
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,927 |
تعداد دریافت فایل اصل مقاله | 7,656,387 |
Some Mean Square Integral Inequalities For Preinvexity Involving The Beta Function | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، Special Issue، اسفند 2021، صفحه 617-632 اصل مقاله (160.43 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.24241.2701 | ||
نویسندگان | ||
Miguel Vivas Cortez* 1؛ Muhammad Shoaib Saleema2؛ Sana Sajid2 | ||
1Faculty of Exact and Natural Sciences, School of Physical Sciences and Mathematics, Pontifical Catholic University of Ecuador, Av. 12 de octubre 1076 y Roca, Apartado Postal 17-01-2184, Sede Quito, Ecuador | ||
2Department of Mathematics, University of Okara | ||
تاریخ دریافت: 11 مرداد 1400، تاریخ بازنگری: 30 مرداد 1400، تاریخ پذیرش: 08 شهریور 1400 | ||
چکیده | ||
In the present research, we will deal with mean square integral inequalities for preinvex stochastic process and η-convex stochastic process in the setting of beta function. Further, we will present some novel results for improved H¨older integral inequality. The results given in this present paper are generalizations of already existing results in the literature. | ||
کلیدواژهها | ||
Mean square integral inequalities؛ Convex stochastic process؛ η-convex stochastic process؛ Preinvex stochastic process؛ Beta function | ||
مراجع | ||
[1] H. Agahi, Refinements of mean-square stochastic integral inequalities on convex stochastic processes, Aequat. Math. 90 (2016) 765-772. [2] H. Agahi and M. Yadollahzadeh, On stochastic pseudo-integrals with applications, Stat. Probab. Lett. 124 (2017) 41-48. [3] H. G. Akdemir, N. O. Bekar and I. Iscan, On preinvexity for stochastic processes. Istatistik Journal of The Turkish Statistical Association 7(1) (2014) 15-22 . [4] A. Bain and D. Crisan, Fundamentals of stochastic filtering, Springer-Verlag, New York , 2009. [5] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, 2nd edn. World Scientific, Singapore, 2016. [6] Z. Brzezniak and T. Zastawniak, Basic stochastic processes: a course through exercises, Springer Science and Business Media, London, 2000.[7] P. Devolder, J. Janssen and R. Manca, Basic stochastic processes. Mathematics and Statistics Series, ISTE, John Wiley and Sons, Inc. London, 2015. [8] J. L. Doob, Stochastic processes depending on a continuous parameter, Transactions of the American Mathematical Society 42 (1937) 107-140. [9] H. Fu, M. S. Saleem, W. Nazeer, M. Ghafoor and P. Li, On Hermite-Hadamard type inequalities for n-polynomial convex stochastic processes, AIMS Mathematics 6(6) (2021) 6322-6339. [10] J. E. Hernández Hernández and J. F. Gómez, J. F., Some mean square integral inequalities involving the beta function and generalized convex stochastic processes, TWMS J. App. and Eng. Math. , to appear in 2022. [11] H. P. Hong, Application of the stochastic process to pitting corrosion, Corrosion 55 (1999) 10-16. [12] K. Itô, On stochastic processes (I). In Japanese Journal of Mathematics: Transactions and Abstracts 18 (1941) 261-301. [13] C. Y. Jung, M. S. Saleem, S. Bilal, W. Nazeer and M. Ghafoor, Some properties of η-convex stochastic processes, AIMS Mathematics 6(1) (2021) 726-736 . [14] D. Kotrys, Hermite–Hadamard inequality for convex stochastic processes, Aequat. Math. 83 (2012) 143-151. [15] D. Kotrys, Remarks on strongly convex stochastic processes, Aequat. Math. 86 (2013) 91-98. [16] D. Kotrys , Remarks on Jensen, Hermite-Hadamard and Fejer inequalities for strongly convex stochastic processes, Math. Aeterna 5 (2015) 95-104. [17] W. Liu, W. Wen and J. Park, Hermite-Hadamrd type inequalities for MT-convex functions via classical integraland fractional integrals, J. Nonlinear Sci. Appl. 9 (3) (2016) 766-777. [18] T. Mikosch, Elementary stochastic calculus with finance in view, Advanced Series on Statistical Science and Applied Probability, World Scientific Publishing Co., Inc., 2010. [19] K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, Willey, New York, 1993. [20] B. Nagy, On a generalization of the Cauchy equation, Aequat. Math. 10 (1974) 165-171. [21] K. Nikodem, On quadratic stochastic processes, Aequat. Math. 21 (1980) 192-199. [22] K. Nikodem, On convex stochastic processes, Aequat. Math. 20 (1980) 184-197 . [23] B. Ross, Fractional Calculus. Mathematics Magazine 50(3) (1977) 115-122. [24] E. Set, M. Tomar and S. Maden, Hermite-Hadamard type inequalities for s-convex stochastic processes in the second sense. Turkish Journal of analysis and number theory 2(6) (2014) 202-207 . [25] M. Shaked and J. Shantikumar, Stochastic convexity and its applications, Arizona Univ., Tucson, 1985. [26] J. J. Shynk, Probability, random variables, and random processes: theory and signal processing applications, John Wiley and Sons, Inc., New York, 2013 . [27] A. Skowronski, On some properties of J-convex stochastic processes, Aequat. Math . 44 (1992) 249-258 . [28] A. Skowronski, On wright-convex stochastic processes, Ann. Math. Sil. 9 (1995) 29-32. [29] A. Skowronski, On some properties of J-convex stochastic processes, Aequ. Math. 44 (1992) 249-258. [30] K. Sobczyk, Stochastic differential equations with applications to physics and engineering. Kluwer, Dordrecht, 1991. [31] T. Tunç, H. Baduk, F. Usta and M. Z. Sarikaya, On new generalized fractional integral operators and related inequalities, Konuralp Journal of Mathematics 8 (2) (2020) 268-278. | ||
آمار تعداد مشاهده مقاله: 44,082 تعداد دریافت فایل اصل مقاله: 443 |