) + u13 ¯̄p

u4+¯̄p
< 0, provided that

(u7 + u12) > u8̄̄s+
u13 ¯̄p

u4 + ¯̄p
. (3.9a)

Or

λ3 +N1λ
2 +N2λ+N3 = 0,

Where,

N1 = − (d11 + d44) ,

N2 = d11d44 − d14d41 − d24d42 − d12d21,

N3 = d42 (d11d24 − d14d21) + d12 (d21d44 − d24d41) .

Using Routh Hurwitz criterion implies equation (3.8) has roots where real part is negative if and
only if Ni > 0, i = 1, 3 and ∆ = (N1N2 −N3)N3 > 0. Now, Ni > 0, i = 1, 3 provided that
the conditions satisfied below:

1 < 2¯̄p+ u1 ¯̄s+
u3u5 ¯̄v

(u5 + ¯̄p)2 , (3.9b)

u9 ¯̄s+
u15 ¯̄p

u5 + ¯̄p
< u14, (3.9c)

u6 ¯̄s[u9 ¯̄s− u14 +
u15 ¯̄p

u5 + ¯̄p
] > −u9 ¯̄s

(
u5u15 ¯̄v

(u5 + ¯̄p)2

)
. (3.9d)

Straightforward computation shows that:

¯̄∆ = N1N2 −N3 = ¯̄Q1 − ¯̄Q2,

where,

¯̄Q1 = (d11 + d44) [d14d41 − d44d11 + d24d42 + d12d21] + d12d24d41,

¯̄Q2 = d42 (d14d21 − d11d24)− d12d21d44.



Epidemiological model Involving Two ... 12 (2021) No. 2, 2085-2107 2097

So, ∆ > 0 on the authority of conditions (3.9a)-(3.9d) as long as the condition below:

¯̄Q1 >
¯̄Q2. (3.9e)

Therefore, E4 is locally asymptotically stable, however, it is unstable otherwise.

� Analysis of the local stability to system 1.2 at E5 =
(
p̃, s̃, h̃, ṽ

)
At E5 =

(
p̃, s̃, h̃, ṽ

)
, the Jacobian matrix of system (1.2) as follows

J5 = J(E5) =


1−2p̃−u1s̃− u2u4h̃

(u4+p̃)2
− u3u5ṽ

(u5+p̃)2
−u1p̃

−u2p̃
u4+p̃

−u3p̃
u5+p̃

u6s̃ u6p̃−u8h̃−u9ṽ−(u10+u11) u7−u8s̃ −u9s̃
u13u4h̃

(u4+p̃)2
u8h̃ 0 0

u5u15ṽ

(u5+p̃)2
u9ṽ+u10 0 u9s̃−u14+

u15p̃
u5+p̃


The characteristic equation of J5 take the form as following:

λ4 +K1λ
3 +K2λ

2 +K3λ+K4 = 0, (3.10)

where,

K1 = − (e11 + e22 + e44) ,

K2 = e22e44 + e11 (e22 + e44)− e13e31 − e23e32 − e14e41 − e24e42 − e12e21,

K3 = e31[e13 (e22 + e44)− e12e32]− e32[e13e21 − e23 (e11 + e44)]− e44 (e11e22 − e12e21) + e14e22e41+

e11e24e42,

K4 = e31[e23 (e12e44 − e14e42)− e13 (e22e44 − e24e42)]− e32[e13 (e24e41 − e21e44)− e23 (e14e41 − e11e44)]

Using Routh Hurwitz criterion implies equation (3.10) has roots where real part is negative if and
only if: Ki > 0, i = 1, 3, 4 and ∆ = (K1K2 −K3)K3 −K2

1K4 > 0.
Now, Ki > 0, i = 1, 3, 4 provided the conditions satisfied below:

1 < 2p̃+ u1s̃+
u2u4h̃

(u4 + p̃)2 +
u3u5ṽ

(u5 + p̃)2 , (3.11a)

p̃ <
u8h̃+ u9ṽ + (u10 + u11)

u6

, (3.11b)

u9s̃+
u15p̃

u5 + p̃
< u14, (3.11c)

u7

u8

< s̃, (3.11d)

−u9s̃

(
u5u15ṽ

u5 + p̃

)
> u6s̃

(
u9s̃+

u15p̃

u5 + p̃
− u14

)
, (3.11e)

e23 (e12e44 − e14e42) < e13 (e22e44 − e24e42) , (3.11f)

e13 (e24e41 − e21e44) < e23 (e14e41 − e11e44) , (3.11g)
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Straightforward computation shows that: ∆ = Q̃1 − Q̃2, where,

Q̃1 = {e11[e13e31 + e14e41 + e12e21]− e11 (e22 + e44) (e11 + e22 + e44)− e22e44 (e22 + e44) +

e22[e23e32 + e24e42 + e12e21] + e44 (2e12e21 + e14e41 + e24e42)}{e31[e13 (e22 + e44)− e12e32]− e32[e13e21−
e23 (e11 + e44)]− e44 (e11e22 + e12e21) + e14e22e41 + e11e24e42}
Q̃2 = e32 (e12e31 + e13e21) {e31[e13 (e22 + e44)− e12e32]− e32[e13e21 − e23 (e11 + e44)]−
e44 (e11e22 + e12e21) + e14e22e41 + e11e24e42}+ (e11 + e22 + e44)2 {e31[e23 (e12e44 − e14e42)−
e13 (e22e44 − e24e42)]− e32[e13 (e24e41 − e21e44)− e23 (e14e41 − e11e44)]}.

So, ∆ > 0 on the authority of conditions (3.11a)-(3.11g) as long as the condition below:

Q̃1 > Q̃2. (3.11h)

Therefore, E5 is locally asymptotically stable, however, it is unstable otherwise.

4. Global Stability Analysis

In this section, by using a suitable Lyapunov method about the previous equilibrium points of
system (1.2) to study the global stability analysis, which were represented early locally stability as
illustrated in the following theorems:

Theorem 4.1. The equilibrium E1 = (1, 0, 0, 0), of system (1.2) is globally asymptotically stable in
the basin of attraction of Int.R4

+ that satisfies the condition:

(p− 1)2 + u11s+ u12h+ u14v > u1s+
u2h

u4 + p
+

u3v

u5 + p
, (4.1)

Proof .Consider the following function

W1 (p, s, h, v) = [p− 1− ln p] + s+ h+ v.

Clearly the function W1 : R4
+ → R is C1 is positive definite.

Differentiating W1 with regard to time t with handle algebraic treatments we get:

dW1

dt
= − (p− 1)2−(u1 − u6) ps−(u2 − u13) ph

u4 + p
−(u3 − u15) pv

u5 + p
−u11s+u1s+

u2h

u4 + p
+

u3v

u5 + p
−u12h−u14v,

Now, by the biological facts u1 > u6, u2 > u13 and u3 > u15 we get:

dW1

dt
< − (p− 1)2−u11s− u12h− u14v + u1s+

u2h

u4 + p
+

u3v

u5 + p
,

Thus, dW1

dt
< 0, under the condition (4.1) and hence dW1

dt
is negative definite. Thus E1 is globally

asymptotically stable. �

Theorem 4.2. The equilibrium E2 = (p̂, ŝ, 0, 0), of system (1.2) is globally asymptotically stable in
the basin of attraction of Int.R4

+ that satisfies the following condition:

θ̂1 > θ̂2, (4.2)
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where,

θ̂1 = − (p− p̂)2 −
(
u7ŝ

s
+ u12

)
h− u14v,

θ̂2 = (u1 − u6) (pŝ+ p̂s) + [
u2h

u4 + p
+

u3v

u5 + p
]p̂+ [u8h+ u9v]ŝ+ u10s.

Proof .Consider the following function

W2 = [p− p̂− lnp
p̂

] + [s− ŝ− ln
s

ŝ
] + h+ v.

Clearly the function W2 : R4
+ → R is C1 is positive definite.

Differentiating W2 with regard to time t and handle algebraic treatments we get:

dW2

dt
=− (p− p̂)2 − (u1 − u6) (p− p̂) (s− ŝ)− (u2 − u13) ph

u4 + p
− (u3 − u15) pv

u5 + p
−
(
u7ŝ

s
+ u12

)
h

− u14v + (u1 − u6) (pŝ+ p̂s) + [
u2h

u4 + p
+

u3v

u5 + p
]p̂+ [u8h+ u9v]ŝ.

Now, by the biological facts u1 > u6, u2 > u13 and u3 > u15 , we get:

dW2

dt
< − (p− p̂)2−

(
u7ŝ

s
+ u12

)
h− u14v+ (u1 − u6) (pŝ+ p̂s) + [

u2h

u4 + p
+

u3v

u5 + p
]p̂+ [u8h+ u9v]ŝ.

Thus, dW2

dt
< 0, under condition (4.2) and hence dW2

dt
is negative definite. Thus E2 is globally

asymptotically stable. �

Theorem 4.3. The equilibrium E3 =
(
p̄, s̄, h̄, 0

)
, of system (1.2) is globally asymptotically stable in

the Basin of attraction of Int.R4
+ that satisfies the next condition:

u7

s̄
≤ 2

√
u7h

ss̄
, (4.3)

θ̄1 > θ̄2. (4.4)

Where,

θ̄1 = − (p− p̄)2 −

[√
u7h

ss̄
(s− s̄)−

(
h− h̄

)]2

− u13

[
p̄h

u4 + p̄
+

ph̄

u4 + p

]
− u14v,

θ̄2 = (u1 − u6) (ps̄+ p̄s) +
(
h− h̄

)2
+ u2

[
p̄h

u4 + p
+

ph̄

u4 + p̄

]
+

u3p̄v

u5 + p
+ u9s̄v.

Proof . Consider the following function

W3 =

[
p− p̄− lnp

p̂

]
+
[
s− s̄− lns

s̄

]
+

[
h− h̄− lnh

h̄

]
+ v.
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Clearly the function W3 : R4
+ → R is C1 is positive definite.

Differentiating W3 with regard to time t and handle algebraic treatments we get:

dW3

dt
=− (p− p̄)2 − (u1 − u6) ps− (u1 − u6) p̄s̄+ (u1 − u6) (ps̄+ p̄s)− (u2 − u13) ph

u4 + p
− (u2 − u13) p̄h̄

u4 + p̄

− (u3 − u15) pv

u5 + p
+
(
h− h̄

)2
+ u2[

p̄h

u4 + p
+

ph̄

u4 + p̄
] +

u3p̄v

u5 + p
− u13[

p̄h

u4 + p̄
+

ph̄

u4 + p
]−
(
h− h̄

)2

− u14v + u9s̄v −
u7h

ss̄
(s− s̄)2 +

u7

s̄
(s− s̄)

(
h− h̄

)
.

Now, by the biological facts u1 > u6, u2 > u13 and u3 > u15 with the condition (4.3) we get:

dW3

dt
<− (p− p̄)2 − [

√
u7h

ss̄
(s− s̄)−

(
h− h̄

)
]2 + (u1 − u6) (ps̄+ p̄s) +

(
h− h̄

)2
+ u2[

p̄h

u4 + p

+
ph̄

u4 + p̄
] +

u3p̄v

u5 + p
− u13[

p̄h

u4 + p̄
+

ph̄

u4 + p
]− u14v + u9s̄v.

Thus, dW3

dt
< 0, under condition (4.4) and hence dW3

dt
is negative definite. Thus E3 is globally

asymptotically stable. �

Theorem 4.4. the equilibrium E4 = (¯̄p, ¯̄s, 0, ¯̄v), of system (1.2) is globally asymptotically stable in
the Basin of attraction of Int.R4

+ that satisfies the next condition:

u10

¯̄v
≤ 2

√
u10s

v¯̄v
, (4.5)

¯̄θ1 >
¯̄θ2. (4.6)

Where,

¯̄θ1 = − (p− ¯̄p)2 − [(s−¯̄s)−
√
u10s

v¯̄v
(v − ¯̄v)]2 − u15[

p¯̄v

u5 + p
+

¯̄pv

u5 + ¯̄p
]− [

u7 ¯̄s

s
+ u12]h,

¯̄θ2 = (u1 − u6) (p¯̄s+ ¯̄ps) + (s− ¯̄s)2 + u3[
¯̄pv

u5 + p
+

p¯̄v

u5 + ¯̄p
] + [u8 ¯̄s+

u2 ¯̄p

u4 + p
]h+ [

u2 ¯̄p

u4 + p
+ u8 ¯̄s]h,

Proof . Consider the following function

W4 = [p− ¯̄p− lnp
¯̄p
] + [s−¯̄s− lns

¯̄s
] + h+ [v − ¯̄v − lnv

¯̄v
].

Clearly the function W4 : R4
+ → R is C1 is positive definite.

Differentiating W4 with regard to time t and handle algebraic treatments we get:

dw4

dt
= − (p− ¯̄p)2 − (u1 − u6) ps− (u1 − u6) ¯̄p̄̄s+ (u1 − u6) (p¯̄s+ ¯̄ps)− (s−¯̄s)2 − (u2 − u13) ph

u4 + p
−

(u3 − u15) ¯̄p¯̄v

u5 + ¯̄p
− (u3 − u15) pv

u5 + p
+ (s−¯̄s)2 +

u2 ¯̄ph

u4 + p
+ u3[

¯̄pv

u5 + p
+

p¯̄v

u5 + ¯̄p
]− u15[

p¯̄v

u5 + p
+

¯̄pv

u5 + ¯̄p
]

− [
u7̄̄s

s
+ u12]h− u10

¯̄s
(s−¯̄s) (v − ¯̄v) +

u10s

v¯̄v
(v − ¯̄v)2 + u8̄̄sh.
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Now, by the biological facts u1 > u6, u2 > u13 and u3 > u15 with the condition (4.5) we get:

dW4

dt
< − (p− ¯̄p)2 + (u1 − u6) (p¯̄s+ ¯̄ps)− (s−¯̄s)2 − [(s−¯̄s)−

√
u10v

s̄̄s
(v − ¯̄v)]2 + (s−¯̄s)2

+
u2ph

u4 + p
+ u3[

¯̄pv

u5 + p
+

p¯̄v

u5 + ¯̄p
]− u15[

p¯̄v

u5 + p
+

¯̄pv

u5 + ¯̄p
]− [

u7̄̄s

s
+ u12]h+ [u8̄̄s+

u2 ¯̄p

u4 + p
]h.

Thus dW4

dt
< 0, under condition (4.6) and hence dW4

dt
is negative definite.

Therefore E4 is globally asymptotically stable. �

Theorem 4.5. the equilibrium E5 =
(
p̃, s̃, h̃, ṽ

)
, of system (1.2) is globally asymptotically stable in

the Basin of attraction of Int.R4
+ that satisfies the next condition

u7

s̃
≤ 2

√
u7h

ss̃
, (4.7)

u10

ṽ
≤ 2

√
u10s

vṽ
, (4.8)

θ̃1 > θ̃2. (4.9)

Where,

θ̃1 = − (p− p̃)2 −

[√
u7h

s̄̄s
(s− ¯̄s)−

(
h− h̃

)]2

−
[
(s− s̃)−

√
u10s

v¯̄v
(v − ¯̄v)

]2

− u15

[
pṽ

u5 + p
+

p̃v

u5 + p̃

]
− u13

[
ph̃

u5 + p
+

p̃h

u5 + p̃

]

θ̃2 = (u1 − u6) (ps̃+ p̃s) + u2

[
p̃h

u4 + p
+

ph̃

u4 + p̃

]
+ u3

[
p̃v

u5 + p
+

pṽ

u5 + p̃

]
+
(
h− h̃

)2

+ (s− s̃)2 .

Proof . Consider the following function

W5 =

[
p− p̃− lnp

p̃

]
+
[
s− s̃− lns

s̃

]
+

[
h− h̃− lnh

h̃

]
+
[
v − ṽ − lnv

ṽ

]
.

Clearly the function W5 : R4
+ → R is C1 is positive definite.

Differentiating W5 with regard to time t and handle algebraic treatments we get:

dw5

dt
=− (p− p̃)2 − (u1 − u6) ps− (u1 − u6) p̃s̃+ (u1 − u6) (ps̃+ p̃s)−

(
h− h̃

)2

− (u2 − u13) ph

u4 + p

− (u2 − u13) p̃h̃

u4 + p̃
− (u3 − u15) p̃ṽ

u5 + p̃
− (u3 − u15) pv

u5 + p
+
(
h− h̃

)2

+ u2

[
p̃h

u4 + p
+

ph̃

u4 + p̃

]

+ u3

[
p̃v

u5 + p
+

pṽ

u5 + p̃

]
− u15

[
pṽ

u5 + p
+

p̃v

u5 + p̃

]
− u13

[
ph̃

u5 + p
+

p̃h

u5 + p̃

]
− u7

s̃
(s− s̃)

(
h− h̃

)
+
u7h

s¯̄s
(s− s̃)2 − u10

ṽ
(s− s̃) (v − ṽ) +

u10s

v¯̄v
(v − ṽ)2 + (s− s̃)2 − (s− s̃)2 .
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Now, by the biological facts u1 > u6, u2 > u13 and u3 > u15 with the condition (4.7) and (4.8) we
get:

dW5

dt
< − (p− p̃)2 −

[√
u7h

s¯̄s
(s− s̃)−

(
h− h̃

)]2

−
[
(s− s̃)−

√
u10s

v¯̄v
(v − ¯̄v)

]2

+ (u1 − u6) (ps̃+ p̃s) + u2

[
p̃h

u4 + p
+

ph̃

u4 + p̃

]
+ u3

[
p̃v

u5 + p
+

pṽ

u5 + p̃

]

+
(
h− h̃

)2

+ (s− s̃)2 − u15

[
pṽ

u5 + p
+

p̃v

u5 + p̃

]
− u13

[
ph̃

u5 + p
+

p̃h

u5 + p̃

]
.

Thus, dW5

dt
< 0 under condition (4.9) and hence dW5

dt
is negative definite.

Thus, E5 is globally asymptotically stable. �

5. Numerical Simulation

Right now, in any dynamical system, the appropriate numerical test to the entire analytical calcu-
lations is the most benefited methods to support the analytic results. Here, model (1.2) represented
an epidemic model in prey-predator populations. Actually, the other benefit is to understand the
influence of mutable values of parameters. Runge–Kutta with Predictor corrector strategy to get
output with the parameters in the structure of system (1.2), by using Matlab the obtained numer-
ical results to outline drawings for system arrangements. Instead of natural data the hypothetical
theoretical arrangement is used here:

u1 = 0.4, u2 = 0.4, u3 = 0.033, u4 = 0.5, u5 = 0.015

u6 = 0.001, u7 = 0.085, u8 = 0.85, u9 = 0.001, u10 = 0.0001, (5.1)

u11 = 0.00001, u12 = 0.0001, u13 = 0.0001, u14 = 0.001, u15 = 0.0008.

From Eq.(5.1) which represent the set of data starting from various initial values, it is observed the
solution of system (1.2) approaches asymptotically to a positive equilibrium point
E5 = (0.822, 0.1, 0.402, 0.396), which illustrated in Figure 1(a-d)

Figure 1: The time series of system (1.2) beginning with different initial points (3.5,0.2,0.3,0.4),(2.5,0.3,0.2,0.4) ,
(1.5,0.3,0.2,0.4) and (0.4,0.1,0.4,0.4), for the data given in eq. (24). The solution approaches asymptotically to the
positive equilibrium point E5 = (0.822, 0.1, 0.402, 0.396) , (a) trajectory of (p) as a function of time, (b) trajectory
of (s) as a function of time, (c) trajectory of ( h) as a function of time, (d) trajectory of (v) as a function of time.
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To discuss importance of the parameters values of system (1.2) on the dynamical behavior of the
proposed ecological system, the numerical solution for the data given in Eq.(5.1) with varying one
or more than parameter at each time and the obtained results are given below.
Note that when 0 < u1 ≤ 2, the solution of system (1.2) as yet approaches E5, as illustrated in
Figure 2, for typical value u1 = 0.5.

Figure 2: The Time series of the solution of system (1.2) which approach to E5 = (0.811, 0.1, 0.401, 0.396)

Now, Table 1, illustrated the study of the residue of the parameters in the numerical results of
and their effect on the ecological model.

Table 1: Numerical behavior of the system (1.2) at each time when changing one factor for the data it’s provide
Eq.(5.1).

Range of parameters Behavior of solution
0.4 ≤ u2 < 1.26 Approach to E5

0.033 ≤ u3 < 0.4 Approach to E5

u4 ≥ 0 Approach to E5

u5 ≥ 0 Approach to E5

0 ≤ u6 < 0.16 Approach to E5

0.1 ≤ u8 ≤ 2 Approach to E5

0 ≤ u9 < 0.12 Approach to E5

0 ≤ u10 < 0.1 Approach to E5

0 ≤ u11 < 0.1 Approach to E5

0 ≤ u13 < 0.027 Approach to E5

0 ≤ u15 < 0.3 Approach to E5

When 0.01 ≤ u7 < 0.47 the solution of system (1.2) remain approaches E5, as illustrated in
Figure(3a), for typical value u7 = 0.3, while 0.47 ≤ u7 ≤ 1 the solution of system (1.2) approach to
E4, as illustrated in Figure (3b), for typical value u7 = 0.9.
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Figure 3: (a) Time series of the solution of system (1.2) for the data given in Eq. (5.1) with u7 = 0.3 which approach
to E5 = (0.756, 0.353, 0.154, 0.408). (b) Time series of the solution of system (1.2) for the data given in Eq. (4.9)
with u7 = 0.9 which approach to E4 = (0.725, 0.511, 0, 0.416)

Note that, when 0 ≤ u12 < 0.07 the solution of system (1.2) remain approaches to E5, as
illustrated in Figure (4a), for typical value u12 = 0.01, while 0.07 ≤ u12 < 1 the solution of system
(1.2) approach to E4, as illustrated in Figure (4b), for typical value u12 = 0.99.

Figure 4: (a) Time series of the solution of system (1.2) for the data given in Eq.(4.9) with u12 = 0.01 which approach
to E5 = (0.891, 0.1, 0.151, 0.396). (b) Time series of the solution of system (1.2) for the data given in Eq. (5.1)
with u12 = 0.99 which approach to E4 = (0.894, 0.182, 0, 0.4).

In the range of 0 < u14 ≤ 1, note that when 0 ≤ u14 < 0.088 the solution of system (1.2) remain
approach to E5, as illustrated in Figure (4a), for typical value u14 = 0.01, furthermore 0.088 ≤ u14 ≤ 1
the solution of system (1.2) approach to E3, as illustrated in Figure(4b), for typical value u14 = 0.9.
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Figure 5: (a) Time series of the solution of system (1.2) for the data given in eq. (19) with u14 = 0.01 which approach
to E5 = (0.821, 0.1, 0.403, 0.161). (b) Time series of the solution of system (1.2) for the data given in Eq. (5.1)
with u14 = 0.9 which approach to E3 = (0.827, 0.1, 0.405, 0).

Now, when varying two parameters u12 and u14) in the same time, in the range of 0.07 ≤ u12 < 1
and 0.088 ≤ u14 ≤ 1 the solution of system (1.2) approach to E2, as illustrated in Fig.(5), for typical
values u12 = 0.07 and u14 = 0.088.

Figure 6: Time series of the solution of system (1.2) for the data given in Eq. (5.1) with u12 = 0.07 and u14 = 0.088
which approach to E2 = (0.946, 0.106, 0, 0).

Also varying three parameters u11, u12 and u14) in the same time , in the range of 0 ≤ u11 ≤ 1,
0.07 ≤ u12 < 1 and 0.088 ≤ u14 ≤ 1 the solution of system (1.2) approach to E1, as illustrated in
Figure 6, for typical values u11 = 1, u12 = 0.9 and u14 = 0.99.
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Figure 7: Time series of the solution of system (1.2) for the data given in Eq. (5.1) with u11 = 1, u12 = 0.9 and
u14 = 0.99 which approach to E1 = (1, 0, 0, 0).

6. Discussion and Conclusions

In this paper, eco-epidemiological model has been proposed for study. Which includes SI disease
in predator transmitted by an external source and vertically from mothers to offspring also SIS disease
in predator species which is spread horizontally, by explicit contact between infected individuals and
susceptible individuals. The two diseases cannot be transmitted from predator to prey by predation
or by contact. Two types of functional response, linear and Holling type-II for depicting the predation
as well as linear incidence for depicting the transition of diseases are used; the model is proposed and
analyzed, and system (1.2) has been solved numerically for four initial points and the hypothetical
set of parameters given by Eq. (5.1) and the following observation are obtained.

(i) No periodic solution is present through a set of hypothetical parameters in Eq. (5.1) in the
system (1.2).

(ii) Varying of the parameters ui , i = 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 15, at each time and keeping
the rest of parameters fixed as data given in Eq. (5.1) do not have any effect on the dynamical
behavior of system (1.2) and the solution approach to E5.

(iii) One of the most important results, the whole ecosystem cannot disappear altogether in the
same species or with prey in the presence of the two diseases in the same time.

(iv) The parameters u7, u11, u12 and u14 play a vital role in this eco-epidemiological system.
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