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Abstract

In this paper, we study and discussion new kinds of Sesquilinear functional which is fuzzy soft
Sesquilinear functional and given some properties with characterization and also theories related on
fuzzy soft Sesquilinear functional have been given. Additionally, we present the relationship between
this kind and other kinds.
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1. Introduction

Functional analysis is a branch of pure mathematics. It was first developed in about century ago. It
aims to solve many problems in pure mathematics. Therefore it provides an indispensable tool for
solving those problems. It also provides us with techniques for estimating error in the solutions of
infinite and finite dimensional problems.

In our everyday life, we often faced with uncertainty that arises from the ambiguity of the phe-
nomenon under study. This type of problems arises in areas like economics, medical science, business
and engineering. Our classical mathematical methods often fail to tackle such problems.

The mathematical models related to real-world is too problematical and we cannot usually to
find the exact solutions [4]. Then may be interested to use the concept 0f approximate approach to
compute their solutions by using some mathematical tools in Hilbert space like, fuzzy, soft, or fuzzy
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soft 0f set theory [7].

Thus, In 1965 , a generalization of set theory was introduced, by Zadeh [14]. The resulting theory
was called fuzzy set theory. Fuzzy set theory soon became an excellent tool to deal with problems
that associate with uncertainty. In classical set theory, a set X is define with its characteristic func-
tion from X to set {0, 1}. On the other hand, in fuzzy set theory, a set is defined with its membership
function form X to the closed interval [0, 1].

Also In 1999, a yet another generalization was introduced by Molodsov [9] to deals with uncer-
tainty. The resulting theory was called soft set theory. Since then, it was used to solve complicated
problems in subjects like computer science, medicine, engineering, etc. A soft set is a parametrized
collection of a universal set. The concept soft set was then applied on various mathematical concepts
in functional analysis resulting in concepts like soft point [1], Soft normed Spaces [13], Soft Inner
Product Spaces [3], Soft Hilbert space [12] and Projection operators on soft inner product spaces[11].

In 2001, Maji et.al [8], was first to introduce the concept of a fuzzy soft set. The concept resulted
from combining the concept of a fuzzy and a soft set. The necessity of combining the two concepts
was to provide more accurate and general results. The other concepts consequently followed this
structure resulting in the introduction fuzzy soft point [10] and fuzzy soft normed spaces [2].

In 2020, the fuzzy soft Hilbert space [4] were introduce by Faried et al. In addition Fuzzy soft
linear operators [6]. and finally fuzzy soft self − adjoint operators [5] and studied its properties.

In this paper, Introduce a new kind is said to be fuzzy soft Sesquilinear functional, and given
some theorems relating to this functional with properties.

2. BASIC CONCEPTS

Definition 2.1. [14] If X universe set and Â is a set characterized by a membership function

µÂ : X → T, such as T = [0, 1] then Â is said to be fuzzy set over X, and Â =
{

µÂ(x)

x
: x ∈ X

}
.

And Tx = {Â : Â is a function from X into T}

Definition 2.2. [9] Let P(X) be the power set of universe set X and E be set of parameters and
A ⊆ E. The mapping G : A → P(X), where (G, A) = {G(a) ∈ P(X) : a ∈ A}. The pair (G, A) is
said to be soft set.

Definition 2.3. [8] The soft set (G,A) is called fuzzy soft set (FS − set) over X, whenever G :
A → Tx,and {G(a) ∈ Tx : a ∈ A}.
The collection of every FS− sets , denoted by FSS(X̃ )

Definition 2.4. [10] If (G, A) ∈ FSS(X̃) is called FS -point over X, symbolized by ãµG(e)
, if e ∈ A

and a ∈ X,

µG(e)(x) =

{
δ , if a = ao ∈ X and e = e0 ∈ A
0 , if a ∈ X − {a0} or e ∈ A− {e0}

, where δ ∈ (0, 1]

Remark 2.5. [10] The collection of every FS− Complex numbers denoted by C̃(A) and the collection
of every FS− Real numbers denoted by R̃(A).
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Definition 2.6. [2] The mapping ∥̃.∥ : X̃ → R(A) where X̃ is FS− vector space is said to be

FS − norm on X̃ if ∥̃.∥ satisfies:

(1)
∥∥∥˜̃aµG(e)

∥∥∥ ≥ 0̃, for all ãµG(e)
∈ X̃, and

∥∥∥˜̃aµG(e)

∥∥∥ = 0̃ if and only if ãµG(e)
= θ̃

(2)
∥∥∥r̃˜̃aµG(e)

∥∥∥ = |r̃|
∥∥∥˜̃aµG(e)

∥∥∥, for all ãµG(e)
∈ X̃ , r̃ ∈ C(A)

(3)
∥∥∥ãµG(e)

+b̃µ2g(e2)

∥∥∥ ≤
∥∥∥˜̃aµG(e)

∥∥∥+
∥∥∥b̃µ2G(e2)

∥∥∥ ,∀ãµG(e)
, b̃µ2G(e2)

∈ X̃

Then (χ̃, ∥̃.∥) is called FS− normed vector space (FSN− space )

Definition 2.7. [4] The mapping ⟨̃., .⟩ : X̃ × X̃ → (C(A) or R(A)) where X̃ is FSV− space is

called FS− inner product on X̃(FST) if (̃. . .) satisfies:

(1)
˜〈

ãµG(e)
ãµG(e)

〉
≥ 0̃, for all ãµG(e)

∈ χ̃ and
〈
ãµG(e),ãµG(e)

〉
= 0̃ if and only if ãµG(e)

= θ̃

(2)
˜〈

ãµ1G(e1)′ b̃µ2G(e2)

〉
=

˜〈
b̃µ2ζ(e2)

′ ãµ1G(e1)

〉
, for all ãµ1G(e1), b̃µ2G(e2)

∈ χ̃,

(3)
˜〈

α̃ãµ1G(e1)′ b̃µ2G(e2)

〉
=α̃

˜〈
ãµ1G(e1)′ b̃µ2G(e2)

〉
, for all ãµ1G(e1)

, b̃µ2G(e2)
∈ χ̃, for all α̃ ∈ C(A).

(4)

〈
ãµ1G(e1) +

˜̃bµ2G(e2), c̃µ3G(e3)

〉
=

˜〈
ãµ1G(e1)′ c̃µ3G(e3)

〉
+

˜〈
b̃µ2G(e2)′ c̃µ3G(e3)

〉
For all ãµ1G(e1), b̃µ2G(e2)

, c̃µ3G(e3)
∈ X̃

Then (χ̃, ⟨̃., .⟩) is called FS− inner product space (FST− space )

Definition 2.8. [7] The FSN− space (X̃, ∥̃·∥) is called FS -complete if all FS - Cauchy sequence
in X is FS - convergence in X.

Definition 2.9. [4] The FS− complete inner product space (X̃ , ⟨̃., .⟩) is called FS -Hilbert space

(FSH− space ), and symbolized by (H̃, ⟨̃, ⟩).

Definition 2.10. If H̃ be FSH− space and S̃ : H̃ → H̃ be FS− operator .Then S̃ is called FS−
linear operator (FSL− operator ) if:

S̃
(
α̃ãµ1G(e1) + β̃b̃µ2G(e2)

)
= α̃S̃

(
ãµ1G(e1)

)
+ β̃

(
b̃µ2G(e2)

)
for all ãµ1G(e1), b̃µ2G(e2) ∈ H̃ and α̃, β̃ ∈ C(A)

Definition 2.11. If H̃ be FSH− space and S̃ : H̃ → H̃ be FS - operator is called FS− bounded

operator, if ∃m̃ ∈ R(A) such that
∥∥∥S(

˜̃aµ1G(e1)

)∥∥∥ ≤ m̃
∥∥∥˜̃aµ1G(e1)

∥∥∥, for all ãµ1G(e1) ∈ H̃.

Now, the family of all FS− bounded linear operators denoted by B̃(H̃).

Example 2.12. [6] The FS− operator Ĩ : H̃ → H̃ defined by Ĩ
(
ãµ1G(e1)

)
= ãµ1G(e1) ,∀ãµ1G(e1) ∈ H̃,

it is called FS -identity operator.
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Definition 2.13. [6] If H̃ be FSH− space and S̃ : H̃ → H̃ be FSB− operator, then The FS−
adjoint operator S̃∗ is defined by

˜〈
S̃ãµ1G(e1)

, b̃µ2G(e2)

〉
=

˜〈
ãµ1G(e1)

, S̃∗b̃µ2G(e2)

〉
Theorem 2.14. [6] If S̃, φ̃ ∈ B̃(H̃),where H̃ is FSH− space and β̃ ∈ C(A), then S̃∗∗ = S̃, (β̃S̃)∗ =

β̃S̃∗, (S̃+ φ̃)∗ = S̃∗ + R̃∗ and (S̃φ̃)∗ = φ̃∗S̃∗

Definition 2.15. [5] The FS - operator S̃ of FSH− space H̃ is called FS− self adjoint operator

if S̃ = G̃∗.

3. MAIN RESULTS

Definition 3.1. Let H̃ be FSH− space . A mapping ã(̃., .) : H̃ × H̃ → C(A) is called a fuzzy soft
Sesquilinear functional (FS− sesquilinear functional ) if the following conditions are satisfied:

1. ã
˜(

x̃µ1G(e1) + ỹµ2G(e2)
, z̃µ3G(e3)

)
= ã

˜(
x̃µ1G(e1)

, z̃µ3G(e3)

)
+ ã

˜(
x̃µ1ζ(e1) + ỹµ2G(e2)

, z̃µ3G(e3)

)
2. ã

˜(
β̃x̃µ1G(e1)

, ỹµ2G(e2)

)
= β̃ã

˜(
x̃µ1G(e1)

, ỹµ2G(e2)

)
3. ã

(
x̃µ1G(e1), ỹµ2G(e2)

+ z̃µ3G(e3)

)
= ã

(
x̃µ1G(e1)

ỹµ2G(e2)

)
+ ã

(
x̃µ1ζ(e1)

′ z̃µ3G(e3)
)

4. ã
˜(

x̃µ1G(e1)
, β̃ỹµ2G(e2)

)
= β̃ã

˜(
x̃µ1G(e1)

, ỹµ2G(e2)

)
Remark 3.2. 1. The FS− sesquilinear functional is FS -Linearity in the first variable, but not

in the second variable. FS− sesquilinear functional Which is also FS -linear in second variable

is said to be FS -bilinear form or a FS− bilinear functional. Thus, FS− bilinear form ã(̃., .)

is a mapping defined on H̃ × H̃ → C(A) which satisfies condition (1) through (3) of Definition

3.1 and (4) ã
˜(

x̃µ1G(e1)
, β̃ỹµ2G(e2)

)
= β̃ã

˜(
x̃µ1G(e1)

, ỹµ2G(e2)

)
2. If H̃ is a real FSH− space, then the concepts of FS− sesquilinear functional and FS− bilinear

forms coincide.

3. If ã(̃., .) is FS− sesquilinear function, so g̃(x, y) = ã(̃., .) is FS− sesquilinear functional

Definition 3.3. suppose that ã(̃., .) is FS− bilinear forms. Then

1. ã(̃., .) is said to be FS− symmetric if ã
˜(

x̃µ1G(e1)
, ỹµ2G(e2)

)
= ã

˜(
ỹµ2G(e2)

, x̃µ1G(e1)

)
∀
(
x̃µ1G(e1), ỹµ2gG(e2)

)
∈ H̃ × H̃

2. ã(̃., .) is called FS− positive if ã
˜(

x̃µ1G(e1)
, x̃µ1G(e1)

)
≥ 0̃ ∀x̃µ1G(e1)

∈ H̃.

3. ã(̃., .) is called FS− positive definite if

ã
˜(

x̃µ1G(e1)
, x̃µ1G(e1)

)
≥ 0̃ ∀x̃µ1G(e1) ∈ H̃ and ã

˜(
x̃µ1G(e1)

, x̃µ1G(e1)

)
= 0̃ implies that x̃µ1G(e1)

= 0̃
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4. F̃
(
x̃µ1G(e1)

)
= ã ˜(

x̃µ1G(e1), x̃µ1G(e1)
)
is called FS - quadratic form.

5. ã(̃., .) is called FS− bounded or FS− continuous if there exists M̃ ∈ R(A) such that∣∣∣∣∣ã ˜(
x̃µ1G(e1)

, ỹµ2G(e2)

)∣∣∣∣∣ ≤ M̃
∥∥∥˜̃xµ1g(e1)

∥∥∥∥∥∥˜̃yµ2g(e2)

∥∥∥
6. ã(̃., .) is said to be FS− coercive (H̃− coercive ) if there exists λ̃ ∈ R(A) such that

ã ˜(
x̃µ1G(e1), x̃µ1G(e1)

)
≥ λ̃

∥∥∥˜̃xµ1g(e1)

∥∥∥2

∀x̃µ1g(e1)
∈ H̃

7. 7. A FS− quadratic form F̃ is called FS− real if F̃
(
x̃µ1G(e1)

)
is FS− real for all x̃µ1g(e1)

H̃

Remark 3.4.

1. If ã(̃., .) : H̃ × H̃ → R(A), then the FS− bilinear form ã(̃., .) is FS− symmetric if

ã ˜(
x̃µ1G(e1), ỹµ2G(e2)

)
= ã ˜(

ỹµ2G(e2), x̃µ1G(e1)
)

2.

∥̃ã∥ = sup
x̃µ1G(e1)

= 0̃, ỹµ2G(e2) = 0̃

∣∣∣∣ã ˜(
x̃µ1G(e1), ỹµ2G(e2)

)∣∣∣∣∥∥x̃µ1G(e1)
∥∥∥∥ỹµ2G(e2)

∥∥
= sup

x̃µ1G(e1)
=0̃,ỹµ2G(e2)

=0̃

∣∣∣∣∣∣∣ã
˜ x̃µ1G(e1)∥∥x̃µ1G(e1)
∥∥ , ỹµ2G(e2)∥∥∥ỹµ2G(e2)

∥∥∥

∣∣∣∣∣∣∣

= sup
∥x̃µ1G(e1)∥=1̃,∥ỹµ2G(e2)∥=1̃

∣∣ã (x̃µ1G(e1), ỹµ2G(e2)
)∣∣

It is clear that

∣∣∣∣ã ˜(
x̃µ1G(e1)ỹµ2G(e2)

)∣∣∣∣ ≤ ∥˜̃a∥∥∥x̃µ1G(e1)
∥∥∥∥ỹµ2G(e2)

∥∥
3. ∥F̃∥ = supx̃µ1G(e1)

=1̃

∣∣∣F̃ (
x̃µ1G(e1)

)∣∣∣
4. If ã(̃., .) is any fixed FS− sesquilinear form and F̃

(
x̃µ1G(e1)

)
be associated FS− quadratic form on

FSH - space H̃, then

ã ˜(
x̃µ1G(e1), ỹµ2G(e2)

)
=

1̃

4
[F̃
(
x̃µ1G(e1), ỹµ2G(e2)

)
− F̃

(
x̃µ1G(e1), ỹµ2G(e2)

)
+ ı̃F̃

(
x̃µ1G(e1), ỹµ2G(e2)

)
− ı̃ỹ

(
x̃µ1G(e1), ỹµ2G(e2)

)
]

Verification: By using linearity of the FS− bilinear form ã, we have

F̃
(
x̃µ1G(e1) + ỹµ2G(e2)

)
= ã

(
x̃µ1G(e1) + ỹµ2G(e2), x̃µ1G(e1) + ỹµ2G(e2)

)
= ã

(
x̃µ1G(e1), x̃µ1G(e1)

)
+ ã

(
x̃µ1G(e1), ỹµ2G(e2)

)
+ ã

(
ỹµ2G(e2), x̃µ1G(e1)

)
+ ã

(
ỹµ2G(e2), ỹµ2G(e2)

)
And

F̃
(
x̃µ1G(e1) − ỹµ2G(e2)

)
= ã

(
x̃µ1G(e1) − ỹµ2G(e2), x̃µ1G(e1) − ỹµ2G(e2)

)
= ã

(
x̃µ1G(e1), x̃µ1G(e1)

)
− ã

(
x̃µ1G(e1), ỹµ2G(e2)

)
− ã

(
ỹµ2G(e2), x̃µ1G(e1)

)
+ ã

(
ỹµ2G(e2), ỹµ2G(e2)

)
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By subtracting the second from the above equation from the first, and we get

F̃
(
x̃µ1G(e1) + ỹµ2G(e2)

)
− F̃

(
x̃µ1G(e1) − ỹµ2G(e2)

)
= 2̃ã ˜(

x̃µ1G(e1), ỹµ2G(e2)
)
+ 2̃ã ˜(

ỹµ2G(e2) − x̃µ1G(e1)
)

(3.1)

Replacing ỹµ2G(e2)
by ı̃ỹµ2G(e2)

in Eq. (3.1), we obtain

F̃
(
x̃µ1G(e1) + ı̃ỹµ2G(e2)

)
− F̃

(
x̃µ1G(e1) − ı̃ỹµ2G(e2)

)
= 2̃ã ˜(

x̃µ1G(e1), ı̃ỹµ2G(e2)
)
+ 2̃ã ˜(

ı̃ỹµ2G(e2) − x̃µ1G(e1)
)

Or

F̃
(
x̃µ1G(e1) + ı̃ỹµ2G(e2)

)
− F̃

(
x̃µ1G(e1) − ı̃ỹµ2G(e2)

)
= ı̃2̃ã ˜(

x̃µ1G(e1), ỹµ2G(e2)
)
+ ı̃2̃ã ˜(

ỹµ2G(e2) − x̃µ1G(e1)
)

(3.2)

Multiply Eq. (3.1) by ı̃ and adding it to Eq. (3.2), We obtain a result.

Lemma 3.5. A FS− bilinear form ã ˜(
x̃µ1G(e1), ỹµ2G(e2)

)
is FS− symmetric if and only if associated

FS - quadratic functional F̃
(
x̃µ1G(e1)

)
is FS− real.

Lemma 3.6. the FS− bilinear form ã ˜(
x̃µ1G(e1), ỹµ2G(e2)

)
is FS - bounded if and only if the associated

FS- sesquilinear form F̃ is FS− bounded. If ã(̃., .) is FS− bounded , then ∥̃F̃∥ ≥ ∥̃ã∥ ≥ 2̃∥̃F̃∥.

Theorem 3.7. If FS− bilinear form ã(̃., .) is FS− bounded and FS− symmetric, then ∥̃ã∥ =

∥̃F̃∥,such that F̃ is the associated FS - quadratic functional.

Proof . By Lemma 3.5, F̃ is FS− real . In view of Lemma 3.6,

To show ∥̃ã∥ ≤ ∥̃F̃∥
Let ã ˜(

x̃µ1G(e1), ỹµ2G(e2)
)
= γ̃eı̃β̃, where γ̃, β̃ ∈ R(A)

So by using the Remark 3.4(4) and bearing in mind that purely imaginary terms are 0̃. we have∣∣∣∣ã ˜(
x̃µ1G(e1), ỹµ2G(e2)

)∣∣∣∣ = γ̃ = ã
(
γ̃eı̃β̃, ỹµ2G(e2)

)
= 1̃

4̃

[
F̃
(
`̃xµ1G(e1)

+ ỹµ2G(e2)

)
− F̃

(
`̃xµ1G(e1)

− ỹµ2G(e2)

)]
where `̃xµ1G(e1) = γ̃eı̃β̃. This implies that∣∣∣∣ã ˜(

x̃µ1G(e1), ỹµ2G(e2)
)∣∣∣∣ = 1̃

4̃

∥∥∥F̃∥∥∥(∥∥∥`̃xµ1G(e1)
+ ỹµ2G(e2)

∥∥∥2

+
∥∥∥`̃xµ1G(e1)

+ ỹµ2G(e2)

∥∥∥2
)

By using FS− parallelogram law, we have∣∣∣∣ã ˜(
x̃µ1G(e1), ỹµ2G(e2)

)∣∣∣∣ = 1̃
2̃

∥∥∥F̃∥∥∥(∥∥∥`̃xµ1G(e1)

∥∥∥2

+
∥∥∥ỹµ2G(e2)

∥∥∥2
)

sup
∥x̃µ1G(e1)∥=1̃,∥ỹµ2G(e2)∥=1̃

∣∣∣∣ã ˜(
x̃µ1G(e1), ỹµ2G(e2)

)∣∣∣∣ ≤ ∥F̃∥

Then ∥ã∥ ≤ ∥F̃∥ □
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Theorem 3.8. Let T̃ ∈ B̃(H̃). Then, the ã(̃., ) : H̃ × H̃ → C(A) defined by

ã ˜(
x̃µ1G(e1), ỹµ2G(e2)

)
=

˜〈
x̃µ1G(e1), T̃

(
z̃µ3G(e3)

)〉
∀
(
x̃µ1ḡ(e1), z̃µ3G(e3)

)
∈ H̃ × H̃

is FS− bounded bilinear form on H̃, and ∥˜̃a∥ = ∥ ˜̃T ∥. Conversely, let ã(̃., .) be FS− bounded bilinear

form on H̃. Then, there exists a unique FS− bounded linear operator T̃ on H̃ such that

ã ˜(
x̃µ1G(e1), ỹµ2G(e2)

)
=

˜〈
x̃µ1G(e1), T̃

(
z̃µ3G(e3)

)〉
∀
(
x̃µ1G(e1), z̃µ3G(e3)

)
∈ H̃ × H̃

Proof .

1. Let T̃ ∈ B̃(H̃). Then, ã ˜(
x̃µ1G(e1), z̃µ3G(e3)

)
=

˜〈
x̃µ1G(e1), T̃

(
z̃µ3G(e3)

)〉
satisfies the following

condition:
(a)

˜(
x̃µ1G(e1) + ỹµ2G(e2), z̃µ3G(e3)

)
=

˜〈
x̃µ1G(e1) + ỹµ2G(e2), T̃

(
z̃µ3G(e3)

)〉
=

˜〈
x̃µ1G(e1), T̃

(
z̃µ3G(e3)

)〉
+

˜〈
ỹµ2G(e2), T̃

(
z̃µ3G(e3)

)〉
= ã ˜(

x̃µ1G(e1), z̃µ3G(e3)
)
+ ã ˜(

ỹµ2G(e2), z̃µ3G(e3)
)

(b)

ã
˜(

β̃x̃µ1G(e1), z̃µ3G(e3)

)
=

˜〈
β̃x̃µ1G(e1), T̃

(
z̃µ3G(e3)

)〉
= β̃

˜〈
x̃µ1G(e1), T̃

(
z̃µ3G(e3)

)〉
= β̃ã ˜(

x̃µ1G(e1), z̃µ3G(e3)
)

(c) ∣∣∣∣ã ˜(
x̃µ1G(e1), z̃µ3G(e3)

)∣∣∣∣ =
∣∣∣∣∣ ˜〈
x̃µ1G(e1), T̃

(
z̃µ3G(e3)

)〉∣∣∣∣∣ ≤ ∥̃∥∥T̃ ∥∥∥ ˜∥∥x̃µ1G(e1)
∥∥ ˜∥∥z̃µ3G(e3)

∥∥
This implies that

sup
∥x̃µ1G(e1)∥=∥z̃µ3G(e3)∥=1̃

∣∣∣∣ã ˜(
x̃µ1G(e1), z̃µ3G(e3)

)∣∣∣∣ ≤ ∥̃T̃ ∥

Then ∥̃ã∥ ≤ ∥̃T̃ ∥. In fact ∥̃ã∥ = ∥̃T̃ ∥

2. For the converse, let ã(̃., ) be FS− bounded bilinear form on H̃. For any ỹµ2G(e2)
∈ H̃, we define

f̃ỹµ2G(e2)
on H̃ as follows:

f̃z̃µ3G(e3)

(
x̃µ1G(e1)

)
= ã ˜(

x̃µ1G(e1), z̃µ3G(e3)
)

(3.3)

We have

f̃z̃µ3G(e3)

(
x̃µ1G(e1)+ỹµ2G(e2)

)
= ã ˜(

x̃µ1G(e1) + ỹµ2G(e2), z̃µ3G(e3)
)
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f̃z̃µ3G(e3)

(
β̃x̃µ1G(e1)

)
= ã

˜(
β̃x̃µ1G(e1), z̃µ3G(e3)

)
= β̃ã ˜(

x̃µ1G(e1), z̃µ3G(e3)
)

∣∣∣f̃z̃µ3G(e3)

(
x̃µ1G(e1)

)∣∣∣ = ∣∣∣∣ã ˜(
x̃µ1G(e1), z̃µ3G(e3)

)∣∣∣∣ ≤ ∥̃ã∥ ˜∥∥x̃µ1G(e1)
∥∥ ˜∥∥z̃µ3G(e3)

∥∥
=⇒

˜∥∥∥f̃z̃µ3G(e3)

∥∥∥ ≤ ∥̃ã∥ ˜∥∥z̃µ3G(e3)
∥∥

Thus, f̃z̃µ3G(e3)
is FS− bounded bilinear form on H̃. By FS− Riesz representation theorem,

there exists a unique T̃ ˜̃Zµ3G(e3) ∈ H̃ such that

f̃z̃µ3G(e3)

(
x̃µ1G(e1)

)
=

˜〈
x̃µ1G(e1), T̃

(
z̃µ3G(e3)

)〉
(3.4)

And
˜∥∥∥T̃ z̃µ3G(e3)

∥∥∥ =
˜∥∥∥f̃z̃µ3G(e3)

∥∥∥ ≤ ∥̃ã∥ ˜∥∥z̃µ3G(e3)
∥∥ (3.5)

The T̃ : z̃µ3G(e3) −→ T̃ z̃µ3G(e3) defined by T̃
(
z̃µ3G(e3)

) ˜〈
x̃µ1G(e1), T̃

(
z̃µ3G(e3)

)〉
is FS− linear in

view of the following relations:〈
x̃µ1G(e1), T̃

(
β̃z̃µ3G(e3)

)〉
= f̃β̃z̃µ3G(e3)

(
x̃µ1G(e1)

)
=

〈
x̃µ1G(e1), β̃z̃µ3G(e3)

〉
= β̃

〈
x̃µ1G(e1), z̃µ3G(e3)

〉
= β̃f̃z̃µ3G(e3)

(
x̃µ1G(e1)

)
= β̃

〈
x̃µ1G(e1), T̃

(
z̃µ3G(e3)

)〉
=

〈
x̃µ1G(e1), β̃T̃

(
z̃µ3G(e3)

)〉
=

〈
x̃µ1G(e1), T̃

(
β̃z̃µ3G(e3)

)〉
=

〈
x̃µ1G(e1), β̃T̃

(
z̃µ3G(e3)

)〉
=

〈
x̃µ1G(e1), T̃

(
β̃z̃µ3G(e3)

)
− β̃T̃

(
z̃µ3G(e3)

)
=
〉
0̃ ∀z̃µ3G(e3) ∈ H̃

=⇒ T̃
(
β̃z̃µ3G(e3)

)
= β̃T̃

(
z̃µ3G(e3)

)
Now

˜〈
x̃µ1G(e1), T̃

(
ỹµ2G(e2) + z̃µ3G(e3)

)〉
= f̃ỹµ2G(e2)

+z̃µ3G(e3)

(
x̃µ1G(e1)

)
=

〈
x̃µ1G(e1), ỹµ2G(e2) + z̃µ3G(e3)

〉
= ˜〈

x̃µ1G(e1) + z̃µ3G(e3)
〉
+ ˜〈

ỹµ2G(e2) + z̃µ3G(e3)
〉
= f̃ỹµ2G(e2)

(
x̃µ1G(e1)

)
+ f̃z̃µ3G(e3)

(
x̃µ1G(e1)

)
=

˜〈
x̃µ1G(e1), T̃

(
ỹµ2G(e2)

)〉
+

˜〈
x̃µ1G(e1), T̃

(
z̃µ3G(e3)

)〉
=

˜〈
x̃µ1G(e1), T̃

(
ỹµ2G(e2)

)
+ T̃

(
z̃µ3G(e3)

)〉
=⇒

〈
x̃µ1G(e1), T̃

(
ỹµ2G(e2)+z̃µ3G(e3)

)
−
(
T̃
(
ỹµ2G(e2)

)
+ T̃

(
z̃µ3G(e3)

))〉
= 0̃ ∀z̃µ3G(e3) ∈ H̃

Which gives T̃
(
ỹµ2G(e2)+z̃µ3G(e3)

)
= T̃

(
ỹµ2G(e2)

)
+ T̃

(
z̃µ3G(e3)

)
Equation (3.5) implies that ∥̃T̃ ∥ ≤ ∥̃ã∥. By Eqs. (3.3) and (3.4), we have

ã ˜(
x̃µ1G(e1), z̃µ3G(e3)

)
= f̃z̃µ3G(e3)

(
x̃µ1G(e1)

)
=

˜〈
x̃µ1G(e1), T̃

(
z̃µ3G(e3)

)〉
∀ ˜(

x̃µ1G(e1), z̃µ3G(e3)
)
∈ H̃ × H̃
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Then, for every fixed z̃µ3G(e3) ∈ H̃, we get
˜〈

x̃µ1G(e1), T̃
(
z̃µ3G(e3)

)〉
=

˜〈
x̃µ1G(e1), S̃

(
z̃µ3G(e3)

)〉
=⇒

˜〈
x̃µ1G(e1), (T̃ − S̃)

(
z̃µ3G(e3)

)〉
= 0̃

This implies that (T̃ − S̃)
(
z̃µ3G(e3)

)
= 0̃ ∀z̃µ3G(e3) ∈ H̃, i.e., T̃ = S̃.

This proves that there exists a unique T̃ ∈ B̃(H̃) such that

ã ˜(
x̃µ1G(e1), z̃µ3G(e3)

)
=

˜〈
x̃µ1G(e1), T̃

(
z̃µ3G(e3)

)〉
□

Corollary 3.9. Let T̃ ∈ B̃(H̃). Then, the , the b̃(̃., .) : H̃×H̃ → C(A) defined by b̃ ˜(
x̃µ1G(e1), z̃µ3G(e3)

)
=〈

T̃ x̃µ1G(e1)
, ˜̃zµ3G(e3)

〉
is FS− bounded bilinear form on H̃ and ∥̃b̃∥ = ∥̃T̃ ∥. Conversely, let b̃(̃., .) be

FS− bounded bilinear form on H̃. Then, there exists a unique FS- bounded linear operator T̃ on H̃
such that

b̃ ˜(
x̃µ1G(e1), z̃µ3G(e3)

)
=

˜〈
x̃µ1G(e1)

, T̃ z̃µ3G(e3)

〉
, ∀

(
x̃µ1G(e1), ỹµ2G(e2)

)
∈ H̃ × H̃

Corollary 3.10. If T̃ ∈ B̃(H̃), then

∥̃T̃ ∥ = sup
∥x̃µ1G(e1)∥=∥ỹµ2G(e2)∥=1̃

∣∣∣∣∣ ˜〈
x̃µ1G(e1)

, T̃ z̃µ3G(e3)

〉∣∣∣∣∣
= sup

∥x̃µ1G(e1)∥=∥ỹµ2G(e2)∥=1̃

∣∣∣∣∣ ˜〈
T̃ x̃µ1G(e1)

, z̃µ3G(e3)

〉∣∣∣∣∣
Theorem 3.11. Let T̃ ∈ B̃(H̃). Then, the following statements are equivalent:

1. T̃ is FS− self − adjoint.

2. The FS-bilinear from ã(̃., .) on H̃ defined by ã
˜(

x̃µ1G(e1), b̃µ2G(e2)

)
=

〈
T̃ x̃µ1G(e1)

, ˜̃yµ2G(e2)

〉
is FS−

symmetric.

3. The FS-bilinear from F̃
(
x̃µ1G(e1)

)
on H̃ defined by F̃

(
x̃µ1G(e1)

)
=

˜〈
T̃ x̃µ1G(e1)

, ˜̃xµ1G(e1)

〉
is FS−

real.

Proof . (1) ⇒ (2) : F̃
(
x̃µ1G(e1)

)
=

˜〈
T̃ x̃µ1G(e1)

, ˜̃xµ1G(e1)

〉
=

˜〈
x̃µ1G(e1)

, T̃ ˜̃xµ1G(e1)

〉
=

˜〈
T̃ x̃µ1G(e1)

, ˜̃xµ1G(e1)

〉
= F̃

(
x̃µ1G(e1)

)
. In view of Lemma 3.7, we obtain the result

(3) ⇒ (2) : By Lemma (3.7) F̃
(
x̃µ1G(e1)

)
=

˜〈
T̃ x̃µ1G(e1)

, ˜̃xµ1G(e1)

〉
is FS- real if and only if the FS-

bilinear from ã
˜(

x̃µ1G(e1), b̃µ2G(e2)

)
=

〈
T̃ x̃µ1G(e1)

, ˜̃yµ2G(e2)

〉
is FS- symmetric

(2) ⇒ (1) :
〈
T̃ x̃µ1G(e1)

, ˜̃yµ2G(e2)

〉
ã

˜(
x̃µ1G(e1), b̃µ2G(e2)

)
= ã

˜(
x̃µ1G(e1), b̃µ2G(e2)

)
=

˜〈
T̃ x̃µ1G(e1)

, ˜̃xµ1G(e1)

〉
=

˜〈
x̃µ1G(e1)

, T̃ ˜̃xµ1G(e1)

〉
. This shows that T̃ = T̃ ∗ that T̃ is FS-self-adjoint □
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Corollary 3.12. If T̃ is FS− bounded self − adjoint on H̃, then

∥̃T̃ ∥ = sup
∥x̃µ1G(e1)∥=1̃

˜∣∣∣〈T̃ x̃µ1G(e1)′x̃µ1G(e1)

〉∣∣∣
4. Conclusions

The necessity of combining the two concepts fuzzy and soft sets was to provide more accurate
and general results. The other concepts consequently followed this structure resulting like fuzzy
soft normed spaces, fuzzy soft inner product space, fuzzy soft Hilbert space and fuzzy soft bounded
linear operators. We studied and discussion new kind of sesquilinear functional which is fuzzy
soft sesquilinear functional and given some properties with characterization, also theorems related
on fuzzy soft sesquilinear functional have been given. Additionally we presented the relationship
between this kind and other kinds. types.

5. Open problem

There are other issues that can be studied using the fuzzy soft notice, including fuzzy soft quasi
normal, fuzzy soft N-normal, fuzzy soft b-matric space etc.
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