
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,981 |
تعداد دریافت فایل اصل مقاله | 7,656,414 |
Fabrication of multi-layer antireflection coating consisting of ZnS and MgF2 | ||
Progress in Physics of Applied Materials | ||
مقاله 2، دوره 1، شماره 1، اسفند 2021، صفحه 7-13 اصل مقاله (1.44 M) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22075/ppam.2021.23357.1005 | ||
نویسندگان | ||
Reza Zarei Moghadam* 1؛ Amir Hosein Omrany1؛ Mahdiyeh Taherkhani1؛ Fatemeh Shokrian2 | ||
1Thin Film Lab, Faculty of Physics, University of Semnan, Semnan, Islamic Republic of Iran | ||
2Education of Semnan province, Semnan, Iran | ||
تاریخ دریافت: 17 اردیبهشت 1400، تاریخ بازنگری: 15 خرداد 1400، تاریخ پذیرش: 22 خرداد 1400 | ||
چکیده | ||
In this study, Magnesium Fluoride (MgF2) and Zinc Sulfide (ZnS) multi-layer antireflection coatings were prepared using Glancing Angle Deposition (GLAD) technique. MgF2 and ZnS materials have been coated in a Hind - Hivac coating unit (model 15F) on glass substrates. Antireflection coatings were prepared at different oblique incident flux angles (α = 40°, 65°,70°, 80°) by the thermal evaporation method. The Grazing incidence X-ray diffraction (GIXRD)analysis indicated that the thin films coated at different incident angles were crystallized in a single phase with an orthorhombic structure. The XRD results showed improvement of the film crystallinity upon grain size increment. Optical properties were investigated throughout the measurement of transmission spectra and refractive index and extinction in the visible region. The refractive index of films decreased from 2.8 to 1.66 as the flux angle increased from 40° to 80°. The extinction coefficient of films increased from 0.03849 to 0.05997 as the flux angle increased from 40° to 80°. | ||
کلیدواژهها | ||
Antireflection coating؛ GLAD technique؛ XRD analysis؛ Refractive index | ||
مراجع | ||
[1] R. Zarei Moghadam, H. Ahmadvand, M. Jannesari, Design and fabrication of multi-layers infrared antireflection coating consisting of ZnS and Ge on ZnS substrate, Infrared Phys. Technol. 75 (2016) 18-21. [2] B. Gandham, R. Hill, H.A. Macleod, M. Bowden, Antireflection coatings on solar cells, Sol. Cells. 1 (1979) 3–22. [3] A. Uzum, M. Kuriyama, H. Kanda, Y. Kimura, Sprayed and spin-coated multilayer antireflection coating films for nonvacuum processed crystalline silicon solar cells, Int. J. Photoenergy. 2 (2017) 1-5. [4] J.W. Leem, D.H. Jun, J. Heo, W.K. Park, J.H. Park, Singlematerial zinc sulfide bilayer antireflection coatings for GaAs solar cells, J. Opt. Express 21 (2013) 821–828. [6] N. Kaiser, Review of the fundamentals of thin-film growth, Appl. Opt. 41 (2002) 3053–3060. [7] L. Abelmann, C. Lodder, Oblique evaporation and surface diffusion, Thin Solid Films. 305 (1997) 1–21. [8] R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon, J. Phys. E. 16 (1983) 1214. [9] M. H. Maleki, H. R. Dizaji, A. Ghorbani, Improving AntiReflection MgF2 Thin Films by Laser Shock Peening and Investigation of its Laser Damage Threshold, J. Appl. Spectrosc. 82 (2015) 58-62. [10] M. Gholizadeh, R. Zarei Moghadam, A.A. Mohammadi, M.H. Ehsani, H. Rezagholipour Dizaji, Design and fabrication of MgF2 single-layer antireflection coating by glancing angle deposition, Mater. Res. Innov. 24 (2020) 442-446. [11] M.H. Ehsani, R.Z. Moghadam, H.R. Dizaji, P. Kameli, Surface modification of ZnS films by applying an external magnetic field in vacuum chamber, Mater Res Express. 4 (2017) 096408. [12] N. Tajik, M.H. Ehsani, R.Z. Moghadam, H.R. Dizaji, Effect of GLAD technique on optical properties of ZnS multilayer antireflection coatings, Mater Res Bull. 100 (2018) 265-274. [13] B. Liu, R. Luo, Q. Liang, Y. Zheng, B. Li, J. Zhang, W. Li, L. Wu, L. Feng, Preparation of novel CdS/ZnS composite window layer for CdTe thin film solar cell, J. Mater. Sci. Mater. Electron. 26 (2015) 9985. [14] X. Wang, H. Huang, B. Liang, Z. Liu, D. Chen, G. Shen, ZnS nanostructures: synthesis, properties, and applications, Crit. Rev. Solid State Mater. Sci. 38 (2013) 57–90. [15] S. Ummartyotin, Y. Infahsaeng, a comprehensive review on ZnS: from synthesis to an approach on solar cell, Renew. Sust. Energ. Rev. 55 (2016) 17- 24. [16] D. Hass, Y. Marciano and H. Wadley, Physical vapor deposition on cylindrical substrates, Surf. Coat. Technol. 185 (2004) 283-291. [17] M. Panjan, Influence of substrate rotation and target arrangement on the periodicity and uniformity of layered coatings, Surf. Coat. Technol. 235 (2013) 32- 44. [18] G. Oh, E. K. Kim, Analysis of ZnS and MgF2 layered nanostructures grown by glancing angle deposition for optical design, Nanotechnology 31 (2020) 245301. [19] S. Essig, C. Allebé, T. Remo, J.F. Geisz, M.A. Steiner, K. Horowitz, L. Barraud, J.S. Ward, M. Schnabel, A. Descoeudres, D.L. Young, Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions, Nature Energy 2 (2017) 1-9. [20] S.L. Diedenhofen, G. Grzela, E. Haverkamp, G. Bauhuis, J. Schermer, J.G. Rivas, Broadband and omnidirectional anti-reflection layer for III/V multi-junction solar cells, Sol. Energ. Mater. Sol. C. 101 (2012) 308–14. [21] A.R. Chowdhuri, D.U. Jin, C.G. Takoudis, SiO2/Si (100) interface characterization using infrared spectroscopy: estimation of substoichiometry and strain, Thin Solid Films 457 (2004) 402-405. [22] W. Zhang, K. Hu, J. Tu, A. Aierken, D. Xu, G. Song, X. Sun, L. Li, K. Chen, D. Zhang, and Y. Zhuang, Broadband graded refractive index TiO2/Al2O3/MgF2 multilayer antireflection coating for high efficiency multijunction solar cell, Sol Energy 217 (2021) 271-279. [23] D. H. Hwang, J. H. Ahn, K. N. Hui, K. S. Hui, Y. G. Son, Structural and optical properties of ZnS thin films deposited by RF magnetron sputtering, Nanoscale Res. Lett. 7 (2012) 26–32. [24] T. Liu, Y. Li, H. Ke, Y. Qian, Sh. Duo, Y. Hong, X. Sun, Chemical bath co–deposited ZnS film prepared from different zinc salts: ZnSO4–Zn(CH3COO)2, Zn(NO3)2– Zn(CH3COO)2, or ZnSO4–Zn(NO3)2, J. Mater. Sci. Tech. 32 (2015) 207–217. [25] O. Ozakın, B. Guzeldir, M. Ali Yıldırım, M. Saglam, A. Ates, Influence of film thickness on structural and optical properties of ZnS thin films obtained by SILAR method and analysis of Zn/ZnS/n-GaAs/In sandwich structure, Phys. Stat. Solidi A. 209 (2012) 687–693. [26] Ş. Korkmaz, S. Elmas, N. Ekem, S. Pat, M. Z. Balbağ Deposition of MgF2 thin films for antireflection coating by using thermionic vacuum arc (TVA), Opt. Commun. 285 (2012) 2373-2376. [27] P. O. Offor, B. A. Okorie, F. I. Ezema, V. S. Aigbodion, C. C. DanielMkpume, A.D.Omaha, Synthesis and characterization of nanocrystalline zinc sulphide thin films by chemical spray pyrolysis, J. Alloy. Compd. 650 (2015) 381-385. [28] P. P. Hankare, P. A. Chate, D. J. Sathe, A. A. Patil, Structure, Surface morphological and opto-electronic properties of zinc sulphide thin films deposited by dip method, Appl. Surf. Sci. 256 (2009) 81-84. [29] H. M. M. N. Hennayaka, H. S. Lee, Structural and optical properties of ZnS thin film grown by pulsed electrodeposition, Thin Solid Films. 548 (2013) 86-90. [30] C. Guo, M. Kong, D. Lin, C. Liu, and B. Li, Microstructurerelated properties of magnesium fluoride films at 193nm by oblique-angle deposition, Opt. Express. 21 (2013) 960-967. [31] M.R. Sazideh, M.H. Ehsani, H.R. Dizaji, R.Z. Moghadam, Substrate-induced changes of structural and optical properties of SnS films prepared by glancing angle deposition, Thin Solid Films. 663 (2018) 85-92. [32] M.R. Sazideh, H.R. Dizaji, M.H. Ehsani, R.Z. Moghadam, Modification of the morphology and optical properties of SnS films using glancing angle deposition technique, Appl. Surf. Sci. 405 (2017) 514-520. [33] F.C. Akkari, R. Brini, M. Kanzari, B. Rezig, High absorbing CuInS2 thin films growing by oblique angle incidence deposition in presence of thermal gradient, J. Mater. Sci. 40 (2005) 5751–5755. [34] Y. Zhong, Y.C. Shin, C.M. Kim, B.G. Lee, E.H. Kim, Y.J. Park, K.M.A. Sobahan, C.K. Hwangbo, Y.P. Lee, T.G. Kim, Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition, J. Mater. Res. 23 (2008) 2500–2505. [35] S. Bruynooghe, D. Tonova, M. Sundermann, T. Koch, U. Schulz, Antireflection coatings combining interference multilayers and a nanoporous MgF2 top layer prepared by glancing angle deposition, Surf. Coat. Technol. 267 (2015) 40-44. [36] S.Z. Rahchamani, H.R. Dizaji, M.H. Ehsani, Study of structural and optical properties of ZnS zigzag nanostructured thin films, Appl. Surf. Sci. 356 (2015) 1096-1104. [37] M. H. Ehsani, N. Tajik, M. R. Sazideh, H. Rezagholipour Dizaji, R. Zarei Moghadam. Tuning filtering properties of SnS films deposited on Glass/ITO substrate using glancing angle deposition technique, Mater. Res. Express. 6 (2019) 096415. [38] J.I. Pankove, Optical Processes in Semicondutors Courier Corporation, New York: Dover publication institute. (2012). [39] S.S. Hegde, A.G. Kunjomana, M. Prashantha, C. Kumar, K. Ramesh, Photovoltaic structures using thermally evaporated SnS and CdS thin films, Thin Solid Films. 545 (2013) 543-547. [41] S. Bhaskar, S.B. Majumder, M. Jain, P.S. Dobal, R.S. Katiyar, Studies on the structural, microstructural and optical properties of sol–gel derived lead lanthanum titanate thin films. Mater. Sci. Eng. B. 87 (2001) 178-190. [42] K. Punitha R. Sivakumar C. Sanjeeviraja V. Ganesan, Influence of post-deposition heat treatment on optical properties derived from UV–vis of cadmium telluride (CdTe) thin films deposited on amorphous substrate, Appl. Surf. Sci. 344 (2015) 89-100. | ||
آمار تعداد مشاهده مقاله: 824 تعداد دریافت فایل اصل مقاله: 484 |