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Abstract

This manuscript focuses on the impact of early treatment programs on swine flu disease transmis-
sion among the population. In this manuscript, a nonlinear Susceptible-Exposed-Infected-Recovered
(SEIR) model with early Treatment programs are developed to examine the transmission dynamics
of Swine flu infection with the help of the system of ordinary differential equations. The character-
istics of the model are investigated by the basic reproduction number. We analyzed that the model
exhibits using stability theory of differential equations, the disease-free equilibrium is linearly stable
for R01. Also, conditions for non-linear stability are derived. Sensitivity indices for basic reproduc-
tion and also optimal control measures for swine flu are obtained. Further, numerical simulation for
the model is supported by relevant graphs.
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1. Introduction

Swine flu is an infectious disease caused by influenza virus of type A more specifically H1N1 virus.
This flu spreads easily in person through direct or indirect contact with infected pigs or swine flu
infected person [1]. Swine flu spreads rapidly among the population mainly in crowded circumstances.
Cold and dry weather enables the virus to more active than in other conditions [7].Unhygienic
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surroundings, lack of awareness, low immunity and migration are some more issues regarding spread
of swine flu [2]. High fever, muscular pain, nasal secretions, headache, sore throat, weakness and
uneasiness are symptoms of swine flu disease. The symptom of the virus is noticed after two days
[8]. Vaccination is principle measure or best treatment for swine flu infections which helps to prevent
and reduce the risk of epidemics in humans and pigs. The U.S. Centers for Disease Control and
Prevention (CDC) recommends real time PCR as the technique to diagnose H1N1. Two antiviral
drugs; zanamivir (Relenza) and oseltamivir (Tamiflu) are introduced to prevent or reduce symptoms
of swine flu. If the symptoms already have been present for 48 hours or more, then these drugs
are not prescribed. Patients with a severe flu infection may require special or additional supportive
measures, hospitalization and ventilation support against treatment for infection. Some researchers
argued that Tamiflu and Relenza are not effective. On Dec. 22, 2014, the FDA recommended the
first new anti-influenza drug namely, Peramivir injection (Rapivab) for H1N1 and other influenza
virus types in 15 years [3, 4, 5].

In modern era, Mathematical models are well-known and helpful tools to analyze the mechanism
of spread, effect of treatment and control of the diseases. Various models on swine flu outbreak have
been designed to explain the transmission dynamics. In particular, Misra et al. [7] analyzed a SVIR
model to describe the spread and control of influenza in two dissimilar groups. They evaluated basic
reproduction number and executed linear and non-linear stability around disease free and endemic
equilibrium points. Rahman et al. [9] proposed a SIT model to observe the impact of early treatment
programs on HIV epidemics. Kharis et al. [10] suggested a SITR model on Seasonal Influenza with
Treatment in constant population. They observed that when R0 < 1 then disease free points is stable
and when R0 > 1 then endemic points is stable. Shrivastav el al. [8] gave a SEIQR model on the
symptomatic and asymptomatic infections of swine flu with optimal control. They calculated basic
reproduction number and studied the local and global stabilities of equilibrium points of the model.
More over, the optimal control model was analyzed using Pontryagin’s Maximum Principle. Goswami
et al. [11] presented a SITR Mathematical Model for Stability and Treatment of Influenza. They
calculated basic reproduction number and compared the theoretical results with findings. The effect
of treatment was depicted by the graphs. Further, Chitnis et al. [6], Marsudi et al. [12] and Rani et
al. [20] have done sensitivity analysis for various epidemiological models. Move over, Athithan et al.
[13], Srivastav et al. [8], Sisodiya et al. [15] and Goswami et al. [14] have measured optimal controls
in several models for underlying diseases. The purpose to see the impact of early treatment programs
on spread of swine flu epidemics and its control motivate us to design a mathematical model.

In the present manuscript, a nonlinear epidemic model for swine flu infection along early treatment
programs with sensitivity analysis and optimal controls is framed in section 2. In section 3, basic
traits of the model are mentioned and also basic reproduction number is calculated. Then sensitivity
analysis of the basic reproduction number is argued with regard to various constraints. Further,
stability analysis of the model is discussed in section 4. In section 5, optimal controls are measured.
Finally, numerical simulations are performed to compare the theoretical results and relevant graphs
are illustrated in section 6.

2. Formulation of the Model

To outline a SEIR mathematical model with early treatment programs for Swine flu disease, the
total population (P ) is categorized into subclasses namely, Susceptible(S) , Exposed(E) , Infected
(I) and Recovered (R) . if the individuals are not aware about the status of disease and they do not
avail initial medical treatment, it may precede to the growth of infected patients. In the assistance
of health care agencies many antiretroviral drugs are approved by government bodies to reduce the
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Figure 1: Transfer Diagram

risk of infection, now which are made available into the population P.
On the basis of above-mentioned hypothesis, the transmission dynamics of Swine flu can be

described by system of nonlinear differential equations as follows:
dS

dt
= Π− λSI − dS (2.1)

dE

dt
= λSI − ξ1E − dE (2.2)

dT1
dt

= p1ξ1E − kT1 − dT1 (2.3)

dI

dt
= (1− p1) ξ1E + (1− ϑ1)kT1 − ξ2I − (d+ σ) I (2.4)

dT2
dt

= p2ξ2I − ϑ2T2 − dT2 (2.5)

dR

dt
= ϑ1kT1 + (1− p2) ξ2I + ϑ2T2 − dR (2.6)

Subject to the initial conditions,
S(0) = S0 > 0, E(0) = E0 > 0,T1(0) = T10 > 0,I(0) = I0 > 0, T2(0) = T20 > 0 and R(0) = R0 > 0
The total population at any time ′t′ is given as

P (t) = S(t) + E(t) + T1(t) + I(t) + T2(t) +R(t)

The transfer diagram of designed model is illustrated in Figure 1.

In this model, the classes of individuals are associated as follows:
Π denotes the constant recruitment rate of susceptible class. λ be the transmission rate of infec-
tion from infected population to susceptible population and d be the mortality rate of population.
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Contact between susceptible and infected pigs or swine flu infected individual can increase risk of in-
fection. Swine flu has latent period of 2-3 days so firstly susceptible population join the exposed class
then after some time, they catch infection properly and move to infected class. After proceeding the
initial treatment for infection, let ξ1 be the conversion rate from exposed to infected class; p1 be the
fraction of ξ1 joining treated class I while some individuals directly join the infection class with a rate
(1− p1) .Now let k be the development of full-blown infected of treated class I; (1− υ1) be the frac-
tion of k joining infection class while some individuals directly recover with a rate υ1.Again availing
further special medical treatment and hospitalization for infection, let ξ2 be the conversion rate from
infected to recovered class; p2 be the fraction of ξ2 which joins treated class II while some individuals
directly joining the recover class with a rate (1− p2) . Further, υ2 be the recovery rate of treated
class II and σ be the disease associated death rate. In this manuscript, it is also assumed that the
Swine flu patients never recover. The detail about variables and parameters are mentioned in Table 1.

Table 1: Details of Variables and Parameters

Symbols Variables and Parameters
S(t) Susceptible population at time t.
E(t) Exposed population at time t.
T1(t) Treated population availing initial treatment after being exposed

from swine flu at time t.
I(t) Infected population at time t.
T2(t) Treated population availing special medical treatment and hospi-

talization after being infected from swine at time t.
R(t) Recovered population at time t.
Π Recruitment rate of susceptible population.
λ Transmission rate of swine flu.
d Natural death rate.
ξ1 Conversion rate from exposed to either treated class I or infection

class.
ξ2 Conversion rate from infected to either treated class II or recov-

ered class.
σ Disease induced death rate.
υ1 Recovery rate after availing initial treatment.
υ2 Recovery rate after availing special medical treatment and hospi-

talization.
k Development of full blown infected of treated class I.
p1 Fraction of ξ1 joining initial treatment.
p2 Fraction of ξ2 joining special medical treatment and hospitaliza-

tion.

t The scheme for the analysis of the designed model is given in Table 2.

Table 2: Scheme for analysis of model



Impact of early treatment programs on Swine flu infection 12 (2021) No. 2, 2429-2451 2433

Step Tools used
1. Title Stability Analysis of Swine flu

Epidemics and Its Control by
early Treatment Programs

Swine flu transmission and
treatment

2.
Formulation of model Classification of population Swine flu transmission and

treatment
Model formulation Ordinary differential equation

3.
Basic Traits of model Disease free equilibrium point Disease free and steady state

for differential equation
Basic reproduction number Next generation method
Sensitivity analysis Normalized forward sensitiv-

ity index method
Endemic equilibrium point Steady state for differential

equation

4.
Stability analysis Linear stability analysis of Dis-

ease free equilibrium point
Descartes’ rule of signs

Non linear stability analysis of
Disease free equilibrium point

Lyapunov stability theory

Linear stability analysis of en-
demic equilibrium point

Descartes’ rule of signs

Non linear stability analysis of
endemic equilibrium point

Lyapunov stability theory

5. Optimal control
problem

p1 and ξ2are measured as con-
trols for swine flu transmission

Pontryagin’s Minimum Prin-
ciple, Hamiltonian function
and Lagrangian function

6. Numerical simula-
tion

Figure 2 to Figure 7 MATLAB R2014a (32-bit)

3. Basic traits of the model

3.1. Bounds of the solutions

Lemma 3.1. For all time t ≥ 0, all the solutions of the system (2.1) - (2.6) are finally restricted in
the bounded region Ω =

{
(S,E, T1, I, T2, R) ∈ R6

+ : P (t) = (S(t) + E(t) + T1(t) + I(t) + T2(t) +R(t)) ≤ Π
d

}
.

Proof . Let (S(t), E(t), T1(t), I(t), T2(t), R(t))be the solution of system (2.1) to (2.6) with the
initial conditions.
Now suppose, P (t) = S(t) + E(t) + T1(t) + I(t) + T2(t) +R(t)
Taking time derivative of population P (t),which is given by

dP (t)

dt
=
dS(t)

dt
+
dE(t)

dt
+
dT1(t)

dt
+
dI(t)

dt
+
dT2(t)

dt
+
dR(t)

dt
(3.1)

Substituting the values from system (2.1) to (2.6) in equation (3.1), it gives

dP (t)

dt
= Π− d (S(t) + E(t) + T1(t) + I(t) + T2(t) +R(t))− σI(t)

dP (t)

dt
+ dP (t) = Π− σI(t)
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dP (t)

dt
+ dP (t) ≤ Π

On solving the above ODE we have

P (t) ≤ Π

d

(
1− e−dt

)
+ P0e

−dt

Thus for t→ ∞ we have lim
t→∞

SupP (t) ≤ Π
d
. Consequently, it is proved that all the solutions of system

(2.1) to (2.6) with initial conditions are confined in the region Ω, hence all the solutions are bounded
in the interval [0,∞) . □

3.2. Disease-free equilibrium and Basic reproduction number

We put each of the equations (2.1) to (2.6) equal to zero to evaluate the disease free equilibrium points.
Thus, the disease-free equilibrium Edf of the designed model is given by; Edf = (S, E, T1, I, T2, R) =(
Π
d
, 0, 0, 0, 0, 0

)
.

The basic reproduction number is necessary requirement for the assessment of the local stability of
the equilibrium points. Computation of the basic reproduction number can be obtained by applying
next generation method on the system (2.1) to (2.6). The basic reproduction number is defined
as the average number of secondary infections produced by an infected individual during the entire
infection period. Suppose F is the rate of growth of new infection in infected class and V is the
shifting of individuals out of infected class by all other means then the dominating Eigen value of
the matrix FV −1 is known as basic reproduction number [17].

F1 (E, T1, I, T2) = λSI, F2 (E, T1, I, T2) = 0 , F3 (E, T1, I, T2) = 0 andF4 (E, T1, I, T2) = 0
V1 (E, T1, I, T2) = (ξ1 + d)E, V2 (E, T1, I, T2) = −p1ξ1E + (k + d)T1,
V3 (E, T1, I, T2) = − (1− p1) ξ1E−(1− ϑ1) kT1+(ξ2 + d+ σ) I, V4 (E, T1, I, T2) = −p2ξ2I+(ϑ2 + d)T2.

Therefore

F =


0 0 λS 0
0 0 0 0
0 0 0 0
0 0 0 0

and V =


(ξ1 + d) 0 0 0
−p1ξ1 (k + d) 0 0

− (1− p1) ξ1 − (1− ϑ1) k (ξ2 + d+ σ) 0
0 0 −p2ξ2 (ϑ2 + d)



V −1 =
1

(ξ1 + d) (k + d) (ξ2 + d+ σ) (ϑ2 + d)


(k + d) (ξ2 + d+ σ) (ϑ2 + d)
p1ξ1 (ξ2 + d+ σ) (ϑ2 + d)

(p1 (1− ϑ1) k + (1− p1) (k + d)) ξ1 (ϑ2 + d)
(p1 (1− ϑ1) k + (1− p1) (k + d)) ξ1p2ξ2

0 0 0
(ξ1 + d) (ξ2 + d+ σ) (ϑ2 + d) 0 0
(1− ϑ1) k (ξ1 + d) (ϑ2 + d) (ξ1 + d) (k + d) (ϑ2 + d) 0
(1− ϑ1) p2kξ2 (ξ1 + d) p2ξ2 (ξ1 + d) (k + d) (ξ1 + d) (k + d) (ξ2 + d+ σ)



FV −1 =
1

(ξ1 + d) (k + d) (ξ2 + d+ σ) (ϑ2 + d)


(p1 (1− ϑ1) k + (1− p1) (k + d)) ξ1 (ϑ2 + d)λS

0
0
0
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(ξ1 + d) (1− ϑ1) (ϑ2 + d) kλS (ξ1 + d) (k + d) (ϑ2 + d)λS 0
0 0 0
0 0 0
0 0 0


The characteristic equation of FV −1 is as follows:

ψ3

(
ψ − (p1 (1− ϑ1) k + (1− p1) (k + d))

(ξ1 + d) (k + d) (ξ2 + d+ σ)
ξ1λS

)
= 0

The largest positive eigen value of FV −1 is (p1(1−ϑ1)k+(1−p1)(k+d))
(ξ1+d)(k+d)(ξ2+d+σ)

ξ1λS.
There fore

R0 =
(p1 (1− ϑ1) k + (1− p1) (k + d))

d (ξ1 + d) (k + d) (ξ2 + d+ σ)
ξ1λΠ.

The basic reproduction number R0 manipulates the function of the model and status of the disease
i.e. whether an infection will be spread in a susceptible population.

3.3. Sensitivity analysis of the Basic reproduction number

To determine the significance of parameters in disease transmission and prevalence, we introduce the
sensitivity analysis of the basic reproduction number. Sensitivity indices permit us to measure the
relative change in a state variable. These indices indicate us the importance of each parameter that
leads to disease transmission. Sensitivity indices of a variable with respect to a parameter can be
evaluated by normalized forward sensitivity index method. As we have explicit formula

R0 =
(p1 (1− ϑ1) k + (1− p1) (k + d))

d (ξ1 + d) (k + d) (ξ2 + d+ σ)
ξ1λΠ.

The parameter values and normalized sensitivity indices of R0 with respect to various parameters
are illustrated in Table 3.

Table 3: Sensitivity indices of R0 with respect to parameter x i

R0 = 1.91

Parameters x i Parameter values Sensitivity indices iR0
xi

= ∂R0

∂xi
. xi

R0

Π 1.5 +1.00
λ 0.0035 +1.00
p1 0.1 -0.02
ϑ1 0.01 -0.0008
k 0.08 +0.02
ξ1 0.6 +0.03
ξ2 0.1 -0.77
σ 0.01 -0.08
d 0.02 -1.20

From Table 3, we can conclude that the positive sensitivity indices show that Π, λ, ξ1 and k have
positive impact on the value of basic reproduction number i.e. iR0

ξ1
=+0.03 indicates, if value of ξ1

is increased by 10%, value of R0 will be increased by 0.32%. While the negative sensitivity indices



2436 Purushwani, Purushwani, Sinha

show that p1, υ1, ξ2, σ and d have negative impact on the value of basic reproduction number i.e.
iR0
ξ2

=-0.77 indicates, if value of ξ2 is increased by 10%, value of R0 will be decreased by 7.69%.

3.4. Existence of Endemic equilibrium

To find the conditions for the existence endemic equilibrium points, the nonlinear system of equations
(2.1) to (2.6) is equated to zero. Thus endemic equilibrium point Ee =

(
S, E, T1, I, T2, R

)
is given

by

S =
Π

λI + d
,

E =
ΠλI(

λI + d
)
(ξ1 + d)

,

T1 =
p1ξ1ΠλI

(k + d) (ξ1 + d)
(
λI + d

) ,
T2 =

p2ξ2I

(ϑ2 + d)
,

R =

 ϑ1kp1ξ1Πλ

(k+d)(ξ1+d)(λI+d)
+ (ϑ2+d(1−p2))ξ2

(ϑ2+d)

d

 .I,

I =
1

λ

(
(p1 (1− ϑ1) k + (1− p1) (k + d))

(ξ1 + d) (k + d) (ξ2 + d+ σ)
ξ1λΠ− d

)
=
d

λ
(R0 − 1) .

Hence, each of S, E, T1, T2 and R is positive if I > 0 and I is positive only when R0 > 1. so, endemic
equilibrium point Ee

(
S, E, T1, I, T2, R

)
is positive and exists if R0 > 1.

4. Stability Analysis

Lemma 4.1. The disease-free equilibrium Edf of the model (2.1) to (2.6) is linearly stable when
R0 < 1 and unstable otherwise.

Proof . The Disease free equilibrium point is given by Edf =
(
Π
d
, 0, 0, 0, 0, 0

)
.

Now taking small perturbation around it, S (t) = Π
d
+x1, E (t) = x2, T1 (t) = x3, I (t) = x4, T2 (t) =

x5 and R (t) = x6 then linearized system of model equations (2.1) to (2.6) is given as follows,
dx1
dt

= −λΠ
d
x4 − dx1

dx2
dt

=
λΠ

d
x4 − (ξ1 + d)x2

dx3
dt

= p1ξ1x2 − (k + d)x3

dx4
dt

= (1− p1) ξ1x2 + (1− ϑ1)kx3 − (ξ2 + d+ σ)x4

dx5
dt

= p2ξ2x4 − (ϑ2 + d)x5

dx6
dt

= ϑ1kx3 + (1− p2) ξ2x4 + ϑ2x5 − dx6
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To examine linear stability of the disease free equilibrium point Edf we calculate variational matrix
J1.
The variational matrix of the above system around Edf is given by,

J1 =


−d 0 0 −λΠ

d
0 0

0 − (ξ1 + d) 0 λΠ
d

0 0
0 p1ξ1 − (k + d) 0 0 0
0 (1− p1) ξ1 (1− ϑ1) k − (ξ2 + d+ σ) 0 0
0 0 0 p2ξ2 − (ϑ2 + d) 0
0 0 ϑ1k (1− p2) ξ2 ϑ2 −d


The characteristic equation of J1 is obtained as,

(ψ + d)2 (ψ + (ϑ2 + d))
(
ψ3 + C1ψ

2 + C2ψ + C3

)
= 0. (4.1)

where
C1 = ((ξ1 + d) + (k + d) + (ξ2 + d+ σ)) ,

C2 = (k + d) (ξ2 + d+ σ) + (ξ1 + d) (k + d) + (ξ1 + d) (ξ2 + d+ σ)− (1−p1)ξ1λΠ
d

=
p1 (1− ϑ1) kξ1λΠ

d (k + d)
+ (k + d) (ξ2 + d+ σ) + (ξ1 + d) (k + d) + (ξ1 + d) (ξ2 + d+ σ) (1−R0) ,

C3 = (ξ1 + d) (k + d) (ξ2 + d+ σ)− (p1(1−ϑ1)k+(k+d)(1−p1))ξ1λΠ
d

= (ξ1 + d) (k + d) (ξ2 + d+ σ) (1−R0) .

Clearly three roots of equation (4.1) are negative and also C1 > 0, C2 > 0 and C3 > 0 when R0 < 1,
Then by using Descartes’ rule of signs, remaining three characteristic roots will be negative.
Hence, all the six roots of equation (4.1) are negative if R0 < 1.
Thus we conclude that the disease free equilibrium point Edf of the model (2.1) to (2.6) is linearly
stable if R0 < 1. However, it is unstable if R0 > 1. □

Lemma 4.2. The disease-free equilibrium point Edfof the model (2.1) to (2.6) is non linearly stable
if following three conditions are satisfied.
(ξ1 + d) > λΠ

2d
,(ξ2 + d+ σ) > λΠ

d
,1
2

(
(ξ1 + d)− λΠ

2d

) (
(ξ2 + d+ σ)− λΠ

d

)
> ((1− p1) ξ1)

2otherwise un-
stable.

Proof . The Disease free equilibrium point is given by Edf =
(
Π
d
, 0, 0, 0, 0, 0

)
.

Now taking small perturbation around it as follows,
S (t) = Π

d
+ x1, E (t) = x2, T1 (t) = x3, I (t) = x4, T2 (t) = x5 and R (t) = x6.

Now consider a positive definite function

U =
1

2
(A1x

2
1 + A2x

2
2 + A3x

2
3 + A4x

2
4 + A5x

2
5 + A6x

2
6)

Differentiating U w.r.to time t and using the model (2.1) to (2.6), we get
dU
dt

= A1

[
−λ

(
Π
d
+ x1

)
x1x4 − dx1

2
]
+ A2

[
λ
(
Π
d
+ x1

)
x2x4 − (ξ1 + d)x2

2
]

+A3

[
p1ξ1x2x3 − (k + d)x3

2
]
+ A4

[
(1− p1) ξ1x2x4 + (1− ϑ1)kx3x4 − (ξ2 + d+ σ)x4

2
]

+A5

[
p2ξ2x4x5 − (ϑ2 + d)x5

2
]
+ A6

[
ϑ1kx3x6 + (1− p2) ξ2x4x6 + ϑ2x5x6 − dx6

2
]
.
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Now using the inequality, ± 2x y ≤ x2 + y2 on the right hand side of dU
dt
, we find that

dU
dt

≤ A1

[
λ
2

(
Π
d
+ x1

)
(x1

2 + x4
2)− dx1

2
]
+ A2

[
λ
2

(
Π
d
+ x1

)
(x2

2 + x4
2)− (ξ1 + d)x2

2
]

+A3

[
p1ξ1x2x3 − (k + d)x3

2
]
+ A4

[
(1− p1) ξ1x2x4 + (1− ϑ1)kx3x4 − (ξ2 + d+ σ)x4

2
]

+A5

[
p2ξ2x4x5 − (ϑ2 + d)x5

2
]
+ A6

[
ϑ1kx3x6 + (1− p2) ξ2x4x6 + ϑ2x5x6 − dx6

2
]
.

Again on rearranging the above inequality, we get,

dU
dt

≤ −
[(
d− λΠ

2d

)
A1x1

2+
(
(ξ1 + d)− λΠ

2d

)
A2x2

2+(k + d)A3x3
2+

(
(ξ2 + d+ σ)A4 − λΠ

2d
(A1 + A2)

)
x4

2

+(ϑ2 + d)A5x5
2 + dx6

2 − p1ξ1A3x2x3 − (1− p1) ξ1A4x2x4 − (1− ϑ1)kA4x3x4 − ϑ1kA6x3x6

− (1− p2) ξ2A6x4x6 − ϑ2A6x5 x6] .

dU
dt

≤ −
[(
d− λΠ

2d

)]
A1x1

2 +
(
1
2

(
(ξ1 + d)− λΠ

2d

)
A2x2

2 − p1ξ1A3x2x3 +
1
3
(k + d)A3x3

2
)

+

(
1

2

(
(ξ1 + d)− λΠ

2d

)
A2x2

2 − (1− p1) ξ1A4x2x4 +
1

4

(
(ξ2 + d+ σ)A4 −

λΠ

2d
(A1 + A2)

)
x4

2

)

+

(
1

3
(k + d)A3x3

2 − (1− ϑ1)kA4x3x4 +
1

4

(
(ξ2 + d+ σ)A4 −

λΠ

2d
(A1 + A2)

)
x4

2

)
+

(
1

3
(k + d)A3x3

2 − ϑ1kA6x3x6 +
1

3
dA6x6

2

)
+

(
1

4

(
(ξ2 + d+ σ)A4 −

λΠ

2d
(A1 + A2)

)
x4

2 − p2ξ2A5x4x5 +
1

2
(ϑ2 + d)A5x5

2

)
+

(
1

4

(
(ξ2 + d+ σ)A4 −

λΠ

2d
(A1 + A2)

)
x4

2 − (1− p2) ξ2A6x4x6 +
1

3
dA6x6

2

)
+

(
1

2
(ϑ2 + d)A5x5

2 − ϑ2A6x5x6 +
1

3
dA6x6

2

)]
.

Hence by Lyapunov’s direct method of stability we find that the disease free equilibrium point is
non-linearly stable if following conditions are satisfied.

2

3

(
(ξ1 + d)− λΠ

2d

)
(k + d)A2 > (p1ξ1)

2A3,

1

2

(
(ξ1 + d)− λΠ

2d

)(
(ξ2 + d+ σ)A4 −

λΠ

2d
(A1 + A2)

)
A2 > ((1− p1) ξ1A4)

2 ,

1

3
(k + d)

(
(ξ2 + d+ σ)A4 −

λΠ

2d
(A1 + A2)

)
A3 > ((1− ϑ1)kA4)

2 ,

4

9
(k + d) dA3 > (ϑ1k)

2A6,

1

2

(
(ξ2 + d+ σ)A4 −

λΠ

2d
(A1 + A2)

)
(ϑ2 + d) > (p2ξ2)

2A5,
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1

3

(
(ξ2 + d+ σ)A4 −

λΠ

2d
(A1 + A2)

)
d > ((1− p2) ξ2)

2A6,

2

3
(ϑ2 + d) dA5 > ϑ2

2A6.

Again choosing A1 = A2 = A4 = 1, we get

A3 <
2
3

(
(ξ1 + d)− λΠ

2d

)
(k + d)

(p1ξ1)
2 ,

A5 <
1
2

(
(ξ2 + d+ σ)− λΠ

d

)
(ϑ2 + d)

(p2ξ2)
2 ,

A6 <
1
3

(
(ξ2 + d+ σ)− λΠ

d

)
d

((1− p2) ξ2)
2 .

Finally, disease free equilibrium point Edf is nonlinear stable if,

(ξ1 + d) >
λΠ

2d
,

(ξ2 + d+ σ) >
λΠ

d
,

1

2

(
(ξ1 + d)− λΠ

2d

)(
(ξ2 + d+ σ)− λΠ

d

)
> ((1− p1) ξ1)

2

otherwise unstable. □

Lemma 4.3. The endemic equilibrium point Ee =
(
S, E, T1, I, T2, R

)
of the model (2.1) to (2.6)

is linearly stable when R0 > 1 and unstable otherwise.

Proof . The endemic equilibrium point is given by Ee =
(
S,E, T1, I, T2, R

)
Now taking small perturbation around it,
S = S + y1, E = E + y2, T1 = T1 + y3, I = I + y4, T2 = T2 + y5 and R = R + y6 then linearized
system of model equations (2.1) to (2.6) is given by,

dy1
dt

= −λ
(
y4S + y1I

)
− dy1

dy2
dt

= λ
(
y4S + y1I

)
− (ξ1 + d) y2

dy3
dt

= p1ξ1y2 − ky3 − dy3

dy4
dt

= (1− p1) ξ1y2 + (1− ϑ1)ky3 − (ξ2 + d+ σ) y4

dy5
dt

= p2ξ2y4 − (ϑ2 + d) y5

dy6
dt

= ϑ1ky3 + (1− p2) ξ2y4 + ϑ2y5 − dy6
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The variational matrix of the above system around Ee is given by,

J2 =


−
(
λI + d

)
0 0 −λS 0 0

λI − (ξ1 + d) 0 λS 0 0
0 p1ξ1 − (k + d) 0 0 0
0 (1− p1) ξ1 (1− ϑ1) k − (ξ2 + d+ σ) 0 0
0 0 0 p2ξ2 − (ϑ2 + d) 0
0 0 ϑ1k (1− p2) ξ2 ϑ2 −d


The characteristic equation of J2 is as follows:

(ψ + d) (ψ + (ϑ2 + d))
(
ψ4 +D1ψ

3 +D2ψ
2 +D3ψ +D4

)
= 0. (4.2)

where,
D1 =

((
λI + d

)
+ (ξ1 + d) + (k + d) + (ξ2 + d+ σ)

)
,

D2 =
(
λI + d

)
((ξ1 + d) + (k + d) + (ξ2 + d+ σ)) + (ξ1 + d) (k + d) + (ξ1 + d) (ξ2 + d+ σ)

+ (k + d) (ξ2 + d+ σ)− (1− p1) ξ1λS

= ((ξ1 + d) + (k + d) + (ξ2 + d+ σ)) dR0+(ξ1 + d) (k + d)+(k + d) (ξ2 + d+ σ)+
p1 (1− ϑ1) kξ1λΠ

(k + d) dR0

,

D3 = −d (1− p1) ξ1λS+
(
λI + d

)
((ξ1 + d) (k + d) + (k + d) (ξ2 + d+ σ) + (ξ1 + d) (ξ2 + d+ σ))

+ (ξ1 + d) (k + d) (ξ2 + d+ σ)− ((k + d) (1− p1) + p1 (1− ϑ1) k) ξ1λS

=
p1d (1− ϑ1) kξ1λΠ

(k + d) dR0

+ ((ξ1 + d) (k + d) + (k + d) (ξ2 + d+ σ) + (ξ1 + d) (ξ2 + d+ σ)) d (R0 − 1)

+d ((ξ1 + d) (k + d) + (k + d) (ξ2 + d+ σ)) ,

D4 = (ξ1 + d) (k + d) (ξ2 + d+ σ)λI = (ξ1 + d) (k + d) (ξ2 + d+ σ) d (R0 − 1) .

It is clear that,
D1 > 0, D2 > 0, D3 > 0and D4 > 0 when R0 > 1.
Clearly two roots of equation (4.2) are negative and using Descartes’ rule of signs remaining four
characteristic roots of characteristic equation (4.2) will be negative if R0 > 1.Hence all the six roots
of equation (4.2) are negative if R0 > 1. Consequently, the endemic equilibrium point Ee is linearly
stable if R0 > 1. However, it is unstable if R0 < 1. □

Lemma 4.4. The endemic equilibrium point Ee of model (2.1) to (2.6) is non-linearly stable under
following conditions -

4

3

(
λI + d+

Πλ

2d

)(
ξ1 + d+

Πλ

2d

)
B1 >

(
λI

)2
B2,

4

9

(
ξ1 + d+

Πλ

2d

)
(k + d)B2 > (p1ξ1)

2B3,

1

3

(
ξ1 + d+

Πλ

2d

)(
(ξ2 + d+ σ)B4 +

ΠλB1

2d
+

ΠλB2

2d

)
B2 > ((1− p1) ξ1B4)

2 ,
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1

3
(k + d)

(
(ξ2 + d+ σ)B4 +

ΠλB1

2d
+

ΠλB2

2d

)
B3 > ((1− ϑ1) kB4)

2 ,

4

9
(k + d) dB3 > (ϑ1k)

2B6 ,

1

2

(
(ξ2 + d+ σ)B4 +

ΠλB1

2d
+

ΠλB2

2d

)
(ϑ2 + d) > (p2ξ2)

2B5,

1

3

(
(ξ2 + d+ σ)B4 +

ΠλB1

2d
+

ΠλB2

2d

)
d > ((1− p2) ξ2)

2B6,

2

3
(ϑ2 + d) dB5 > ϑ2

2B6 otherwise unstable.

Proof . The endemic equilibrium point is given by Ee =
(
S, E, T1, I, T2, R

)
Now taking small perturbation around it,
S = S + y1, E = E + y2, T1 = T1 + y3, I = I + y4, T2 = T2 + y5 and R = R + y6 then system of
model equations (2.1) to (2.6) is given by,

dy1
dt

= −λ
(
y4S + y1I + y1y4

)
− dy1

dy2
dt

= λ
(
y4S + y1I + y1y4

)
− (ξ1 + d) y2

dy3
dt

= p1ξ1y2 − ky3 − dy3

dy4
dt

= (1− p1) ξ1y2 + (1− ϑ1)ky3 − (ξ2 + d+ σ) y4

dy5
dt

= p2ξ2y4 − (ϑ2 + d) y5

dy6
dt

= ϑ1ky3 + (1− p2) ξ2y4 + ϑ2y5 − dy6

Now consider a positive definite function

V =
1

2
(B1y

2
1 +B2y

2
2 +B3y

2
3 +B4y

2
4 +B5y

2
5 +B6y

2
6)

Then using the above system of equations in dV
dt
, we get

dV
dt

= B1y1
(
−λy4S − λy1I − λy1y4 − dy1

)
+B2y2

(
λy4S + λy1I + λy1y4 − (ξ1 + d) y2

)
+B3y3 (p1ξ1y2 − ky3 − dy3) +B4y4 ((1− p1) ξ1y2 + (1− ϑ1)ky3 − (ξ2 + d+ σ) y4)

+B5y5 (p2ξ2y4 − (ϑ2 + d) y5) +B6y6 (ϑ1ky3 + (1− p2) ξ2y4 + ϑ2y5 − dy6) .

On solving, we get
dV
dt

=
[
−λB1Sy1y4 − λB1Iy1

2 − (λB1y1) y1y4 − dB1y1
2
]
+
[
λB2Sy2y4 + λB2Iy1y2 + (λB2y2) y1y4

− (ξ1 + d)B2y2
2
]
+
[
p1ξ1B3y2y3 − (k + d)B3y3

2
]
+ [(1− p1) ξ1B4y2y4 + (1− ϑ1)kB4y3y4

− (ξ2 + d+ σ)B4y4
2
]
+
[
p2ξ2B5y4y5 − (ϑ2 + d)B5y5

2
]
+ [ϑ1kB6y3y6 + (1− p2) ξ2B6y4y6

+ϑ2B6y5y6 − dB6y6
2
]
.
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On rearranging and using the inequality, ± 2x y ≤ x2 + y2 and also using the region Ω on the RHS
of dV

dt
, we obtain;

dV
dt

≤ −
[(
λI + d

)
B1y1

2
+ ΠλB1

2d
(y1

2 + y4
2)− λIB2y1y2 + (ξ1 + d)B2y2

2 +
(
ΠλB2

2d
(y2

2 + y4
2)

− (1− p1) ξ1B4y2y4)− p1ξ1B3y2y3 + (k + d)B3y3
2 − (1− ϑ1) kB4y3y4 − ϑ1kB6y3y6

+(ξ2 + d+ σ)B4y4
2 − p2ξ2B5y4y5 + (ϑ2 + d)B5y5

2 − (1− p2) ξ2B6y4y6 − ϑ2B6y5y6

+d B6y6
2
]
.

Further, we have
dV
dt

≤ −
[(
λI + d+ Πλ

2d

)
B1y1

2 − λIB2y1y2 +
(
ξ1 + d+ Πλ

2d

)
B2y2

2 − (1− p1) ξ1B4y2y4

−p1ξ1B3y2y3 + (k + d)B3y3
2 − (1− ϑ1) kB4y3y4 − ϑ1kB6y3y6 + ((ξ2 + d+ σ)B4

+
ΠλB1

2d
+

ΠλB2

2d

)
y4

2 − p2ξ2B5y4y5 + (ϑ2 + d)B5y5
2 − (1− p2) ξ2B6y4y6 − ϑ2B6y5y6

+d B6y6
2
]
.

This implies,
dV
dt

≤
(
−
[
b11y1

2 − b12y1y2 + b22
3
y2

2
]
+

[
b22
3
y2

2 − b23y2y3 +
b33
3
y3

2
]

+

[
b22
3
y2

2 − b24y2y4 +
b44
4
y4

2

]
+

[
b33
3
y3

2 − b34y3y4 +
b44
4
y4

2

]

+

[
b33
3
y3

2 − b36y3y6 +
b66
3
y6

2

]
+

[
b44
4
y4

2 − b45y4y5 +
b55
2
y5

2

]
+

[
b44
4
y4

2 − b46y4y6 +
b66
3
y6

2

]
+

[
b55
2
y5

2 − b56y5y6 +
b66
3
y6

2

]
b11 =

(
λI + d+ Πλ

2d

)
B1, b12 = λIB2, b22 =

(
ξ1 + d+ Πλ

2d

)
B2, b23 = p1ξ1B3, b24 = (1− p1) ξ1B4,

b33 = (k + d)B3, b34 = (1− ϑ1) kB4, b36 = ϑ1kB6, b44 =
(
(ξ2 + d+ σ)B4 +

ΠλB1

2d
+ ΠλB2

2d

)
,

b45 = p2ξ2B5, b55 = (ϑ2 + d)B5, b46 = (1− p2) ξ2B6, b56 = ϑ2B6, b66 = dB6.

Hence by Lyapunov’s direct method of stability, we conclude that the endemic equilibrium point
Ee is non-linearly stable if following conditions are satisfied.

4

3

(
λI + d+

Πλ

2d

)(
ξ1 + d+

Πλ

2d

)
B1 >

(
λI

)2
B2,

4

9

(
ξ1 + d+

Πλ

2d

)
(k + d)B2 > (p1ξ1)

2B3,

1

3

(
ξ1 + d+

Πλ

2d

)(
(ξ2 + d+ σ)B4 +

ΠλB1

2d
+

ΠλB2

2d

)
B2 > ((1− p1) ξ1B4)

2 ,

1

3
(k + d)

(
(ξ2 + d+ σ)B4 +

ΠλB1

2d
+

ΠλB2

2d

)
B3 > ((1− ϑ1) kB4)

2 ,

4

9
(k + d) dB3 > (ϑ1k)

2B6 ,
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1

2

(
(ξ2 + d+ σ)B4 +

ΠλB1

2d
+

ΠλB2

2d

)
(ϑ2 + d) > (p2ξ2)

2B5,

1

3

(
(ξ2 + d+ σ)B4 +

ΠλB1

2d
+

ΠλB2

2d

)
d > ((1− p2) ξ2)

2B6,

2

3
(ϑ2 + d) dB5 > ϑ2

2B6.

Consequently, the endemic equilibrium point Ee is non-linearly stable under the above mentioned
conditions otherwise unstable. □

5. Optimal Control Problem

In this section, we propose an optimal control problem, which influences to swine flu transmis-
sion demonstrated in the model (2.1) to (2.6). Here, our purpose is to find the optimal control
U (t) = (p1 (t) , ξ2 (t))

T ∈ R2. In the present manuscript, p1 fraction of exposed population availing
initial treatment and ξ2 conversion rate from infected to either treated class II or recovered class are
the parameters, that can minimize the number of exposed and infected population. We are using
Pontryagin’s Minimum Principle to study the optimal values of parameters that would be required
to control the swine flu transmission. Now suppose the objective functional J, which minimizes the
number of exposed and infected population and the cost to control p1 and ξ2. here, we approach
to values of p1 and ξ2 both that are used to optimize the objective function J. Thus, the objective
function to be minimized is given by-

J (p1 (t) , ξ2 (t)) =

∫ tf

o

[
A1E (t) + A2I (t) +

A3

2
(p1)

2 +
A4

2
(ξ2)

2

]
dt (5.1)

The parameters A1 > 0, A2 > 0, A3 > 0 and A4 > 0 are dimensionless weight constants. We obtain
an optimal control parameters p1

∗ and ξ2
∗ such that

J (p1
∗, ξ2

∗) = min
p1,ξ2

[J (p1, ξ2) |p1, ξ2 ∈ U ]

Where U = {p1, ξ2| 0 ≤ p1, ξ2 ≤ 1 and t ∈ [0, tf ]}
Using Pontryagin’s Minimum Principle, model system (2.1)-(2.6) and (5.1) are changed to a problem
of minimizing point-wise a Hamiltonian function Hwith respect to p1 and ξ2. For this, we introduce
Lagrangian function for the problem is defined by,

L (E, I, p1, ξ2) = A1E (t) + A2I (t) +
A3

2
(p1)

2 +
A4

2
(ξ2)

2

and also we determine the Hamiltonian function as follow,
H = A1E (t) + A2I (t) +

A3

2
(p1)

2 + A4

2
(ξ2)

2 + λ1 [Π− λSI − dS] + λ2 [λSI − ξ1E − dE]

+λ3 [p1ξ1E − kT1 − dT1] + λ4 [(1− p1) ξ1E + (1− ϑ1)kT1 − ξ2I − (d+ σ) I]

+λ5 [p2ξ2I − ϑ2T2 − dT2] + λ6 [ϑ1kT1 + (1− p2) ξ2I + ϑ2T2 − dR] .

Where λ1, λ2, λ3, λ4, λ5, λ6 are the adjoint variables or co-state variables.

Lemma 5.1. There exists optimal controls p∗1 and ξ
∗
2 in U such that J (p1

∗, ξ2
∗) = min

p1,ξ2
[J (p1, ξ2) |p1, ξ2 ∈ U ]

subject to the model system (2.1) to (2.6) and for all t ∈ [0, tf ].
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Proof . To find the system of differential equations with respect to the associated adjoint variables,
we differentiate the Hamiltonian with respect to each of the state variables and obtain the following,

dλ1
dt

= λ1 (λI + S)− λ2 (λI) (5.2)

dλ2
dt

= −A1 − λ2 (ξ1 + d) ξ1 − λ3 (p1ξ1)− λ4 ((1− p1) ξ1) (5.3)

dλ3
dt

= λ3 (k + d)− λ4 ((1− ϑ1)k)− λ6 (ϑ1k) (5.4)

dλ4
dt

= −A2 + λ1 (λS)− λ2 (λS) + λ4 (ξ2 + d+ σ)− λ5 (p2ξ2)− λ6 ((1− p2) ξ2) (5.5)

dλ5
dt

= λ5 (ϑ2 + d)− λ6 (ϑ2) (5.6)

dλ6
dt

= λ6 (d) (5.7)

with transversality condition,

λ1 (T ) = λ2 (T ) = λ3, (T ) = λ4, (T ) = λ5 (T ) = λ6, (T ) = 0 (5.8)

For above mentioned transversality condition (5.8), the following hold-

dλ1
dt

= −∂H
∂S

,
dλ2
dt

= −∂H
∂E

,
dλ3
dt

= −∂H
∂T1

,
dλ4
dt

= −∂H
∂I

,
dλ5
dt

= −∂H
∂T2

,
dλ6
dt

= −∂H
∂R

(5.9)

The optimal controls can be distinguished by the following expressions-

p1
∗ (t) = max

{
0,min

(
∧
p1 (t) , 1

)}
, ξ2

∗ (t) = max

{
0,min

(
∧
ξ2 (t) , 1

)}
.

Further, upper and lower bounds of the controls p1 and ξ2 are 0 and 1 respectively, on this basis we
can conclude the following:

p1
∗ =


0 if

∧
p1 ≤ 0,

∧
p1 if 0 <

∧
p1 < 1,

1 if
∧
p1 ≥ 1 ,

ξ2
∗ =


0 if

∧
ξ2 ≤ 0,

∧
ξ2 if 0 <

∧
ξ2 < 1,

1 if
∧
ξ2 ≥ 1 ,

The control parameter p∗1 =1 indicates that there is highest reduction in exposed population, i.e.
They should go for initial treatment of swine flu moreover ξ∗2 =1 highlight the highest decline in
infected population, i.e. either they will go for special treatment and hospitalized or get recover from
swine flu. It is also pointed out that ξ∗2 most effective control parameter for protecting society from
swine flu infection
differentiating H with respect to each of the permissible controls p1 and ξ2 , we have

∂H

∂p1
= A3 (p1) + λ3 (ξ1E)− λ4 (ξ1E)

∂H

∂ξ2
= A4 (ξ2)− λ4 (I) + λ5 (p2I) + λ6 ((1− p2) I) .

The control categorization,
∧
p1 and

∧
ξ2 of the optimal controls p1

∗ and ξ2
∗ are obtained by substituting

∂H
∂p1

= ∂H
∂ξ2

= 0 which gives,

∧
p1 =

(λ4 − λ3) (ξ1E)

A3

,
∧
ξ2 =

(λ4 − λ5 (p2)− λ6 (1− p2)) I

A4

.

□
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6. Numerical simulation

Numerical facts are established for the existence and stability properties of the equilibrium points.
Using MATLAB R2014a (32-bit) software, the model system (2.1) to (2.6) is simulated for the set
of parameters values to review the effect of the control measures on infected population.

For the analysis of swine flu transmission with early treatment programs in this section, we choose
set-1 for values of parameters given below-
Π = 1.5, λ = 0.0035, p1 = 0.1, p2 = 0.2, ξ1 = 0.6, ξ2 = 0.25, k = 0.008, ϑ1 = 0.01, ϑ2 = 0.01, d =
0.02 and σ = 0.01. These numerical values of these parameters are selected only for illustrative
purpose, for set-1 the value of R0 = 0.888387 < 1 and the disease free equilibrium point is Edf =
(75, 0, 0, 0, 0, 0) . Figure 2 depicts all species versus time, it is cleared that all the trajectories
tends towards the disease free condition, which exhibit that the disease free equilibrium is locally
asymptotically stable. Moreover, we take all parameters are same as mentioned in set-1 except
ξ2 = 0.05.Then for these values of parameters, the value of R0 = 3.10935 > 1 and the endemic
equilibrium point is Ee = (24.1208, 1.64127, 0.984759, 12.0535, 4.01782, 26.1552) .In Figure 3, it is
pointed out that endemic equilibrium is stable under these values of parameters. Further, we take
set-2 for these values of parameters;
Π = 1.5, λ = 0.0035, p1 = 0.1, p2 = 0.2, ξ1 = 0.6, ξ2 = 0.1, k = 0.008, ϑ1 = 0.01, ϑ2 = 0.01, d = 0.02
and σ = 0.01. In Figure 4, it is shown that as the transmission rate of disease (λ) increases then
the value of R0 increases and also infected population increases. Infection does not persist in the
environment. Consequentially, it does not spread in the population. Corresponding equilibrium
points are stated in Table 4 given below-

Table 4: Value of R0 and equilibrium point for various values of (λ)

Transmission
rate of dis-
ease(λ)

Basic re-
production
number(R0)

Equilibrium point

0.001 0.5467 Edf = (75, 0, 0, 0, 0, 0)
0.0035 1.91345 Ee = (39.1962, 1.15496, 0.69297, 5.21971, 3.47981, 22.6465)
0.007 3.8269 Ee = (19.5981, 1.78716, 1.07229, 8.07685, 5.38457, 35.0426)
0.03 16.401 Ee = (4.57289, 2.27184, 1.36311, 10.2673, 6.84489, 44.5463)

Again, for the same values of parameters; it is shown that as (p1) increases then the value of R0

decreases and also infection population decreases, see Figure 5. Related values of R0 and equilibrium
points are mentioned in Table 5 as follows-

Table 5: Value of R0 and equilibrium point for various values of (p1)

Fraction of
exposed avail-
ing initial
treatment (p1)

Basic re-
production
number(R0)

Equilibrium point

0.2 1.8728 Ee = (40.0469, 1.12752, 1.35302, 4.98745, 3.32497, 21.6664)
0.4 1.79151 Ee = (41.864, 1.0689, 2.56536, 4.52294, 3.01529, 19.702)
0.6 1.71022 Ee = (43.8539, 1.00471, 3.61696, 4.05842, 2.70561, 17.7312)
0.8 1.62893 Ee = (46.0424, 0.934116, 4.48376, 3.5939, 2.39594, 15.7529)
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Similarly, for the same values of parameters; it is shown that as (ξ2) increases then the value of
R0 decreases and also infection population decreases, see Figure 6. Related values of R0 and equi-
librium points are given in Table 6 given below-

Table 6: Value of R0 and equilibrium point for various values of (ξ2)

Conversion
rate from
infected to
treated II or
recovered (ξ2)

Basic
repro-
duction
number
(R0)

Equilibrium point

0.05 3.10935 Ee = (24.1208, 1.64127, 0.984759, 12.0535, 4.01782, 26.1552)
0.1 1.91345 Ee = (39.1962, 1.15496, 0.69297, 5.21971, 3.47981, 22.6465)
0.15 1.38194 Ee = (54.2717, 0.668655, 0.401193, 2.18249, 2.18249, 14.2022)
0.25 0.888387 Edf = (75, 0, 0, 0, 0, 0)

Numerical simulation for optimal controls is also performed. The impact of the optimal control
strategies on swine flu transmission is depicted in Figure 7.To urge on the lower and upper bounds
for the controls, we assumed that it is realistically impossible to have 100% effective controls. Conse-
quently the upper bounds for p1 and ξ2 will lie between 0 and 1 respectively. We choose the following
parametric values-
Π = 1.5, λ = 0.0035, p2 = 0.2, ξ1 = 0.6, k = 0.008, ϑ1 = 0.01, ϑ2 = 0.01, d = 0.02 and σ = 0.01.

Associated values of R0 and equilibrium points are given in Table 7 also a plot for time versus
infected population is illustrated without control, with any one control and both the controls in
Figure 7.

Table 7: Value of R0 and equilibrium point for controls (p1)and (ξ2)

Controls (p1)and (ξ2) Basic re-
production
number(R0)

Equilibrium point

p1 = 0and ξ2 = 0 8.46774 Ee = (8.85714, 2.13364, 0, 42.6728, 0, 0)
p1 = 0and ξ2 = 1 0.246633 Edf = (75, 0, 0, 0, 0, 0)
p1 = 1and ξ2 = 0 6.70645 Ee = (11.1833, 2.0586, 12.3516, 32.6083, 0, 0.494065)
p1 = 1and ξ2 = 1 0.195334 Edf = (75, 0, 0, 0, 0, 0)

Numerical simulation for sensitivity indices is indicated in Table 3. The sensitivity indices for the
values of Π, λ, ξ1 and k are positive in sign whereas the sensitivity indices for the values of p1, υ1 and
ξ2 are negative in sign. We can easily notice on the basis of indices sign that how these parameters
should be managed to control swine flu epidemic as follows:
1. Reduce the recruitment rate Π of susceptible.
2. Reduce the transmission rate of disease λ by using mask or availing appropriate treatment.
3. Reduce the conversion rate ξ1 from exposed to treated class I or infected class so that disease
could not move further.
4. Reduce the development of full blown infected of treated class I, k i.e. efficiency of initial treat-
ment should be enhanced.
5. Increase the fraction p1 of exposed population joining initial treatment for swine flu by proper
awareness.
6. Increase the recovery rate υ1 by maintaining good physical condition and having proper diet.
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Figure 2: Time (t) versus all species for R0 = 0.888387 < 1

7. Increase the conversion rate from infected to treated class II or recovery ξ2 by improving the
treatment i.e. special care or hospitalization.

These numerical simulations are performed to support the theoretical results. Relevant figures
are given below to assist the numerical simulations.

7. Conclusion

In present manuscript, we have analyzed a mathematical model on the transmission dynamics of
swine flu with early treatment programs. The model consists of nonlinear ordinary differential
equations for six different interacting populations. It is assumed that swine flu spreads due to
direct or indirect interaction between susceptible and infectious and by availing early treatment
programs, risk of infection can be minimized. The behavior of the suggested swine flu model with
early treatment programs can be determined by calculating the basic reproduction number (R0) and
it has been derived that for R0 < 1 the disease-free equilibrium point Edf is locally asymptotically
stable otherwise unstable. It is also observed that swine flu will be perished from the community if the
basic reproduction number is less than unity. We have also noticed that for R0 > 1 unique endemic
equilibrium point Ee exists and is stable otherwise unstable. Awareness about the status of swine
flu and treatment policies may reduce the risk of infection in the individuals. From the sensitivity
analysis it is cleared that the recruitment rate, transmission rate, conversion rate of exposed and
development rate of full blown infected of treated class I i.e. Π, λ, ξ1 and k are directly proportional
to R0 whereas fraction of population joining treatment I, recovery rate, conversion rate of infected and
mortality rates i.e. p1, υ1 and ξ2 are inversely proportional to R0, see Table 3. Optimal control values
for fraction of exposed population joining treatment I and infected populations joining treatment II or
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Figure 3: Time (t) versus all species for R0 = 3.10935 > 1

Figure 4: Time (t) versus infected population I (t)for various values of (λ)
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Figure 5: Time (t) versus infected population I (t)for various values of (ξ1)

Figure 6: Time (t) versus infected population I (t)for various values of (ξ2)
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Figure 7: Time (t) versus infected population I (t) for controls (p1)and (ξ2)

recovery in the outlined swine flu model has also been argued. We have used Pontryagin’s Minimum
Principle method, to minimize the number of infected human population and cost of the controlling
efforts. Thus, we have studied the impact of the controls including their values zero and one on
infected population graphically, shown in Figure 7. It is seen that optimal value of ξ2 is the most
effective strategies for swine flu control. Finally, we find that the treatment policies are essential for
the reduction of swine flu infection in the outlined model.
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