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Abstract

In this paper, a three-species food chain model is proposed and studied. It is assumed that there are
fear costs in the first two-level due to predation risk and there exists an alternative source of food
for a top predator. Holling’s disc function is adopted to describe the food transition throughout the
chain. All the solution properties are discussed. The conditions of local stability and persistence
of the model are established. The Lyapunov function is used to specify the basin of attraction for
each equilibrium. Local bifurcation analyses are studied. The global dynamics of the model are
investigated numerically. Different bifurcation diagrams and attractors are obtained. It is obtained
that the system is rich in dynamics that include chaos.
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1. Introduction

It is well known that the most important biological processes in ecology and population biology
are the interactions among organisms and their environment, and the evolution of species. Math-
ematical modeling is a strong tool for studying the above biological processes, and hence various
kinds of mathematical models have been suggested and studied [11]. These mathematical models
are classified as deterministic models and can be written using nonlinear ordinary differential equa-
tions. Prey-predator interaction is a focal subject in ecology and evolutionary biology. It has been
extensively investigated by many researchers throughout the past few decades using mathematical
models, which included different biological factors. In fact, these models have played an important
role in understanding the effect of various biological factors. Most of the existing prey-predator
models are based upon the framework of the classical Lotka–Volterra model. The Lotka-Volterra
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models assumed that the predators can influence the prey population directly by killing them. How-
ever, the existence of a predator may significantly change the behavior in addition to the existence
of prey [1, 8]. Later on, the Lotka-Volterra model was thereafter modified by including a logistic
growth for the prey and a Holling type-II functional response for the predator [7]. Such a model
was investigated extensively by Rosenzweig and MacArthur [15] as a more realistic representation of
a prey-predator system. Other modifications with different types of functional responses have been
studied extensively in the tri-trophic food chains and food webs [6, 3, 12, 18]. Different, types of
complex dynamical behavior have been obtained in these models, including periodic, and chaos.
On the other hand, the preys face predation risk by using a variety of anti-predator responses such
as changes in the habitat, foraging, vigilance, and different physiological [1, 14]. So, due to fear of
predation risk, the prey population can change its feeding area to a safer place and sacrifice their
highest intake rate areas, increase their vigilance, regulate their strategies for reproductive, etc. Con-
sequently, the reproduction of the shocking prey decreases. Keeping the above in view, although the
known fact is that predators can influence prey population through direct killing only, recent works
showed that indirect effect on prey population can be seriously stronger than the direct effect, and
hence manipulation of fear is strong enough to influence the population dynamics of ecological sys-
tems [21, 17, 19]. Although all the types of functional responses consider the direct killing of the
prey no matter the impact of fear, many prey-predator models using different types of functional
responses have been proposed and studied [5, 10, 4], and references therein. The first mathematical
model that considers into account the prey population reduction due to the impact of fear of the
predation risk was proposed by Wang et al [19]. They observed that high levels of fear can stabilize
the prey-predator system. However, comparatively low levels of fear can induce multiple limit cycles,
leading to a bi-stability phenomenon. On the other hand, they noted that for the prey-predator
model with the linear functional response, the cost of fear does not change the dynamic behaviors of
the model and a unique positive equilibrium is still globally asymptotically stable. After this work,
many authors proposed and studied varieties of prey-predator models by using the impact of fear in
prey reproduction.
Wang and Zou [20] proposed a prey-predator model with age structure in prey population and al-
lowing adaptive avoidance of predators. They observed that both strong adaptation of adult prey
and the large cost of fear have a destabilizing effect on the dynamics of the system, but when the
predator population is large, it has a stabilizing effect. Panday et al [13] proposed a three-species
food chain model, where the growth rate of each species decreases due to the fear of predation risk
by upper-level species. They obtained that fear can stabilize a chaotic system. Sasmal [16] proposed
an eco-epidemiological model with a strong Allee effect and cost of fear in prey reproduction. he
showed that fear can stabilize the system at the interior equilibrium, where all the three populations
coexist, or it can create the oscillatory coexistence of all the three populations. Zhang et al [22]
proposed and investigated the influence of anti-predator behavior due to the fear of predators with a
Holling-type-II prey-predator model incorporating a prey refuge. They concluded that the fear effect
can not only reduce the population density of predators at the positive equilibrium but also stabilize
the system by excluding the existence of periodic solutions. Later on, Fakhry and Naji [2] proposed
and studied a prey-predator system with a square root response function and the prey’s fear. They
showed that the effect of fear reduces the population density of predators at the positive equilibrium
and also stabilizes the system. Recently, Liu et al [9] proposed a time-delayed prey-predator model
with Holling-type II functional response that incorporates the gestation period and the cost of fear
into prey reproduction. They showed that high levels of fear have a stabilizing effect while relatively
low levels of fear have a destabilizing effect on the predator-prey interactions which lead to limit-cycle
oscillations.
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The present paper, a three-species food chain model with the influence of fear of predation in the
first two-level that incorporates an alternative resource of food for a top predator is proposed and
studied. The Holling’s disc (or Holling type II) functions are used to describe the transferring of the
food throughout the food chain. The rest of the paper is organized as follows. In the next section,
the formulation of the model is carried out. In the following section, the local stability of equilibrium
points is studied. In section 4, the persistence conditions of the model are established. Section
5, treats the global stability analysis. However, local bifurcation analysis is discussed in section 6.
Section 7 involves the numerical simulation of the model. Finally, section 8 gives the conclusion of
this study.

2. Mathematical Model

In the present section, the real-world food chain system is formulated mathematically. It is
assumed that the real-world system consisting of a tri-trophic food chain in which the prey at the
lower level grows logistically and the top predator at the upper level has alternative resource for food
in case of lacking of their preferred prey at the middle level. Let the variables X(T ), Y (T ), and Z(T )
represent at the time T the prey, intermediate predator, and top predator respectively. It is assumed
that due to fear of predation process, the growth rates of prey at the lower level and the growth
rate of intermediate predator at the middle level are reduced, so that the growth rate of the prey in
the lower level and the growth rate of the intermediate predator at the middle level are monotonic
decreasing functions of both c1 with Y and c2 with Z respectively. Moreover, the food transferees
throughout the levels of the food chain according to the Holling’s disc functions. Keeping the above
assumptions in view, the dynamics of the food-chain system can be describe using the following set
of first order differential equations.

dX

dT
=

(
rX

1 + c1Y

)(
1− X

K

)
− a1XY

b1 +X
= F1 (X, Y, Z) ,

dY

dT
=

e1a1XY

(1 + c2Z)(b1 +X)
− a2AY Z

b2 + Y
− d1Y = F2 (X, Y, Z) , (2.1)

dZ

dT
=

e2a2AY Z

b2 + Y
+ (1− A)BZ − d2Z = F3 (X, Y, Z) ,

where X(0) ≥ 0, Y (0) ≥ 0, and Z(0) ≥ 0. It is assumed that all the parameters in the model (2.1)
are positive and can be described in the following table.

Table 1: Parameters description

Parameter Description
r Intrinsic growth rate in the absence of predator
K Carrying capacity of the prey

c1 and c2 Fear coefficients from intermediate predator and top predator respectively
a1 and a2 Maximum attack rates for the prey and intermediate predator respectively
b1 and b2 Half saturation constants for the intermediate predator and top predator respectively
e1 and e2 Conversion rates for the intermediate predator and top predator respectively
d1 and d2 Natural death rates for the intermediate predator and top predator respectively

A Probability of feeding on the intermediate predator
B Growth rate from alternative resource
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Clearly, the functions g1(c1, Y ) = 1
1+c1Y

and g2(c2, Z) =
1

1+c2Z
, which describe the fear factors in the

lower and middle levels respectively satisfy that:

g1(0, Y ) = g1(c1, 0) = 1, lim
c1→∞

g1(c1, Y ) = lim
Y→∞

g1(c1, Y ) = 0 and
∂g1
∂c1

< 0,
∂g1
∂Y

< 0

g2(0, Z) = g2(c2, 0) = 1, lim
c2→∞

g2(c2, Z) = lim
Z→∞

g2(c2, Z) = 0 and
∂g2
∂c2

< 0,
∂g2
∂Z

< 0

Observe that, the interaction functions Fi; i = 1, 2, 3 are continuous functions and have a continuous
partial derivatives. Therefore, they are Lipschitz functions. Accordingly, the solution of the model
(2.1) is exists and is unique.
Now, in order to simplify the analysis of the model (2.1) and generalize the results, the following
dimensionless variables and parameters are used:

t = rT , x =
X

K
, y =

Y

K
, Z =

Z

K
,

w1 = c1K, w2 =
a1
r
, w3 =

b1
K

, w4 =
e1a1
r

, w5 = c2K, w6 =
a2A

r
, w7 =

b2
K

, w8 =
d1
r
, w9 =

e2a2A

r
,

w10 =
(1− A)B

r
, w11 =

d2
r
.

Then the non-dimensional form of model (2.1) can be written as:

dx

dt
= x

[
1− x

1 + w1y
− w2y

w3 + x

]
= xf1(x, y, z),

dy

dt
= y

[
w4x

(1 + w5z)(w3 + x)
− w6z

w7 + y
− w8

]
= yf2(x, y, z), (2.2)

dz

dt
= z

[
w9y

w7 + y
+ w10 − w11

]
= zf3(x, y, z),

with x(0) ≥ 0, y(0) ≥ 0, and z(0) ≥ 0. Moreover, in the following theorem the invariant region and
positivity of the solution of the model (2.2) is established.

Theorem 2.1. The model (2.2) with non-negative initial condition in R3
+ has a positive invariant

solution in the region Ω =

{
(x, y, z) ∈ R3

+ :
w4

w2

x(t) + y(t) +
w6

w9

z(t) ≤ w4

w2µ

}
Proof . From the first equation of model (2.2) we have

dx

dt
≥ −x

[
x

1 + w1y
+

w2y

w3 + x

]
By solving the above differential inequality and using given initial condition, it is obtain

x(t) ≥ x(0)e
−

∫ t
0

[
x

1+w1y
+

w2y
w3+x

]
dt ≥ 0

Using similar arguments on other equations gives

y(t) ≥ y(0)e
−

∫ t
0

[
w6z
w7+y

+w8

]
dt ≥ 0

z(t) ≥ z(0)e−w11t ≥ 0

Accordingly, all the solutions of the model (2.2) are feasible. Now to investigate the boundedness of

the solutions, define P (t) =
w4

w2

x(t) + y(t) +
w6

w9

Z(t), then the time derivative of p(t) gives

dp

dt
≤ w4

w2

x(1− x)− w8y −
w6

w9

(w11 − w10)z ≤ w4

w2

− µ

(
w4

w2

x(t) + y(t) +
w6

w9

z(t)

)
,
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where µ = min {1, w8, w11 − w10}. Therefore, it is obtain that for t → ∞
lim
t→∞

sup p(t) ≤ w4

w2µ
. Thus, the proof is complete. □

3. Local Behavior of the Model

This section treats the study of the local behavior of the solution of the model (2.2). It is observed
that model (2.2) has at most six non-negative equilibrium points. The conditions that guarantee the
existence of these points are described as follows.
The vanishing equilibrium point, s0 = (0, 0, 0) always exists.
The first axial equilibrium point s1 = (1, 0, 0) always exists.
The second axial equilibrium point s2 = (0, 0, ẑ), where ẑ ≥ 0 any real number belongs to Ω, exists
under the condition

w10 = w11 (3.1)

The top predator-free equilibrium point, s3 = (x, y, 0) where

x =
w8w3

w4 − w8

, y = − w2

2w1w2

+

√
w2

2 + 4w1w2w3w4
[w4−w8(1+w3)]

(w4−w8)2

2w1w2

, (3.2)

exists provided that the following condition holds

w8(1 + w3) ≤ w4 (3.3)

The intermediate predator-free equilibrium point, s4 = (1, 0, ẑ), where ẑ ≥ 0 any real number belongs
to Ω, exists under the condition (3.1).
Finally, the coexistence equilibrium point, s5 = (x̌, y̌, ž), where

x̌ =
−γ1 +

√
γ2
1 + 4γ2

2
, y̌ =

w7(w11 − w10)

w9 − (w11 − w10)
, ž =

−δ2
2δ1

+
1

2δ1

√
δ22 + 4δ1δ3, (3.4)

where γ1 = w3 − 1, γ2 = w3 − w2y̌(1 + w1y̌), δ1 = w6w5(w3 + x̌), δ2 = (w3 + x̌) [w6 + w5w8(w7 + y̌)],
δ3 = [w4x̌− w8(w3 + x̌)] (w7 + y̌).
Here the constant solutions x̌ and ž are the positive roots of the following two quadratic equations
respectively.

x2 + (w3 − 1)x− w3 + w2y̌(1 + w1y̌) = 0 (3.5a)

w6w5(w3 + x̌)z2 + (w3 + x̌) [w6 + w5w8(w7 + y̌)] z

− [w4x̌− w8(w3 + x̌)] (w7 + y̌) = 0 (3.5b)

Obviously, the equations (3.5a) and (3.5b) have unique positive roots provided the following condi-
tions hold.

w2y̌(1 + w1y̌) < w3, (3.6a)

w8(w3 + x̌) < w4x̌. (3.6b)

While, the constant solution y̌ is positive under the following condition:

0 < (w11 − w10) < w9. (3.6c)
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Now, to study the local behavior near the above equilibrium points, the Jacobian matrix is computed
at general point (x, y, z) by:

J =

x∂f1
∂x

+ f1 x∂f1
∂y

x∂f1
∂z

y ∂f2
∂x

y ∂f2
∂y

+ f2 y ∂f2
∂z

z ∂f3
∂x

z ∂f3
∂y

z ∂f3
∂z

+ f3

 , (3.7)

where
∂f1
∂x

=
−1

1 + w1y
+

w2y

(w3 + x)2
,
∂f1
∂y

=
−w1(1− x)

(1 + w1y)2
− w2

w3 + x
,
∂f1
∂z

= 0,

∂f2
∂x

=
w3w4

(w3 + x)2(1 + w5z)
,
∂f2
∂y

=
w6z

(w7 + y)2
,
∂f2
∂z

=
−w6

w7 + y
− w4w5x

(w3 + x)(1 + w5z)2
,

∂f3
∂x

= 0,
∂f3
∂y

=
w7w9

(w7 + y)2
,
∂f3
∂z

= 0.

Therefore, the Jacobian matrix at the vanishing equilibrium point, s0 = (0, 0, 0) can be written as:

J(s0) =

1 0 0
0 −w8 0
0 0 w10 − w11

 . (3.8)

Clearly, the eigenvalues are λ01 = 1, λ02 = −w8 and λ03 = w10 − w11. Thus, the point s0 is a saddle
point.
The Jacobian matrix for the first axial equilibrium point s1 = (1, 0, 0) can be written as

J(s1) =


−1 − w2

w3 + 1
0

0
w4

w3 + 1
− w8 0

0 0 w10 − w11

 . (3.9)

Here the eigenvalues of J(s1) are given by λ11 = −1, λ12 =
w4

w3 + 1
− w8 and λ13 = w10 − w11.

Therefore, the point s1 is locally asymptotically stable if and only if the following conditions hold:

w4

w3 + 1
< w8 (3.10a)

w10 < w11 (3.10b)

The Jacobian matrix for the second axial equilibrium point is given by:

J(s2) =


1 0 0

0 −w6

w7

ẑ − w8 0

0
w7w9

w2
7

ẑ 0

 . (3.11)

Clearly, the eigenvalues are λ21 = 1, λ22 = −w6

w7

ẑ − w8 and λ23 = 0. Thus, the point s2 is unstable

non-hyperbolic point due to existence of zero eigenvalue.
The Jacobian matrix at the top predator-free equilibrium point, s3 = (x, y, 0) can be written as

J(s3) =


−x

1 + w1y
+

w2x y

(w3 + x)2
−w1x(1− x)

(1 + w1y∗)2
− w2x

w3 + x
0

w3w4y

(w3 + x)2
0 − w6y

w7 + y
− w4w5x y

w3 + x

0 0
w9y

w7 + y
+ w10 − w11

 . (3.12)
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Therefore, the eigenvalues of J(s3) are determined as

λ31 =
β1 +

√
β2
1 − 4β2

2
, λ32 =

β1 +
√

β2
1 − 4β2

2
, λ33 =

w9y

w7 + y
+ w10 − w11, (3.13)

where β1 =
−x

1 + w1y
+

w2x y

(w3 + x)2
, β2 =

[
w1x(1− x)

(1 + w1y)2
+

w2x

w3 + x

] [
w3w4y

(w3 + x)2

]
. Straightforward com-

putation shows that all the eigenvalues in equation (6) have negative real parts, and hence the point
s3 is locally asymptotically stable if and only if the following two conditions are satisfied.

w2y

(w3 + x)2
<

1

1 + w1y
, (3.14a)

w9y

w7y
+ w10 < w11. (3.14b)

Now, the Jacobian matrix at the intermediate predator-free equilibrium point, s4 = (1, 0, ž) is deter-
mined by:

J(s4) =


−1 − w2

w3 + 1
0

0
w4

(1 + w5ẑ)(w3 + 1)
− w6ẑ

w7

− w8 0

0
w9ẑ

w7

0

 . (3.15)

Consequently, the eigenvalues of J(s4) are given by

λ41 = −1, λ42 =
w4

(1 + w5ẑ)(w3 + 1)
− w6ẑ

w7

− w8, λ43 = 0. (3.16)

Therefore, the existence of the zero eigenvalues makes the point s4 non-hyperbolic point, and hence
the stability type cannot studied through the linearization method and we may study their stability
using Lyapunov method.
Finally, the local stability conditions for the coexistence equilibrium points are established in the
following theorem.

Theorem 3.1. The coexistence equilibrium point of the model (2.2) is locally asymptotically stable
if and only if the following conditions are satisfied.

w2x̌y̌Ǎ1Ǎ
2
3 + w6y̌žǍ1Ǎ

2
2 ≤ x̌Ǎ2

2Ǎ
2
3, (3.17a)(

w2w6x̌y̌
2žǍ1 − w6x̌y̌žǍ

2
2

Ǎ1Ǎ2
2Ǎ

2
3

)
+

(
w1w3w4x̌(1− x̌)y̌Ǎ2 + w2w4x̌y̌Ǎ

2
1

Ǎ2
1Ǎ

3
2Ǎ4

)
> 0, (3.17b)(

x̌A2
2A

2
3 − w2x̌y̌A1A

2
3 − w6y̌žA1A

2
2

Ǎ1Ǎ2
2Ǎ

2
3

)[(
w2w6x̌y̌

2žA1 − w6x̌y̌žA
2
2

Ǎ1Ǎ2
2Ǎ

2
3

)
(
w1w3w4x̌(1− x̌)y̌A2 + w2w3w4x̌y̌A

2
1

Ǎ2
1Ǎ

3
2Ǎ4

)]
>

(
w6w7w9y̌ž

2

Ǎ4
3

)(
w6y̌A2A

2
4 + w3w5x̌y̌A3

Ǎ2Ǎ3Ǎ2
4

)
, (3.17c)

where
Ǎ1 = 1 + w1y̌, Ǎ2 = w3 + x̌, Ǎ3 = w7 + y̌ and Ǎ4 = 1 + w5ž.
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Proof . Direct computation shows that the Jacobian matrix at the coexistence equilibrium point
s5 = (x̌, y̌, ž) is determined as:

J(s5) =


−x̌

Ǎ1

+
w2x̌y̌

Ǎ2
2

−w1x̌(1− x̌)

Ǎ2
2

− w2x̌

Ǎ2

0

w3w4y̌

Ǎ2
2Ǎ4

w6y̌ž

Ǎ2
3

−w6y̌

Ǎ3

− w3w5x̌y̌

Ǎ2Ǎ2
4

0
w7w9ž

Ǎ2
3

0

 = (Pij) (3.18)

Therefore, the characteristic equation of J(s5) can be determined as:

λ3
5 +Θ1λ

2
5 +Θ2λ5 +Θ3 = 0, (3.19)

where Θ1 = −(p11 + p22), Θ2 = p11p22 − p12p21 − p23p32, Θ3 = p11p23p32, while the value of
∆ = Θ1Θ2 −Θ3 = −(p11 + p22)[p11p22 − p12p21] + p22p23p32.
Now, the proof is follows if all the eigenvalues of J(s5) have negative real parts, which is satisfied
if and only if the coefficients of the characteristic equation (3.19) satisfy that Θ1 > 0, Θ3 > 0 and
∆ > 0.
Simple calculations show that condition (3.17a) guaranties that p11 < 0, Θ1 > 0, and Θ3 > 0, while
conditions (3.17b) and (3.17c) guarantee that ∆ > 0. Hence, the proof is complete. □

4. The Persistence

It is well known that persistence represents a global property of a dynamic system. It depends
upon solution behavior near extinction boundaries rather than the interior solution space. Biologi-
cally, the persistence of a system means the survival of all populations of the system in future times.
On the other hand, mathematically it means that strictly positive solutions do not have an omega
limit set on the boundary of the non-negative cone. Accordingly, if the dynamic system does not
persist, then the dynamic system faces extinction.
Now, before examining the persistence of the food chain model using the method of average Lya-
punov function, we need to study the global dynamics in the boundary planes. The food chain
system represented by the model (2.2), has two subsystems in the boundary planes xy-plane and
xz-plane respectively. These two subsystems can be written as follows:

dx

dt
= x

[
1− x

1 + w1y
− w2y

w3 + x

]
= N1(x, y)

dy

dt
= y

[
w4x

w3 + x
− w8

]
= N2(x, y)

(4.1a)

While the second subsystem is given by:

dx

dt
= x(1− x) = N3(x, y),

dz

dt
= z(w10 − w11) = N4(x, y).

(4.1b)

Furthermore, these subsystems have unique interior coexistence points in the positive quadrant of xy-
plane and xz-plane respectively, which represented by a projection of the boundary planar equilibrium
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points (x, y) and (1, ẑ) of the model (2.2).

Now, define the function B1(x, y) =
1

xy
, which is a continuously differential function in the interior

of positive quadrant of xy-plane.

∆(x, y) =
∂

∂x
(B1N1) +

∂

∂y
(B1N2) =

−1

y(1 + w1y)
+

w2

(w3 + x)2
.

Clearly ∆(x, y) don’t identically zero and does not change sign provided that

1

y(1 + w1y)
<

w2

(w3 + x)2
. (4.2)

Therefore, the subsystem (4.1a) has no periodic dynamics in the interior of positive quadrant of
xy-plane. In fact the interior point (x, y) is a globally asymptotically stable whenever it exists and
locally stable. Similarly, it is observed that the subsystem (4.1b) has no periodic dynamics in the
interior of the positive quadrant of the xz-plane.

Theorem 4.1. Assume that, the boundary planes of the model (2.2) have no periodic dynamics,
then model (2.2) is uniformly persistent provided that the following conditions hold.

w4

w3 + 1
> w8

or

w10 > w11

 . (4.3a)

w9y

w7 + y
+ w10 > w11. (4.3b)

w4

(1 + w5ẑ)(w3 + 1)
>

w6ẑ

w7

+ w8. (4.3c)

Proof . Consider the following function δ(x, y, z) = xd1yd2zd3 where di, i = 1, 2, 3 are posi-
tive constants. Obviously, δ(x, y, z) is a non-negative continuously differentiable function so that
δ(x, y, z) → 0 if any one of the variables x, y, or z approach zero.
Furthermore, it is observed that:

Ψ(x, y, z) =
δ
′
(x, y, z)

δ(x, y, z)
= d1f1 + d2f2 + d3f3,

where the functions fi, i = 1, 2, 3, are given in the model (2.2). Accordingly, we have

Ψ(x, y, z) = d1

[
1− x

1 + w1y
− w2y

w3 + x

]
+ d2

[
w4x

(1 + w5z)(w3 + x)
− w6z

w7 + y
− w8

]
+ d3

[
w9y

w7 + y
+ w10 − w11

]
.

Thus, it is obtained that
Ψ(s0) = d1[1] = d2[−w8] + d3[w10 − w11]
Clearly by choosing the constant d1 > 0 sufficiently large with respect to the positive constants d2
and d3, it is obtain that Ψ(s0) > 0.

Ψ(s1) = d2

[
w4

(w3 + 1)
− w8

]
+ d3[w10 − w11].
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Clearly, for suitable chose of constants d2 and d3 with the condition (4.3a) it is obtain that Ψ(s1) > 0.
Now,

Ψ(s2) = d1[1] + d2

[
−w6ẑ

w7

− w8

]
.

Similarly, for suitable chose of constants d1 and d2, we get Ψ(s2) > 0. Moreover,

Ψ(s3) = d3

[
w9y

w7 + y
+ w10 − w11

]
.

Clearly, Ψ(s3) > 0 under the condition (4.3). Finally, we have

Ψ(s4) = d2

[
w4

(1 + w5ẑ)(w3 + 1)
− w6ẑ

w7

− w8

]
.

Again, condition (4.3c) guarantees that Ψ(s4) > 0. Therefore, due to the average Lyapunov method,
model (2.2) is uniformly persistent. □

5. Global Dynamics

In this section, the global dynamics of all the equilibrium points of the model (2.2), which are
locally asymptotically stable is investigated using Lyapunov function.

Theorem 5.1. Assume that, the first axial equilibrium point, s1 = (1, 0, 0), of the model (2.2) is
locally asymptotically stable in R3

+ then it is a globally asymptotically stable provided that the following
conditions hold:

w2

w3

< w8. (5.1a)

w10 < w11 (5.1b)

Proof . Consider the positive definite function:

M1 = (x− 1− lnx) + y + x.

Straightforward computation gives:

dM1

dt
≤ −(x− 1)2

1 + w1y
− xy

w3 + x
[w2 − w4]− y

[
w8 −

w2

w3

]
− yz

w7 + y
[w6 − w9]− z[w11 − w10].

Therefore, due to the biological meaning of the parameters, it is obtain:

dM1

dt
≤ −(x− 1)2

1 + w1y
− y

[
w8 −

w2

w3

]
− z[w11 − w10].

Therefore, the function
dM1

dt
is negative definite due to conditions (5.1a) and (5.1b). This, M1 is a

strong Lyapunove function that is readily unbounded. Hence, s1 is a globally asymptotically stable.
□



The impact of alternative resources and fear ...; 12 (2021) No. 2, 2207-2234 2217

Theorem 5.2. Assume that, the top predator-free equilibrium point, s3 = (x, y, 0), of the model
(2.2) is locally asymptotically stable, then the basin of attraction of s3 is a sunset of Ω that satisfies
the following sufficient conditions.

w2y

A2A2

<
1

A1

, (5.2a)[
w1(1− x)

A1A1

+
w2

A2

− w3w4

A2A2A4

]2
< 4

[
1

A1

− w2y

A2A2

]
, (5.2b)

w10 +
w4w5x y

A2

+
w6

w7

y < w11 (5.2c)

(y − y)2 <

[
w11 − w10 −

w4w5x y

A2

− w6

w7

y

]
y, (5.2d)

where

A1 = 1 + w1y, A1 = 1 + w1y, A2 = w3 + x, A2 = w3 + x, A3 = w7 + y, and A4 = 1 + w5z.

Proof . Consider the positive definite function:

M2 =
(
x− x− x ln

(x
x

))
+

(
y − y − y ln

(
y

y

))
+ z.

Straightforward computation gives:

dM2

dt
≤ −

[
1

A1

− w2y

A2A2

]
(x− x)2 − (y − y)2

−
[
w1(1− x)

A1A1

+
w2

A2

− w3w4

A2A2A4

]
(x− x)(y − y)

−
[
w11 − w10 −

w4w5x y

A2

− w6

w7

y

]
y + (y − y)2.

Now, by using the conditions (5.2a)-(5.2b), it is obtain that

dM2

dt
≤ −

[√
1

A1

− w2y

A2A2

(x− x) + (y − y)

]2
−
[
w11 − w10 −

w4w5x y

A2

− w6

w7

y

]
y + (y − y)2.

Therefore, using the conditions (5.2c)-(5.2d), it is obtain that, the derivative
dM2

dt
is negative definite

in the interior of sub region of Ω that satisfies the given sufficient conditions. Hence, this sub region
represents a basin of attraction for s3, and the proof is complete □

Theorem 5.3. Assume that, the intermediate predator-free equilibrium point, s4 = (1, 0, ẑ), of the
model (2.2)) exists, then it is a globally asymptotically stable in R3

+ provided that the condition (5.1a)
holds.
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Proof . Consider the positive definite function:

M3 = (x− 1− lnx) + y +
(
z − ẑ − ẑ ln

(z
ẑ

))
.

Straightforward computation gives:

dM3

dt
≤ −(x− 1)2

1 + w1y
− xy

w3 + x
[w2 − w4]−

[
w8 −

w2

w3

]
y

− yz

w7 + y
[w6 − w9]−

w9yẑ

w7 + y
.

Therefore, due to the biological meaning of the parameters, it is obtain:

dM3

dt
≤ −(x− 1)2

1 + w1y
−
[
w8 −

w2

w3

]
y

Clearly, the derivative
dM3

dt
, is negative semi definite under the condition (5.1a). Hence, so by the

Lyapunov-Lasalle’s invariance principle [Lasalle 1976], the intermediate predator-free equilibrium
point is a globally asymptotically stable. □

Theorem 5.4. Assume that, the coexistence equilibrium point s5 = (x̌, y̌, ž) of the model (2.2) is
locally asymptotically stable, then the basin of attraction of s5 is a subset of Ω that satisfies the
following sufficient conditions.

w2y̌

A2Ǎ2

<
1

A1

, (5.3a)[
w1(1− x̌)

A1Ǎ1

+
w2

A2

− w3w4

A2Ǎ2A4

]2
< 2

[
1

A1

− w2y̌

A2Ǎ2

] [
w6ž

w7Ǎ3

]
, (5.3b)[

w4w5x̌

Ǎ2A4Ǎ4

+
w6

A3

− w7w9

A3Ǎ3

]2
< 2

[
w6ž

w7Ǎ3

]
, (5.3c)

2
w6ž

w7Ǎ3

(y − y̌)2 +
w6ž

w7Ǎ3

(z − ž)2 <

[√
w6ž

2w7Ǎ3

(y − y̌) +

√
w6ž

w7Ǎ3

(z − ž)

]2
. (5.3d)

Proof . Consider the positive definite function:

M4 =
(
x− x̌− x̌ ln

(x
x̌

))
+

(
y − y̌ − y̌ ln

(
y

y̌

))
+
(
z − ž − ž ln

(z
ž

))
.

Accordingly, the derivative of M4 with respect to time can be written as:

dM4

dt
≤ −

[
1

A1

− w2y̌

A2Ǎ2

]
(x− x̌)2 −

[
w1(1− x̌)

A1Ǎ1

+
w2

A2

− w3w4

A2Ǎ2A4

]
(x− x̌)(y − y̌)

−
[
w4w5x̌

Ǎ2A4Ǎ4

+
w6

A3

− w7w9

A3Ǎ3

]
(y − y̌)(z − ž)− w6ž

w7Ǎ3

(y − y̌)2

+ 2
w6ž

w7Ǎ3

(y − y̌)2 − w6ž

w7Ǎ3

(z − ž)2 +
w6ž

w7Ǎ3

(z − ž)2.
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Therefore, using the conditions (5.3a)-(5.3c) gives that:

dM4

dt
≤ −

[√
1

A1

− w2y̌

A2Ǎ2

(x− x̌) +

√
w6ž

2w7Ǎ3

(y − y̌)

]2

−

[√
w6ž

2w7Ǎ3

(y − y̌) +

√
w6ž

w7Ǎ3

(z − ž)

]2
+ 2

w6ž

w7Ǎ3

(y − y̌)2 +
w6ž

w7Ǎ3

(z − ž)2.

Therefore, using the condition (5.3d), it is clear that, the derivative
dM4

dt
is negative definite in

the interior of sub region of Ω that satisfies the given sufficient conditions. Hence, this sub region
represents a basin of attraction for s5, and the proof is complete. □

6. Bifurcation Analysis

This section interests how the equilibrium configurations of model (2.2) depend on the parameters
that characterize the model. Indeed, it may occur that as one of the parameters crosses a specific
value, the solution will tend toward another equilibrium position. The aim of this section is to study
the bifurcation of the model (2.2) that may occur with the varying of the values of parameters.
Rewrite the model (2.2) in the form:

dX

dt
= F (X), where X = (x, y.z)T , and F (x) = (xf1, yf2, zf3)

T

Therefore, the second derivative of F (X), with respect to the vector X can be written as

D2F (X) = (℧,℧) = [ci1]3×1, (6.1)

where:

c11 =

[
− 2

(1 + w1y)
+

2w2w3y

(w3 + x)3

]
v21 +

[
−2w1(1− 2x)

(1 + w1y)2

]
v1v2 +

[
2w2

1x(1− x)

(1 + w1)y)3

]
v22.

c21 =

[
− 2w2w4y

(x+ w3)3(1 + w5z)

]
v21 +

[
2w3w4

(x+ w3)2(1 + w5z)

]
v1v2

+

[
− 2w3w4w5y

(x+ w3)2(1 + w5z)2

]
v1v3 +

[
w6z(w7 − y)

(y + w7)3
+

w6z

(y + w7)2

]
v22

+

[
− 2w4w5x

(w3 + x)(1 + w5z)2
− 2w6w7

(y + w7)2

]
v2v3 +

[
2w4w

2
5xy

(x+ w3)(1 + w5z)3

]
v23.

c31 =

[
− 2w7w9z

(y + w7)3

]
v22 +

[
2w7w9

(y + w7)2

]
v2v3.

With ℧ = (v1, v2, v3) be a non-zero real vector.

Theorem 6.1. Assume that condition (3.10b) holds, then the model (2.2) at the first axial equilib-
rium point s1 = (1, 0, 0) possesses a transcritical bifurcation when the parameter w8 satisfies that

w8 =
w4

w3 + 1
(≡ w∗

8)
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Proof . It is easy to verify that the Jacobian matrix of the (2.2) at the first axial equilibrium point
with w8 = w∗

8 can be written in the form:

J(s1, w
∗
8) =

−1 − w2

w3 + 1
0

0 0 0
0 0 w10 − w11


Obviously, due to condition (3.10b) the eigenvalues of J(s1, w

∗
8) are given by λ∗

11 = −1 < 0, λ∗
12 = 0,

and λ∗
13 = w10 − w11 < 0.

Let L1 = (ℓ11, ℓ12, ℓ13)
T represents the eigenvector corresponding to λ∗

12 = 0. Then direct computation

gives that L1 =

(
− w2

w3 + 1
ℓ12, ℓ12, 0

)T

, where ℓ12 ̸= 0 any real number.

Let H1 = (h11, h12, h13)
T represents the eigenvector corresponding to λ∗

13 = 0 for the [J(s1, w
∗
8)]

T .
Then, direct computation gives that H1 = (0, h12, 0)

T , where h12 ̸= 0 any real number.
Accordingly, the following is obtained:

∂F

∂w8

= Fw8 = (0,−y, 0)T ⇒ HT
1 Fw8(s1, w

∗
8) = 0.

DFw8(X) =

0 0 0
0 −1 0
0 0 0

⇒ HT
1DFw8(s1, w

∗
8)L1 = −ℓ12h12 ̸= 0.

D2F (s1, w
∗
8)(L1,L1) =


−2

w2

w3 + 1

(
w2

w3 + 1
+ w1

)
ℓ212

− 2w2w3w4

(1 + w3)3
ℓ212

0

 .

This gives that:

HT
1D

2F (s1, w
∗
8)(L1,L1) = − 2w2w3w4

(1 + w3)3
ℓ212h12 ̸= 0.

Therefore, in the sense of Sotomayor’s theorem, the model possesses a transcritical bifurcation and
the proof is complete. □

Theorem 6.2. Assume that condition (3.14a) holds, then the model (2.2) at the top predator-free
equilibrium point, s3 = (x, y, 0) possesses a transcritical bifurcation when the parameter w11 satisfies

that w11 =
w9y

w7 + y
+ w10(≡ w∗

11).

Proof . Note that the Jacobian matrix of the model (2.2) at (s3, w
∗
11) can be written in the form:

J(s3, w
∗
11) =


−x

1 + w1y
+

w2x y

(w3 + x)2
−w1x(1− x)

(1 + w1y)2
− w2x

w3 + x
0

w3w4y

(w3 + x)2
0 − w6y

w7 + y
− w4w5x y

w3 + x
0 0 0

 = (σij).

Therefore, the eigenvalues of J(s3, w
∗
11) are determined as

λ∗
31 =

β1 +
√
β2
1 − 4β2

2
, λ∗

32 =
β1 +

√
β2
1 − 4β2

2
, λ∗

33 = 0,
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where β1 and β2 are given in equation (6). Clearly, due to condition (3.14a) the eigenvalues λ∗
31 and

λ∗
32 have negative real parts, while the third one is zero. Thus the top predator free equilibrium point

becomes non-hyperbolic point.
Define L2(ℓ21, ℓ22, ℓ23)

T represents the eigenvector corresponding to λ∗
33 = 0. Then direct computation

gives that L2 =

(
−σ23

σ21

ℓ23,
σ11σ23

σ12σ21

ℓ23, ℓ23

)T

, where ℓ23 ̸= 0 any real number.

Let H2 = (h21, h22, h23)
T represents the eigenvector corresponding to λ33 = 0 for the [J(s3, w

∗
11)]

T .
Then, direct computation gives that H2 = (0, 0, h23)

T , where h23 ̸= 0 any real number.
Accordingly, the following is obtained:

∂F

∂w11

= Fw11 = (0, 0, z)T ⇒ HT
2 Fw11(s3, w

∗
11) = 0.

DFw11(X) =

0 0 0
0 0 0
0 0 1

⇒ HT
2DFw11(s3, w

∗
11)L2 = ℓ23h23 ̸= 0.

D2F (s3, w
∗
11)(L2,L2) =

c11
c21
c31

 ,

where

c11 = 2

([
− 1

(1 + w1y)
+

w2w3y

(w3 + x)3

]
+

[
w1(1− 2x)

(1 + w1y)2

](
σ11

σ12

)
+

[
w2

1x(1− x)

(1 + w1y)3

](
σ11

σ12

)2
)(

σ23

σ21

)2

ℓ223,

c21 = 2

([
− w2w4y

(x+ w3)3

](
σ23

σ21

)2

−
[

w3w4

(x+ w3)2

](
σ23

σ21

)2(
σ11

σ12

)
+

[
w3w4w5y

(x+ w3)2

](
σ23

σ21

)
−
[

w4w5x

(w3 + x)
+

w6w7

(y + w7)2

](
σ11σ23

σ12σ21

)
+

[
w4w

2
5x y

(x+ w3)

])
ℓ223,

c31 =

[
2w7w9

(y + w7)2

](
σ11σ23

σ12σ21

)
ℓ223

Therefore, it is obtained that:

HT
2D

2F (s3, w
∗
11)(L2,L2) =

[
2w7w9

(y + w7)2

](
σ11σ23

σ12σ21

)
ℓ223h23 ̸= 0.

Thus, in the sense of Sotomayor’s theorem, the model possesses a transcritical bifurcation and the
proof is complete. □

Theorem 6.3. The model (2.2) undergoes a saddle node bifurcation near the coexistence equilibrium

point as the parameter w2 passes through the value w∗
2 =

Ǎ2
2

y̌Ǎ1

.

Proof . From the Jacobian matrix J(s5) of the model (2.2) at s5 = (x̌, y̌, ž) that given in equation
(3.18), the determinant of it is determined by Θ3 = p11p23p32, which given in equation (3.19). Clearly,
p11(w

∗
2) = 0, hence Θ3 = 0. Therefore, the characteristic equation of J(s5) has a zero eigenvalue, and

hence the coexistence equilibrium point becomes a non-hyperbolic point. Furthermore, the Jacobian
matrix at (s5, w

∗
2) is written as:

J∗ = J(s5, w
∗
2) = [pij]3×3,
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where pij, for all i, j = 1, 2, 3 are the same as given in equation (3.18) except p11(w
∗
2) = 0. Now

define L3 = (ℓ13, ℓ32, ℓ33)
T , where L3 represents the eigenvector corresponding to λ∗

51. Then direct

computation gives that L3 =

(
ℓ31, 0,−

p21
p23

ℓ31

)T

, where ℓ31 ̸= 0 any real number.

Let H3 = (h31, h32, h33)
T be the eigenvector corresponding to λ∗

51 = 0 for J∗T . Then direct computa-

tion gives that H2 =

(
h31, 0,−

p12
p32

h31

)T

, where h31 ̸= 0 any real number.

Accordingly, the following is obtained:

∂F

∂w2

= Fw2 =

(
−xy

A2

, 0, 0

)T

⇒ HT
2 Fw11(s5, w

∗
2) = − x̌y̌

Ǎ2

h31 ̸= 0.

Using the eigenvector L3 and (s5, w
∗
2) in (6.1) gives that:

D2F (s5, w
∗
2)(L3,L3) = [ci1(s5, w

∗
2)]3×1,

where:

c11(s5, w
∗
2) =

2

Ǎ1

[
−1 +

w3

Ǎ2

]
ℓ231.

c21(s5, w
∗
2) = −

[
2w∗

2w4y̌

Ǎ3
2Ǎ4

]
ℓ231 −

[
2w3w4w5y̌

Ǎ2
2Ǎ

2
4

](
−p21
p23

)
ℓ231

+

[
2w4w

2
5x̌y̌

Ǎ2Ǎ3
4

](
−p21
p23

)2

ℓ231.

c31(s5, w
∗
2) = 0.

Hence, it is obtain that:

HT
2D

2F (s5, w
∗
2)(L3,L3) =

2

Ǎ1

[
−1 +

w3

Ǎ2

]
ℓ231h31.

Since,
w3

Ǎ2

< 1, then HT
2D

2F (s5, w
∗
2)(L3,L3) ̸= 0. Hence the model (2.2) undergoes a saddle node

bifurcation in the sense of Sotomayor. □

7. Numerical Simulation

In this section, the global dynamics of model (2.2) are studied numerically. Model (2.2) is solved
numerically for different sets of parameters and different sets of initial conditions. The objective is
to understand the global dynamic behavior of model (2.2) when the parameter values are varying. It
is observed that, for the following set of hypothetical parameter values, the trajectory of the model
(2.2) approaches asymptotically to the chaotic attractor, as shown in figure (1) and figure (2).

w1 = 0.2, w2 = 0.5, w3 = 0.2, w4 = 0.4, w5 = 0.1, w6 = 0.4,

w7 = 0.5, w8 = 0.15, w9 = 0.2, w10 = 0.1, w11 = 0.15.
(7.1)

Clearly, figures (1) and figure (2) show the existence of a strange attractor in the model (2.2)
with their projection on the boundary planes and their time series for the data given in equation
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Figure 1: The trajectory of the model (2.2) approaches asymptotically to a chaotic attractor for data (7.1).

(a) 3D strange attractor. (b) Projection of the attractor in xy-plane. (c) Projection of the attractor in

xz-plane. (d) Projection of the attractor in yz-plane.

Figure 2: Time series of the chaotic attractor at data (7.1). (a) Time series of the strange attractor. (b)

Time series in xy-plane. (c) Time series in xz-plane. (d) Time series in yz-plane.
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Figure 3: Sensitivity to initial points for data . (a) Trajectories of the prey: blue starts at 0.8, green starts

at 0.81, red starts at 0.79. (b) Trajectories of the intermediate predator: blue starts at 0.7, green starts at

0.71, red starts at 0.69. (c) Trajectories of the top predator: blue starts at 0.6, green starts at 0.61, red

starts at 0.59.
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(7.1). It is well known that the most important characteristic property for chaotic dynamics is their
sensitivity to slight changes in the initial points. Therefore, figure (3) explains the sensitivity of the
changing in initial point, so that changing the initial point by (0.01) leads to a huge change in the
trajectories of the model (2.2), which means the existence of chaos.
According to the above, the effects of the changing of the parameters of the model (2.2) are inves-
tigated using the bifurcation diagram, which shows the attractors approached asymptotically (fixed
points, periodic attractors, or strange attractors) of a model as a function of a bifurcation parameter
in the model. Therefore, in the following figures According to the above bifurcation diagram

Figure 4: Bifurcation diagram as a function of w1 in the range 0.01 < w1 < 1.

Figure 5: Bifurcation diagram as a function of w2 in the range 0.01 < w2 < 1.

figures (4)-(14), It is clear that model (2.2) is rich in their dynamics and there are ranges of chaotic
dynamics in between there are windows of periodic dynamics that leading to chaos. Regarding the
fear rates parameters, it is observed from the bifurcation diagrams given in figures (4), (8) and their
extended for values above the upper limit in these figures that there is a gradual reduction to the
chaotic region and the solution of model (2.2) stabilize at a periodic dynamics as shown in the figure
(15) for typical values of fear rates. Regarding the bifurcation diagrams given by figures (5) and (9),
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Figure 6: Bifurcation diagram as a function of w3 in the range 0.1 < w3 < 0.5.

Figure 7: Bifurcation diagram as a function of w4 in the range 0.2 < w4 < 0.5.

Figure 8: Bifurcation diagram as a function of w5 in the range 0.01 < w5 < 1.
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Figure 9: Bifurcation diagram as a function of w6 in the ranges 0.01 < w6 < 0.15 and 0.15 ≤ w6 < 1.

Figure 10: Bifurcation diagram as a function of w7 in the ranges 0.01 < w7 < 1 and 1 ≤ w7 < 1.4.

Figure 11: Bifurcation diagram as a function of w8 in the ranges 0.01 < w8 < 0.35.
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Figure 12: Bifurcation diagram as a function of w9 in the ranges 0.01 < w9 < 0.4.

Figure 13: Bifurcation diagram as a function of w10 in the ranges 0.01 < w10 < 0.16.

Figure 14: Bifurcation diagram as a function of w11 in the ranges 0.1 < w11 < 0.25.
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Figure 15: The trajectory of the model (2.2) approaches asymptotically to a periodic attractor for data (7.1)

with w1 = 6 and w5 = 3. (a) 3D periodic attractor. (b) Time series of the attractor in (a).

it is observed that model (2.2) approaches to chaotic attractor as the parameters w2 and w6 varying
in the ranges w2 ∈ (0, 1) and w6 ∈ (0, 1) respectively through a cascade of periodic doubling as shown
in the figure (16) for a selected value of w2. However, increasing these parameters causes extinction
in top predators and the trajectory approaches periodic dynamics in the xy-plane as shown in figure
(17). Regarding the bifurcation diagrams given by figures (6) and (10), it is observed that model
(2.2) is rich in their dynamics in the ranges w3 ∈ (0, 0.5) and w7 ∈ (0, 1.4) respectively including the
chaotic region in between there are periodic regions. However, increasing these parameters leads to
stabilizing the system first at a simple periodic attractor and then at a coexistence equilibrium point
as shown in figure (18) for typical values of these parameters. Obviously, according to the figures
(18 c) and (18 d) model (2.2) approaches to coexistence equilibrium point given by (0.85, 0.43, 0.25)
as the parameters w3 and w7 increase above specific values. Regarding the bifurcation diagrams
given by figures (7) and (12), it is observed that model (2.2) is rich in their dynamics in the ranges
w4 ∈ (0.1, 0.5) and w9 ∈ (0, 0.4) respectively including the chaotic region in between there are peri-
odic regions. However, decreasing these parameters leads to stabilizing the system first at a simple
periodic attractor in 3D space, periodic in the interior of xy-plane, and then at top predator-free
equilibrium point as shown in figure (19) for typical values of these parameters. However, increasing
these parameters above specific values leads to reduce the chaotic region and the model approaches
periodic dynamics in the interior of 3D space. From the bifurcation diagrams given by figures (11)
and (14), it is observed that model (2.2) is rich in their dynamics in the ranges w8 ∈ (0, 0.35)
and w11 ∈ (0, 0.24) respectively including the chaotic region in between there are periodic regions.
However, increasing these parameters leads to extinction in intermediate or top predator and the
trajectory approach asymptotically either to periodic or to the boundary equilibrium points.
On the other hand, from the bifurcation diagram given by figure (13) in the range 0.01 < w10 < 0.16,
Clearly, figure (20 b) shows the existence of intermediate predator-free equilibrium point when the
condition (3.1) is satisfied.
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Figure 16: The route to chaos for the trajectory of the model (2.2) using data (7.1) with different values of

w2. (a) period−3 when w2 = 0.73. (b) long periodic when w2 = 0.8. (c) Strange attractor when w2 = 0.85.

Figure 17: Trajectory of model (2.2) using data (7.1) with w2 = 1 and w1 = 1. (a) Periodic attractor in

the xy-plane. (b) Time series of the trajectory in (a).
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Figure 18: The trajectory of model (2.2) using data (7.1) with different values of w3 and w7. (a) Periodic

attractor in 3D when w3 = 0.75 and w7 = 1. (b) Time series of the periodic attractor. (c) Asymptotically

stable coexistence equilibrium point when w3 = 0.75 and w7 = 1.3. (d) Time series of the coexistence point

attractor.
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Figure 19: The trajectory of the model (2.2) using data (7.1) with different values of w4 and w9. (a)

Approaches to top predator-free stable equilibrium point when w4 = 0.2 and w9 = 0.1. (b) Approaches to

periodic attractor in xy-plane when w4 = 0.25 and w9 = 0.1.. (c) Approaches to periodic attractor in 3D

space when w4 = 0.25 and w9 = 0.15.
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Figure 20: The trajectory of the model (2.2) using data (7.1) with different values of w10. (a) Approaches

to periodic attractor in xy-plane when w10 = 0.05. (c) Approaches to intermediate predator-free equilibrium

point in the xz-plane when w10 = 0.15.

8. Conclusion and Discussion

In this work, a food chain model with fear in the first and second levels is proposed and analyzed.
The effect of alternative food resources for the top predator is also included. The transition of food
throughout the food chain is depending on Holling’s disc functional response. The properties of
the solution of the model are discussed. The equilibrium points of the model are found and then
their local stability is performed using the Linearization technique. The persistence conditions are
determined. The stability regions for each equilibrium point are determined with the help of the
Lyapunov method. Local bifurcation of the model is also studied using the Sotomayer theorem.
Finally, the model is numerically simulated in order to understand the global dynamics of the model.
Different bifurcation diagrams are drawn to study the effects of varying these parameters on the
dynamical behavior of the model. It is observed that the model has different types of dynamics
including chaos. Moreover, it is observed that increasing the fear rates in a model works as a
reduction factor of the chaotic regions and the solution of model (2.2) stabilizes periodic dynamics
in the 3D space. On the other hand, increasing the maximum attach rates of predators in the model
above a specific level causes loss of persistence and the trajectory approaches periodic dynamics
in the xy-plane. However, increasing the half-saturation constants for the intermediate predator
and top predator controls the chaotic regions by approaching the periodic attractor first and then
the trajectory approaches a coexistence equilibrium point. Also, decreasing the conversion rates of
the model reduces the chaos and the solution transfer to periodic first, then the model loses their
persistence and the solution approaches to periodic in the interior of xy-plane. Finally, the solution
approaches the top predator-free equilibrium point. However, increasing these parameters above
specific values leads to periodic dynamics in the interior of 3D space. Finally, it is observed that
decreasing the alternative resource coefficient leads to extinction in top predator and the trajectory
approaches periodic dynamics in the xy-plane. While increasing this coefficient leads to extinction
in intermediate predator and the solution approaches to the intermediate predator-free equilibrium
point.
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