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Abstract

This work aims to analyze a three-dimensional discrete-time biological system, a prey-predator model
with a constant harvesting amount. The stage structure lies in the predator species. This analysis
is done by finding all possible equilibria and investigating their stability. In order to get an optimal
harvesting strategy, we suppose that harvesting is to be a non-constant rate. Finally, numerical
simulations are given to confirm the outcome of mathematical analysis.
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1. Introduction

In the real world, the individuals of many species have a life cycle which goes through two
or more than two stages, namely the non-reproducing stage (Juvenile stage) and the reproducing
stage(adult stage). In recent years, many authors have investigated prey-predator systems that
contain stage-structure in prey or in predator species. Other researchers have studied age-structure
models [1, 8, 20, 21, 23]. Mathematical models are used to understand the interactions or fluctuations
among different species in the real life. These models can be formulated by a set of differential
equations or a set of difference equations or partial differential equations as well as by a fractional-
order derivative. In discrete-time, models are more suitably used to describe the life of the population
than continuous-time models due to their efficiency for computation and numerical simulations [6, 14].
Harvesting is an important issue in managing the renew resources, so that many researchers have
studied different harvesting strategies in their systems [9, 15, 18, 19]. In [3], authors investigated
a stage-structured system of one species growth consisting of immature and mature members. In
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[5] Cui et al. analyzed and studied a stage-structured single-species population model without time
delay. In this work, we are concerned with discrete prey-predator model with stage-structured in
the predator species. we also study the influence of constant harvesting on the dynamics of the
model, then the system is extended to the optimal control problem to find the optimal harvesting
policy. We use Pontraygin’s maximum principle to solve the optimal control problem for more details
see [2, 4, 12, 16, 17]. This work is divided into five sections: In section 2 the mathematical model
is formulated and its behavior dynamics are discussed. In section 3 the optimal control problem
is considered and the optimal solution is got. The numerical results have presented in section 4.
Finally, the conclusion is presented in the last section.

2. The model and the stability of its fixed points

We investigated the dynamics behavior of a three dimensional discrete time prey-predator model
with stage-structured in predator species. The model is as follows:

Ut+1 = Ut(r − AUt)−
a1UtWt

1 + b1Ut

− hUt

Vt+1 = eWt − (r1 +D)Vt (2.1)

Wt+1 = DVt − r2Wt +
a2UtWt

1 + b1Ut

Where Ut, Vt, and Wt represent the size of the prey species, the size of juvenile (immature)
predator, and the size of adult (mature) predator species at time t respectively. The model parameters
r, A, a1, b1, h, e, r1, D, r2, anda2 are assumed only positive values in which r the increase rate of prey
species, the parameter A measures the intensity of competition among individuals of prey species
a1 denotes the capturing rate of the predator, a2 represents the rate of conversing prey species that
becomes adult predator species, b1 measures the protection to prey species. The parameter h is the
rate of harvesting such that 0 ≤ h < 1. The parameter e denotes to the birth rate of predator, r1 is
the death rate of the juvenile predator , D is the rate of juvenile becoming adult predator, r2 refers
to the mortality rate of adult predator. To reduce the number of parameters of the model (2.1), we
use following dimensionless variables xt = AUt, yt = DVt and zt = Wt. Therefore the model(2.1)
becomes :

xt+1 = xt(r − xt)−
axtzt
1 + bxt

− hxt

yt+1 = czt − (r1 +D)yt (2.2)

zt+1 = yt − r2zt +
fxtzt
1 + bxt

Where a = a1, b =
b1
A
, c = De, andf = a2

A
To find the fixed points of the model (2.2), we have to

solve the following algebraic system:

x = x(r − x)− axz

1 + bx
− hx

y = cz − (r1 +D)y

z = y − r2z +
fxz

1 + bx
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Therefore we have the next Theorems:

Theorem 2.1. The model (2.2) fixed points are

1 - The trivial fixed point e0 = (0, 0, 0), which always exists.

2 -The boundary fixed point e1 = (x1, 0, 0), where x1 = r − (1 + h), which exists only when
r > (1 + h).

3 -The fixed point e2 = (0, c
1+r1+D

s, s) where s > 0, which exists only when c = (1+ r2)(1+ r1+
D).

4 -The unique interior fixed point e3 = (X, Y, Z) exists if the following conditions hold:
i)- c > r2m+m, and bm(1+r2) > (fm+cbm). or c < r2m+m, and bm(1+r2) < (fm+cbm).

ii) − 0 < X < r − h − 1. where X = (c−r2m−m)
(bm(1+r2)−(fm+cb))

, Y = c
m
Z, Z = (k(r−X−h−1))

a
,m =

1 + r1 +D, and k = 1 + bX.

We will use the linearization procedure to study the behavior of all possible fixed points of model(2.2),
around each one. This will be done by computation the Jacobian matrix of model(2.2) at point
(x, y, z). This is given as follows:

J (x, y, z) =

 r − 2x− az
k2

− h 0 −ax
k

0 −(r1 +D) c
fz
k2

1 −r2 +
fx
k


We have to look at F (λ) = λ3 + a2λ

2 + a1λ + a0, which represents the characteristic polynomial of
J(x, y, z) that evaluated at fixed point. The sufficient and necessary conditions to a fixed point to
have all the eigenvalues inside the unit circle are[13]:

1) |a2 + a0| < a1 + a0

2) |a2 − 3a0| < 3− a1 (2.3)

3)
∣∣a20 + a1 − a0a2

∣∣ < 1

For the two dimension system: xt+1 = A2x2xt , t ∈ Z+. The next lemma is needed.

Lemma 2.2. [7]: Let f(λ) = λ2+pλ+q. Assume that f(1) > 0, and λ1, λ2 are the roots of f then:
1-|λ1| < 1 and |λ2| < 1 if and only if f(−1) > 0 and q < 1

2-|λ1| > 1 and |λ2| < 1(or |λ1| < 1 and |λ2| > 1 ) if and only if f(−1) < 0
3-|λ1| > 1 and |λ2| > 1if and only if f(−1) > 0 and q > 1
4-λ1 = −1 and |λ2| ≠ 1 if and only if f(−1) = 0 and p ̸= 0, 2

For the proof see[7].

The local stability of the fixed points e0, and e1, are given by next theorems.

Theorem 2.3. The fixed point e0 = (0, 0, 0) of the model (2.2) is :
1)Sink (stable) point if c ∈ (k3,Min{k1, k2}) when k3 < Min{k1, k2} and r < 1 + h.
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2) Source point if c < Min{k1, k2, k3} andr > 1 + h.

3) Saddle point if one of the conditions holds:

i) c ∈ (k3,Min{k1, k2}), when k3 < Min{k1, k2} and r > 1 + h.

ii) k2 < c < k1 and r < 1 + h.

4) Non-hyperbolic point if one of the conditions holds:

i) r = 1 + h.

ii) c = k2 and r1 +D + r2 ̸= 2

where k1 = (1 + r2)m, k2 = (1− r2)(1− r1 −D), k3 = r2(r1 +D)− 1 and m = 1 + r1 +D.

Proof . The Jacobain matrix of the system (2.2) at e0 is

Je0 =

 r − h 0 0
0 −(r1 +D) c
0 1 −r2


Therefore the characteristic polynomial of Je0 is F (λ) = (r − h− λ)(λ2 + pλ+ q) = (r − h− λ)f(λ)
where p = r1 +D + r2 and q = r1r2 +Dr2 − c. Now f(1) > 0 if and only if k1 > c and f(1) > 0 if
and only if k2 > c. It is clear that q < 1 if and only if k3 < c . Therefore if c ∈ (k3,Min{k1, k2}) ,
then by Lemma (2.2)(1) we have |λi| < 1, i = 1, 2, and |λ3| < 1 if and only if r < 1 + h. Therefore
the point e0 is locally stable if the condition(1)holds. The proof of 2 , 3, and 4 can be easily obtained
from lemma (2.2). □

Theorem 2.4. The fixed point e1 = (r − h− 1, 0, 0) of the system (2.2) is:
1) Stable (sink) point if c ∈ (m3,Min{m1,m2}), when m3 < Min{m1,m2} and 1+h < r < 3+h.

2) Source point if c < Min{m1,m2, m3} and r < 1 + h or r > 3 + h.

3) Saddle point if one of the conditions holds:
i) c ∈ (m3,Min{m1,m2}), when m3 < Min{m1,m2} and r < 1 + h or r > 3 + h.

ii) m2 < c < m1 and 1 + h < r < 3 + h.

4) Non-hyperbolic point if one of the conditions holds:

i) r = 1 + h, or r = 3 + h.

ii) c = m2 and r1 +D + r2 ̸= 2.
Where m1 = (1 + r2 − fx1

k
)m, m2 = (1− r2)(1− r1 −D + fx1

k
) and m3 = (r2 − fx1

k
)(r1 +D)− 1.
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Proof . The Jacobain matrix of the system (2.2) at e1 is

Je1 =

 2− r + h 0 −ax1

k

0 −(r1 +D) c

0 1 −r2 +
fx1

k


Therefore the characteristic polynomial of Je1 is F (λ) = (2− r+ h− λ)(λ2 + pλ+ q) = (2− r+ h−
λ)f(λ) where p = r1 +D + r2 − fx1

k
, and q = r1r2 +Dr2 − r1fx1

k
− Dfx1

k
− c . Hence

f(1) > 0 if and only if m1 > c and f(−1) > 0 if and only if m2 > c. It is quite clear that q < 1
if and only if m3 < c . According to lemma(2.2) the proof of 1 , 2, 3 and 4 can be easily obtained. □

Theorem 2.5. For the fixed point e2 we have the following:

1 The fixed point e2 is never to be sink point

2 It is saddle point if as+ h− 1 < r < 1 + as+ h.

3 The fixed point e2 is non-hyperbolic point if r = as+ h− 1 or r = 1 + as+ h .

Where s > 0.

Proof . The Jacobain matrix of the fixed point e2 is given by

Je2 =

 r − as− h 0 0
0 −(r1 +D) c
fs
k

1 −r2

 =

 r − as− h 0 0
0 −(r1 +D) (1 + r2) (1 + r1 +D)
fs 1 −r2

 .

So that the characteristic polynomial of Je2 is F (λ) = (r−as−h−λ)(λ2+pλ+q) = (r−as−h−λ)f(λ)
where p = r1+D+r2 and q = r1r2+Dr2− (1+r2)(1+r1+D), s > 0. We can see that f(1) is always
equal to 0 . Hence by Lemma2.2, we always have at least one root lies outside unit circle then the
fixed point e2 is never to be sink point, while it is saddle point if as+ h− 1 < r < 1 + as+ h, and
the point is non-hyperbolic point if r = as+h− 1 or r = 1+ as+h . □ The next Theorem gives the
local stability of the unique positive fixed point e3 = (X, Y, Z) = ( c−r2m−m

bm(1+r2)−(fm+cb)
, c

m
Z , k(r−X−h−1)

a

) where m = 1 + r1 +D and k = 1 + bX.

Theorem 2.6. The unique interior fixed point e3 is locally stable if the following inequalities hold ;

1 ) M1 − (w1+w2 − 1− 3c+ 3w2w1)w3 < 0 , and (−w1 − w2 − 1− 3c+ 3w2w1)w3 −M2 < 0.

2 ) S1 − (−w1 − w2 − 1 + c− w2w1)w3 < 0, and (−(w1 + w2)− 1 + c− w2w1)w3 − S2 < 0.

3 ) N1 −N2 <1.

Where M1 = −3+w2w1 +
aZ(w1+w2)

k2
− c+ aXfZ

k3
− (w1+w2)− aZ

k2
+ 3aZw1w2

k2
− 3acZ

k2
+ 3afXZw2

k3
, M2 =

3−w2w1 − aZ(w1+w2)
k2

+ c− aXfZ
k3

− (w1+w2)− aZ
k2

+ 3aZw1w2

k2
− 3acZ

k2
+ 3afXZw2

k3
, S1 = −1−w2w1 −

aZ(w1+w2)
k2

+ c − aXfZ
k3

− (w1+w2) − aZ
k2

− aZw1w2

k2
+ acZ

k2
− afXZw2

k3
, S2 = (aZ

k2
− 1)(w1+w2 − w1w2 +

1 − c) − aXfZ
k3

(1 − w2), w1 = r2 − fX
k
, w2 = r1 + D, w3 = r − 2X − h, k = 1 + bX, N1 =

(c−w1w
2
2z

2
1+(c−w1w2)(2z1−1)−(w1+w2)z1+(aXfZw2

k3
)2+ aXfZ

k3
w2, N2 = (w1+w2)[(c−w1w2)z1+

aXfZw2

k3
]− aXfZz1w2

k3
− (c− w1w2)z

2
1, and z1 = (w3 − aZ

k2
).
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Proof . The Jacobain matrix of the model(2.2) at e3 is given by

Je3 =

 r − 2X − aZ
k2

− h 0 −aX
k

0 −(r1 +D) c
fZ
k2

1 −r2 +
fX
k

 .

Then the characteristic polynomial of Je3 is
f(λ) = λ3 + a2λ

2 + a1λ + a0, where a2 = w1+w2 − w3 +
aZ
k2
, a1 = w2w1 − (w1+w2)w3 +

aZ(w1+w2)
k2

− c+ aXfZ
k3

and a0 = cw3 − w1w2w3 + aZw1w2

k2
− caZ

k2
+ aXfZw2

k3
.

Assume that (1) holds then M1−(w1+w2−1−3c+3w2w1)w3 < 0 this gives −3+w2w1+
aZ(w1+w2)

k2
−

c + aXfZ
k3

− (w1 + w2)− aZ
k2
+3aZw1w2

k2
− 3acZ

k2
+ 3afXZw2

k3
< (w1+w2 − 1− 3c+3w2w1)w3 . By a simple

arrangement we get −3 + a1 < a2 − 3a0 .............(*).
From (1) we also have (−w1 − w2 − 1 − 3c + 3w2w1)w3 − M2 < 0 , hence −(w1 + w2)w3 − w3 −
3cw3 + 3w2w1w3 < 3 − w2w1 − aZ(w1+w2)

k2
+ c − aXfZ

k3
− (w1 + w2) − aZ

k2
+ 3aZw1w2

k2
− 3acZ

k2
+ 3afXZw2

k3
.

Therefore we get a2 − 3a0 < 3− a1 ..............(**).
So that by (*) and (**) the condition (2) in equation (2.3) holds.

Assume (2) holds then we have S1−(−(w1+w2)−1+c−w2w1)w3 ) < 0 and −1−w2w1− aZ(w1+w2)
k2

+

c− aXfZ
k3

− (w1 + w2)− aZ
k2

− aZw1w2

k2
+ acZ

k3
− afXZw2

k3
< −(w1 + w2)w3 − w3 + cw3 − w2w1w3.

Therefore −1− a1 < a2 + a0 ........................(***).
We also have (−(w1+w2)−1+c−w2w1)w3−S2 < 0 this gives −(w1+w2)w3−w3+cw3−w2w1w3 <
(aZ
k2

− 1)(w1 + w2 − w1w2 + 1− c)− aXfZ
k3

, hence a2 + a0 < 1 + a1 ..................(∗ ∗ ∗∗).
Then from (***), and (****) the condition (1) in equation (2.3) satisfies.
Assume (3) holds then N1 = (c−w1w2)

2z21+(c−w1w2)(2z1−1)−(w1+w2)z1+(aXfZw2

k3
)2+ aXfZw2

k3
,

after simple steps we get N1 = a20 + a1. If N2 = (w1 +w2)((c−w1w2)z1 +
aXfZw2

k3
)− aXfZz1w2

k3
− (c−

w1w2)z
2
1 then N2 = a0a2 . So that N1 −N2 < 1 gives the condition (3) in equation (2.3) satisfies.

Therefore the unique fixed point is locally stable. □

3. Optimal Harvesting

The aim of this section is to get optimal harvesting gain so we consider the rate of harvesting is
not constant. Thus the system(2.2) is extended to the following system

xt+1 = xt(r − xt)−
axtzt
1 + bxt

− htxt

yt+1 = czt − (r1 +D)yt (3.1)

zt+1 = yt − r2zt +
fxtzt
1 + bxt

The definitions of parameters in system(3.1) are the same as in section 2. We want to maximize the
following cost function

J(ht) =
T−1∑
t=0

c1htxt − c2h
2
t (3.2)

Where c1htxt is the money that we get from harvesting and c2h
2
t is the cost function. To solve the

optimal control problem we use the discrete maximum principle of Pontrygin [4, 11, 22]. Therefore
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the Hamiltonian functional for t = 0, 1, 2, ....., T − 1 is given by :
H(t, xt, yt, zt, ht) = c1htxt − c2h

2
t + λt+1[xt(r− xt)− axtzt

1+bxt
− htxt] + µt+1[czt − (r1 +D)yt] + Vt+1(yt −

r2zt+
fxtzt
1+bxt

) where , λt µt and Vt are the adjoint functions that are known in the literature by shadow
price [4]. Therefore the necessary conditions are:

λt =
∂Ht

∂xt

c1ht + λt + 1(r − 2xt)−
azt

(1 + bxt)2
− ht) + Vt+1(

fzt
(1 + bxt)2

)

µt =
∂Ht

∂yt
− (r1 +D)µt+1 + Vt+1 (3.3)

Vt =
∂Ht

∂zt
λt+1(−

axt

(1 + bxt)
) + cµt+1 + Vt+1(−r2 +

fxt

1 + bxt

).

with λT = µT = VT = 0, and the optimality condition will be:
∂Ht

∂ht
= c1xt − 2c2ht − λt+1xt = 0, and h∗

t = (c1−λt+1)xt

2c2
. Then the characteristic optimal control

solution is :

h∗
t = Max{Min{(c1 − λt+1)xt

2c2
,M}, 0} t = 0, 1, 2, ......, T − 1 (3.4)

For solving the optimal problem (3.1)-(3.2), we use an iterative method to compute the optimal
harvesting gain for more details see[4, 10, 11, 21]. We choose an initial solution of the control variable
with an initial of state variable ,then we solve the state system(3.1) and the adjoint system(3.3)
forward and backward respectively , then combine the new result variable with the previous one
to update the control variable. This procedure continuous until finding the optimal solutions with
corresponding optimal state solutions.

4. Numerical results

To confirm the dynamics of our theoretical findings of the system(2.2), the parametric values
have been used as follows: r = 0.9, a = 0.4, r1 = 0.01, h = 0.02, e = 0.1, b = 0.5 D = 0.005, f =
0.3 c = 0.8, and r2 = 0.01. The initial point is (0.1, 0.1, 0.1) . According to the Theorem(2.3)
the trivial fixed point is locally stable. u For the boundary fixed point e1, the parametric values
are used as r = 1.5, a = 0.45, r1 = 0.02, h = 0.02, e = 0.1, b = 0.5 D = 0.1, c = 0.5, f =
0.3 and r2 = 0.02 with(x0, y0, z0) = (0.4, 0.2, 0.2). According to the theorem(2.4) the boundary fixed
point e1 is locally stable. For the unique positive fixed point we use the following parametric values
r = 2.5, a = 0.5, r1 = 0.1, h = 0.1, e = 0.1, b = 0.45 D = 0.1, c = 0.8, f = 0.45 and r2 = 0.02
with (x0, y0, z0) = (0.8743, 2.4569, 3.96853). By theorem(2.6) the positive fixed point is locally stable.
Figure 1, Figure 2, and Figure 3 illustrate the local stability of the trivial fixed point, the boundary
fixed point, and the unique positive fixed point respectively. Figure 4 indicates the time series of the
prey and the predator species.
For the optimality problem an iterative procedures is applied to solve the control problem for more
details see [13]. An initial guess is used for the control then the state equations and the adjoint
equations are solved forward and backward respectively, after that the optimal control solution is
updated by using the characterization in (3.4) and the newly found adjoint and the state values.
The procedures continues until the successive iterates are sufficiently close. We use the following
set of parameters values r = 2.5, a = 0.5, r1 = 0.1, e = 0.1, b = 0.4 D = 0.1, c = 0.8, f =
0.4, c1 = 0.1, c2 = 0.1 and r2 = 0.02 with (x0, y0, z0) = (1.2, 0.38, 0.57). While ht = h∗

t . The optimal
harvesting gain J is computed from equation (3.2), and its value is 2.0468. The other constant
harvesting strategies are computed as follows ht = 0.35, 0.36, 0.37, and 0.38, then the values of J =
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2.0360, 2.0417, 2.0443 and 2.0438, respectively. Figures 5-6 show the prey and the predator species
with control , without control and the constant control harvesting . Figure 7 indicates the optimal
control harvesting as function of time.

Figure 1: This figure indicates the local stability of the trivial fixed point e1 .
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Figure 2: This figure shows the local stability of the boundary fixed point e2 ..

Figure 3: The local stability of the unique interior fixed point e3 is shown.
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Figure 4: This figure indicates the time series of the prey and the predator species.

Figure 5: This figure shows the effect of the optimal harvesting ,constant harvesting on the predator size.
Note that we used the same values of parameters.
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Figure 6: In this figure the effect of the optimal harvesting ,constant harvesting on the prey size are shown.
Note that we used the same values of parameters.

Figure 7: This figure indicates the optimal control as a function of time.
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5. Conclusions

A three dimensional stage-structured model, immature and mature in predator species, with
harvesting for the prey species is considered. We have studied the local stability of its equilibria .The
dynamical behavior of the proposed model is studied analytically. The constant harvesting does not
give the optimal gain at all, so that the model is extended to optimal control strategy to get optimal
management policy . It can be also persevered the population far from the collapse. The optimal
problem is solved through the discrete of Pontryagin’s maximum principle. Numerical simulations
are used to confirm the theoretical results as well as to solve the optimality problem.
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