
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,919 |
تعداد دریافت فایل اصل مقاله | 7,656,375 |
Automated prediction of endometriosis using deep learning | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، شماره 2، بهمن 2021، صفحه 2403-2416 اصل مقاله (1.36 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.5383 | ||
نویسندگان | ||
S Visalaxi* ؛ T Sudalai Muthu | ||
Department of Computer Science and Engineering, Hindustan Institute of Technology and Science, Padur, Chennai, India. | ||
تاریخ دریافت: 13 اردیبهشت 1400، تاریخ بازنگری: 06 خرداد 1400، تاریخ پذیرش: 04 تیر 1400 | ||
چکیده | ||
Endometriosis is the anomalous progress of cells at the outer part of the uterus. Generally, this endometrial tissue stripes the uterine cavity. The existence of endometriosis is identified through procedures known as Transvaginal Ultra Sound Scan (TVUS), Magnetic Resonance Imaging (MRI), Laparoscopic procedures, and Histopathological slides. Minimal Invasive Surgery (MIS) Laparo-scopic images are recorded in a small camera. To assist the surgeon in identifying their presence of endometriosis, image quality (characteristics) was enhanced for more visual clarity. Deep learning has the ability in recognising the images for classification. The Convolutional Neural Networks (CNNs) perform classification of images on large datasets. The proposed system evaluates the performance by a novel approach that implements the transfer learning model on a well-known architecture called ResNet50. The proposed system train the model on ResNet50 architecture and yielded a training accuracy of 91%, validation accuracy of 90%, precision of 83%, and recall of 82%, which can be applied for larger datasets with better performance. The presented system yields higher Area Under Curve (AUC) of about 0.78. The proposed method yields better performance using ResNet50 compared to other transfer learning techniques. | ||
کلیدواژهها | ||
TVUS؛ MRI؛ Laparoscopic images Deep Learning؛ Convolution neural network (CNN)؛ Transfer Learning؛ ResNet50 | ||
مراجع | ||
[1] M. Ahmed, J.F. Al-Khafaji, C.A. Class, W. Wei, P. Ramalingam, H. Wakkaa, P.T. Soliman, M. Frumovitz, R.B. Iyer and P.R. Bhosale, Can MRI help assess aggressiveness of endometrial cancer?, Clin. Radio. 73(9) (2018). [2] S. Akter, D. Xu, S.C. Nagel and T. Joshi, A data mining approach for biomarker discovery using transcriptomics in endometriosis, IEEE Int. Conf. Bioinf. Biomed. Madrid, Spain, (2018) 969–972. [3] A.A.M. Al-Saffar, H. Tao and M.A. Talab, Review of deep convolution neural network in image classification, Int. Conf. Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), Jakarta, Indonesia, (2017) 26–31. [4] J. Avaneesh, J. Thangakumar, T. Sudalaimuthu, P. Ranjana, N.S. Prakash and N.V.V. Sai Teja, Accurate object detection with YOLO, Int. J. Pharm. Res. 12(1) (2020) 1418–1420. [5] A. Bashar, Survey on evolving deep learning neural network architectures, J. Artif. Intel. Capsule Networks 1(2) (2019) 73–82.[6] J. Bouaziz, R. Mashiach, S. Cohen, A. Kedem, A. Baron, M. Zajicek, I. Feldman, D. Seidman and D. Soriano, How artificial intelligence can improve our understanding of the genes, associated with endometriosis: natural language processing of the PubMed database, Biomed Res. Int. 2018 (2018). [7] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with the OpenCV Library, O’Reilly Media, Inc., 2008. [8] X. Chen, Y. Wang, M. Shen, B. Yang, Q. Zhou, Y. Yi, W. Liu, G. Zhang, G. Yang and H. Zhang, Deep learning for the determination of myometrial invasion depth and automatic lesion, identification in endometrial cancer MR imaging: a preliminary study in a single institution, Eur. Radio. 30(9) (2020) 4985–4994. [9] R.Y. Choi, A.S. Coyner, J. Kalpathy-Cramer, M.F. Chiang and J.P. Campbell, Introduction to machine learning, neural networks, and deep learning, Transl. Vision Sci. Tech. 9(14) 2020. [10] A. C¸ inar and M. Yildirim, Detection of tumors on brain MRI images using the hybrid convolutional neural network architecture, Med. Hypo. 139 (2020) 109684. [11] A. Coutinho, L.K. Bittencourt, C.E. Pires, F. Junqueira, C.M.A. de Oliveira Lima, E. Coutinho, M.A. Domingues, R.C. Domingues and E. Marchiori, MR imaging in deep pelvic endometriosis: a pictorial essay, Radio Graph. 31(2) (2011) 549–567. [12] H.-C. Dong, H.-K. Dong, M.-H. Yu, Y.-H. Lin and C.-C. Chang, Using deep learning with convolutional neural network Approach to identify the invasion depth of endometrial cancer in myometrium using MR images: A pilot study, Int. J. Environ. Res. Public Health 17(16) (2020) 1–18. [13] P.P.R. Filho, E.d.S. Rebou¸cas, L.B. Marinho, R.M. Sarmento, J.M.R.S. Tavares and V.H.C. de Albuquerque, Analysis of human tissue densities: a new approach to extract features from medical images, Pattern Recog. Lett. 94 (2017) 211–218. [14] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M.S. Lew, Deep learning for visual understanding: A review, J. Neural Comput. 187 (2016) 27–48. [15] D.J. Hemanth and J. Anitha, Image pre-processing and feature extraction techniques for magnetic resonance brain image analysis, In: T. Kim, D. Ko, T. Vasilakos, A. Stoica, and J. Abawajy (eds) Computer Applications for Communication, Networking, and Digital Contents, FGCN 2012, Communications in Computer and Information Science, 350 (2012). [16] R. Hong, W. Liu, D. DeLair, N. Razavian and D. Feny¨o, Predicting endometrial cancer subtypes and molecular features from histopathology images using multi-resolution deep learning model, bioRxiv 2020 (2020) 1–25. [17] Y. Huang, K. Duan, T. Koythong, N.M. Patil, D. Fan, J. Liu, Z. Guan and X. Guan, Application of robotic single-site surgery with optional additional port for endometriosis: a single institution’s experience, J. Robotic Surg. (2021). [18] A. Kensert, P.J. Harrison and O. Spjuth, Transfer learning with deep convolutional neural networks for classifying cellular morphological changes, SLAS Discov. 24(4) (2019) 466–475. [19] A. Khan, A. Sohail, U. Zahoora and A.S. Qureshi, A survey of the recent architectures of deep convolutional neural networks published in artificial intelligence review, Artif. Intell. Rev. 53 (2020) 5455–5516. [20] E.J. Kleczyk, A. Peri, T. Yadav, R. Komera, M. Peri, V. Guduru, S. Amirtharaj and M. Huang, Predicting endometriosis onset using machine learning algorithms, BMC Women’s Health 2021 (2021) 1–14. [21] D.-H. Lee, Y. Li and B.-S. Shin, Mid-level feature extraction method based transfer learning to small-scale dataset of medical images with visualizing analysis, J. Inf. Proc. Syst. 16(6) (2020) 1293–1308. [22] A. Leibetseder, S. Kletz, K. Schoeffmann, S. Keckstein and J. Keckstein, GLENDA: gynaecologic laparoscopy endometriosis dataset, In: Y. Ro, et al. (eds) MultiMedia Modeling, MMM 2020. Lecture Notes Comput. Sci. 11962 (2019) 439–450. [23] G. Li, Y. Zhang, B. Xu and X. Li, Image analysis and processing of skin cell injury based on OpenCV, J. Phys. Conf. Ser. 1237 (2019) 032003. [24] T. Liu, S. Fang, Y. Zhao, P. Wang and J. Zhang, Implementation of training convolutional neural networks, arXiv preprint arXiv:1506.01195, CoRR. (2015). [25] C. Ma, S. Xu, X. Yi, L. Li and C. Yu, Research on image classification method based on DCNN, Int. Conf. Compu. Engin. Appl. (ICCEA), (2020) 873–876. [26] S. Madad Zadeh, T. Francois, L. Calvet, P. Chauvet, M. Canis, A. Bartoli and N. Bourdel, SurgAI: deep learning for computerized laparoscopic image understanding in gynaecology, Surg. Endosc. 34(12) (2020) 5377–5383. [27] P. Mascagni, A. Vardazaryan, D. Alapatt, T. Urade, T. Emre, C. Fiorillo, P. Pessaux, D. Mutter, J. Marescaux, G. Costamagna, B. Dallemagne, and N. Padoy, Artificial intelligence for surgical safety automatic assessment of the critical view of safety in laparoscopic cholecystectomy using deep learning annals of surgery, Ann. Surg. (2020). [28] P. Nahar, S. Tanwani and N.S. Chaudhari, Fingerprint classification using deep neural network model resnet50,Int. J. Res. Anal. Rev. 5(4) 2018 1521–1535. [29] D.L. Olive, and E.A. Pritts, Treatment of Endometriosis, N. Engl. J. Med. 345(4) 2001 266–275. [30] S. Perumal, and T. Velmurugan, Pre-processing by contrast enhancement techniques for medical images, Int. J. Pure Appl. Math. 118(18) (2018) 3681–3688. [31] A.M. Praiss, Y. Huang, C.M. St. Clair, A.I. Tergas, A. Melamed, F. Khoury-Collado, J.Y. Hou, J. Hu, C. Hur, D.L. Hershman and J.D. Wright, Using machine learning to create prognostic systems for endometrial cancer, Gynecol Oncol. 159(3) (2020) 744–750. [32] S. P´erez-Fern´andez, P. Mart´ınez-Camblor, P., Filzmoser and N. Corral, Visualizing the decision rules behind the ROC curves: understanding the classification process, AStA Adv. Stat. Anal. 105 (2021) 135-–161. [33] A. Rohini, and T. SudalaiMuthu, Machine learning based analysis of influence propagation on social network with time series analysis, 2020 Fourth International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, (2020) 57–61. [34] L. Saba, S. Guerriero, R. Sulcis, M. Pilloni, S. Ajossa, G. Melis and G. Mallarini, MRI and ”tenderness guided” transvaginal ultrasonography in the diagnosis of recto-sigmoid endometriosis, J. Magn. Reson. Imag. 35(2) (2012) 352–360. [35] M. Sankupellay and D. Konovalov, Bird call recognition using deep convolutional neural network, ResNet-50, Proc. Aust. Acoust. Soc. Conf. 134 (2018) 1–8. [36] Y. Takahashi, K. Sone, K. Noda, K. Yoshida, Y. Toyohara, K. Kato, F. Inoue, A. Kukita, A. Taguchi, H. Nishida, Y. Miyamoto, M. Tanikawa, T. Tsuruga, T. Iriyama, K. Nagasaka, Y. Matsumoto, Y. Hirota, O. Hiraike-Wada, K. Oda, M. Maruyama, Y. Osuga and T. Fujii, Automated system for diagnosing endometrial cancer by adopting deep-learning technology in hysteroscopy, PLOS ONE 16(3) (2021). [37] Y. D. Wang, M. Shabaninejad, R.T. Armstrong and P. Mostaghimi, Deep neural networks for improving physical accuracy of 2D and 3D multi-mineral segmentation of rock micro-CT images, Appl. Soft Comput. 104 (2021) 107185. [38] C.E. Widodo, K. Adi and R. Gernowo, Medical image processing using python and open cv, Journal of Physics: Conference Series, J. Phys. Conf. Ser. 1524 (2020). [39] M. Xin, and Y. Wang, Research on image classification model based on deep convolution, EURASIP J. Image Video Proc. 2019(1) (2019). [40] Y.Z. Zhang, Z.H. Wang, J. Zhang, C. Wang, Y.S. Wang, H. Chen, L.H. Shan, J.N. Huo, J.H. Gu, and X. Ma, Deep learning model for classifying endometrial lesions, J. Transl. Med. 19(1) (2021). | ||
آمار تعداد مشاهده مقاله: 16,656 تعداد دریافت فایل اصل مقاله: 1,693 |