
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,909 |
تعداد دریافت فایل اصل مقاله | 7,656,366 |
Spin-dependent thermoelectric properties of a magnetized zigzag graphene nanoribbon | ||
Progress in Physics of Applied Materials | ||
مقاله 1، دوره 1، شماره 1، اسفند 2021، صفحه 1-6 اصل مقاله (1.24 M) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22075/ppam.2021.23053.1004 | ||
نویسندگان | ||
Reza Kalami؛ Seyed Ahmad Ketabi* | ||
School of Physics, Damghan University, Damghan, Iran | ||
تاریخ دریافت: 18 فروردین 1400، تاریخ بازنگری: 17 خرداد 1400، تاریخ پذیرش: 22 خرداد 1400 | ||
چکیده | ||
Spin caloritronics refers to generating spin current by thermal gradient. Spin caloritronics is an emerging new subfield of condensed matter physics concerned with coupled spin, charge, and energy transport in small structures and devices. In this paper, thermally induced spin transport in a magnetized zigzag graphene nanoribbon is explored. Using non-equilibrium Green’s function (NEGF) method in a tight-binding model, a temperature gradient applied between the left and right nonmagnetic electrodes, as thermal reservoirs in a magnetized zigzag graphene nanoribbon model junction so that the flowing of the up-spin and down-spin currents in the opposite directions can be induced which may be modulated by tuning of the back gate voltage. Furthermore, some thermoelectric properties of the junction, such as the spin-dependent Seebeck effect, electrical conductance, electron thermal conductance, and thermoelectric efficiency (ZT) of the model evaluated. Our calculations for the thermoelectric properties of the magnetized zigzag graphene nanoribbon indicate that for the zigzag edge graphene nanoribbon, the spin-dependent ZT is greater than the ZT of the electric charge. This means that for applications of spin thermal transport, the use of the zigzag edge graphene nanoribbons is appropriate. | ||
کلیدواژهها | ||
Graphene؛ Spin Caloritronics؛ Spin-dependent Seebeck coefficient | ||
مراجع | ||
[1] K. Tsukagoshi, B.W. Alphenaar, H. Ago, Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube, Nature 401 (1999) 572. [2] Z.H. Xiong, D. Wu, Z.V. Vardeny, J. Shi, Giant magnetoresistance in organic spin-valves, Nature 427 (2004) 821. [3] V. Dediu, M. Murgia, F.C. Matacotta, C. Taliani, S. Barbanera, Room temperature spin polarized injection in organic semiconductor, Solid State Commun. 122 (2002) 181. [4] J.H. Shim, K.V. Raman, Y.J. Park, T.S. Santos, G.X. Miao, B. Satpati, J.S. Moodera, Large spin diffusion length in an amorphous organic semiconductor, Phys. Rev. Lett. 100 (2008) 226603. [5] T.S. Santos, J.S. Lee, P. Migdal, I.C. Lekshmi, B. Satpati, J.S. Moodera, Room-temperature tunnel magnetoresistance and spin-polarized tunneling through an organic semiconductor barrier, Phys. Rev. Lett. 98 (2007) 016601. [6] M. Ouyang, D.D. Awschalom, Coherent spin transfer between molecularly bridged quantum dots, Science 301 (2003) 1074. [7] J.R. Petta, S.K. Slater, D.C. Ralph, Spin-dependent transport in molecular tunnel junctions, Phys. Rev. Lett. 93 (2004) 136601. [8] S. Sanvito, Memoirs of a spin, Nature Nanotechnology 2 (2007) 204. [9] Z. Ning, Y. Zhu, J. Wang, H. Guo, Quantitative analysis of nonequilibrium spin injection into molecular tunnel junctions, Phys. Rev. Lett.100 (2008) 056803. [10] R.Q. Wang, Y.Q. Zhou, B.Wang, D.Y. Xing, Spin-dependent inelastic transport through single-molecule junctions with ferromagnetic electrodes, Phys. Rev. B 75 (2007) 045318. [11] E.G. Emberly, G. Kirczenow, Molecular spintronics: spin-dependent electron transport in molecular wires, Chem. Phys. 281 (2002) 311. [12] S.K. Maiti, Curvature effect on spin polarization in a three-terminal geometry in presence of Rashba spin–orbit interaction, Phys. Lett. A 379 (2015) 361. [13] S.K. Maiti, Externally controlled selective spin transfer through a two-terminal bridge setup, Eur. Phys. J. B 88 (2015) 172. [14] M. Patra, S.K. Maiti, All-spin logic operations: Memory device and reconfigurable computing, Europhys. Lett. 121 (2018) 38004. [15] S. Z. Wang, K. Xia, G. E. Bauer, Thermoelectricity and disorder of FeCo/MgO/FeCo magnetic tunnel junctions, Phys. Rev. B, 90 (2014) 224406. [16] M. Zeng, Y. Feng, G. Liang, Graphene-based spin caloritronics, Nano lett. 11 (2011) 1369. [17] A. Fert, Nobel Lecture: Origin, development, and future of spintronics, Rev. Mod. Phys. 80 (2008) 1517. [18] I. Zutic, J. Fabian, S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76 (2004) 323. [19] G.E. Bauer, E. Saitoh, B.J. Van Wees, Spin caloritronics, Nature materials 11 (2012) 391. [20] K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, E. Saitoh, Observation of the spin Seebeck effect, Nature 455 (2008) 778. [21] K. Uchida, J. Xiao, H. Adachi, J.I. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. Bauer, Spin seebeck insulator, Nature materials 9 (2010) 894. [22] A. Torres, M.P. Lima, A. Fazzio, da A. J. Silva, Spin caloritronics in graphene with Mn, Appl. Phys. Lett. 104 (2014) 072412. [23] M. Shirdel-Havar, R. Farghadan, Spin caloritronics in spin semiconducting armchair graphene nanoribbons, Phys. Rev. B 97 (2018) 235421. [24] O. Cretu, A.V. Krasheninnikov, J.A. Rodriguez- Manzo, L. Sun, R.M. Nieminen, F. Banhart, Migration and localization of metal atoms on strained graphene, Phys. Rev. Lett. 105 (2010) 196102. [25] R. Meservey, P.M. Tedrow, Spin-polarized electron tunneling, Phys. Rep. 238 (1994) 173. [26] J.S. Moodera, J. Nassar, G. Mathon, Annu. Spintunneling in ferromagnetic junctions, Rev. Mater. Sci. 29 (1999) 381. [27] A.V. Krasheninnikov, P.O. Lehtinen, A.S. Foster, P. Pyykk€o, R.M. Nieminen, Embedding transitionmetal atoms in graphene: structure, bonding, and magnetism, Phys. Rev. Lett. 102 (2009) 126807. [28] W.Y. Kim, K.S. Kim, Prediction of very large values of magnetoresistance in a graphene nanoribbon device, Nature Nanotechnology 3 (2008) 408. [29] T. Kimura, Y. Otani, T. Sato, S. Takahashi, S. Maekawa, Room-temperature reversible spin Hall effect, Phys. Rev. Lett. 98 (2007) 156601. [30] A.A. Ovchinnikov, V.N. Spector, Organic ferromagnets. New results, Synth. Met. 27 (1988) B615. [31] Z.W. Tan, J.-S. Wang, Ch. K. Gan, First-principles study of heat transport properties of graphene nanoribbons, Nano letters 11 (2010) 214. [32] Y. Dubi, M. Di Ventra, Thermospin effects in a quantum dot connected to ferromagnetic leads, Phys. Rev. B 79 (2009) 081302. [33] J. Zheng, F. Chi, Y. Guo, Large spin figure of merit in a double quantum dot coupled to noncollinear ferromagnetic electrodes, J. Phys.: Condens. Matter 24 (2012) 265301. [34] M. Wierzbicki, R. Swirkowicz, J. Barnas, Giant spin thermoelectric efficiency in ferromagnetic graphene nanoribbons with antidots, Phys. Rev. B 88 (2013) 235434. [35] X. Chen, Y. Liu, B.L. Gu, W. Duan, F. Liu, Giant roomtemperature spin caloritronics in spinsemiconducting graphene nanoribbons, Phys. Rev. B 90 (2014) 121403. | ||
آمار تعداد مشاهده مقاله: 478 تعداد دریافت فایل اصل مقاله: 446 |