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Abstract

In this paper, a one-dimensional modified Burgers’ equation is considered for different Reynolds
numbers. For very high Reynolds numbers, the solution possesses a multiscale character in some part
of the independent domain and thus can be classified as a singularly perturbed problem. A numerical
scheme that uses a fitted operator finite difference scheme to solve the spatial derivatives and the
implicit Euler scheme for the time derivative is proposed to solve the modified Burgers’ equation via
Rothe’s method. It is important to note that the proposed fitted operator finite difference scheme
is based on the midpoint upwind scheme. The stability of the scheme is established and the error
associated with each discretisation is estimated. Numerical simulations are carried out to validate
the theoretical findings.
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1. Introduction

A one-dimensional modified Burgers’ equation

Lεu(x, t) ≡ ut(x, t)− εuxx(x, t) + u2ux(x, t) = 0, (x, t) ∈ Q, (1.1)

subject to the initial and the boundary conditions

u(x, 0) = φ(x), x ∈ Ω, u(0, t) = 0, u(1, t) = 0, t ∈ (0, T ], (1.2)
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is considered in this study. Equation (1.1) comprises of an unsteady term ut, a non-linear convection
term u2ux(x, t), a viscous dissipation uxx(x, t) and a perturbation parameter ε ∈ (0, 1], which is the
dissipation coefficient and the inverse of an effective Reynolds number. Thus for large Reynolds
numbers, the solution of Problem (1.1)–(1.2) possesses steep gradients. In this instance, classical
numerical method can not serve as good approximates to the exact solution especially in the parts
of the domain where the steep gradients occur [9, 15]. Burgers and modified Burgers’ equations have
been studied by many researchers in different fields, see for example the articles [1, 2, 3, 5, 6, 11, 16, 17]
and the references therein.

From singular perturbation point of view, Kadalbajoo and Awasthi [7] designed a numerical
scheme which was of almost first order accuracy in space and first order in time to solve Problem
(1.1)–(1.2). Their scheme employed the upwind finite difference scheme on a piecewise uniform
Shishkin mesh to solve the spatial derivatives and the backward Euler finite difference scheme was
used for the time derivatives.

Gupta and Kadalbajoo [8] constructed a numerical scheme to solve Problem (1.1)–(1.2) for dif-
ferent Reynolds numbers. Their scheme was a combination of the implicit Euler and a hybrid finite
difference scheme on a piecewise uniform Shishkin mesh for the time and spatial discretisations,
respectively. These authors established the asymptotic bounds of the solution by using singular per-
turbation analysis and analysed their scheme for convergence. Their analysis led to a first and second
order accuracies in time and space, respectively, except for a logarithmic factor in space. Notice that
their hybrid scheme employed the central difference scheme in layer region and the midpoint scheme
in the non-layer region.

Liu et. al [12] considered a first order non-linear singularly perturbed problem with integral
boundary condition. The proposed scheme uses the backward Euler on an equidistributing monitor
function based on arc-length. They analysed their scheme for convergence and obtained a first order
accuracy independent of the perturbation parameter in the maximum norm.

Ravi Kanth and Murali Mohan Kumar [14] considered a stationary non-linear reaction diffusion
problem with delay. The authors first converted the non-linear problems into sequence of linear
problems and then designed an exponentially fitted spline method to solve it. They analysed their
method for convergence and obtained an almost second order accuracy.

Erdogan and Sakar [4] presented a quasilinearization technique to solve a singularly perturbed
delay differential equation. Their scheme employed the implicit finite difference scheme on piecewise-
uniform S-meshes. Their analysis resulted in a first order uniformly convergent scheme with respect
to the perturbation parameter.

In literature, the work done on the general numerical solution of Burgers equation and modified
Burgers equation is very huge. However, the same cannot be said for the modified Burgers equation in
the context of singular perturbation. Thus to fill this gap, we propose a fitted operator finite difference
scheme to solve Problem (1.1)–(1.2). The ideas of the non-standard finite difference scheme [10]
are employed to design the scheme. Thus the denominator function in the classical finite difference
scheme is replaced with a new positive function which reflects the analytical properties of the problem
under study.

Notice that the fitted operator finite difference scheme is based on the midpoint upwind scheme.
Using the Rothe’s method or the transversal method of lines procedure, the backward Euler finite
difference scheme is employed along with this fitted operator finite difference scheme to obtain the
numerical solution.

The rest of the paper is organised as follows: In Section 2, we integrate the non-linear problem in
time and then analyse it for convergence. The resulting systems of semi-discrete non-linear boundary
value problems are linearised and analysed for convergence in Section 3. In Section 4, a priori estimate
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of the solution of the semi-discrete boundary value problems and its derivatives are presented. The
fitted operator finite difference scheme is designed in Section 5, whilst its stability is established in
Section 6. The convergence analysis of the scheme is presented in Section 7. Numerical results are
presented in Section 8 whilst a summary of the main result and future direction of this research is
presented in the last section.

2. Time Discretisation

Below we transform the Problem (1.1)–(1.2) into semi-discrete boundary value problems via the
discretisation of the time variable. At this stage the spatial domain is held continuous. Using the
backward Euler finite difference scheme on a uniform mesh, we integrate Problem (1.1)–(1.2) in time
to obtain the semi-discrete problem

L∗∗
ε uk+1(x) ≡ uk+1 − uk

∆t
− εuk+1

xx (x) + (uk+1)2(x)uk+1
x (x) + bk+1(x)uk+1(x)

= 0, k = 0, 1, 2, ...,m, (2.1)

along with the initial and boundary conditions,

u0 = u(x, 0) = φ(x), uk+1(0) = 0, uk+1(1) = 0. (2.2)

Here m is the number of sub-intervals. The scheme (2.1)–(2.2) is rewritten as

Lm
ε u

k+1(x) ≡ −εuk+1
xx (x) + (uk+1)2uk+1

x (x) + dk+1(x)uk+1(x) =
uk(x)

∆t
, (2.3)

u(x, 0) = φ(x), uk+1(0) = 0, uk+1(1) = 0, (2.4)

where
dk+1(x) = 1/∆t+ bk+1(x), dk+1(x) ≥ γ,

or

L∗
εu

k+1(x) ≡ ∆t(−εuk+1
xx (x) + (uk+1)2uk+1

x (x) + dk+1(x)uk+1(x))=uk(x), (2.5)

u(x, 0) = φ(x), uk+1(0) = 0, uk+1(1) = 0, (2.6)

where
dk+1(x) = 1/∆t+ bk+1(x), dk+1 ≥ γ.

The operator L∗
ε defined by the scheme (2.5)–(2.6) satisfies a discrete maximum principle which

ensures the stability of the temporal semi-discretisation process.

Lemma 2.1. The local truncation error of the temporal semi-discretisation process satisfies

||ek+1||∞ ≤ C∗(∆t)2. (2.7)

Proof . The local truncation error is defined as

ek+1 = uk+1(x)− ūk+1(x), (2.8)

where uk+1(x) is the exact solution of (2.5)–(2.6) and ūk+1(x) is the computed solution of

L∗
εū

k+1(x) ≡ ∆t(−εūk+1
xx (x)+(ūk+1)2ūk+1

x (x) + dk+1(x)ūk+1(x)) = ūk(x), (2.9)

ū(x, 0) = φ(x), ūk+1(0) = 0, ūk+1(1) = 0. (2.10)
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A truncated Taylor series expansion of u(x, tk) takes the form

uk(x)= uk+1(x)−∆tuk+1
t (x) +

∆t2

2
uk+1
tt (x) +O(∆t)3. (2.11)

From Equation (2.11), we have

uk+1(x)− uk(x)

∆t
= uk+1

t (x) +O(∆t),

L∗
εu

k+1(x) ≡ ∆t
(
−εuk+1

xx (x) + (uk+1)2uk+1
x (x) + dk+1(x)uk+1(x)

)
+O(∆t)2. (2.12)

Using Equations (2.9)–(2.10) and (2.12), the local truncation error satisfies

L∗
εe

k+1 ≡ −εek+1
xx (x) + (ek+1)2ek+1

x (x) + dk+1(x)ek+1 = O((∆t)2), (2.13)

ek+1(0) = ek+1(1) = 0. (2.14)

Since the operator is stable, the result follows. □
The global error of the time-discretisation satisfies the result below.

Lemma 2.2. The global error Em satisfies

||Em||∞ ≤ C(∆t). (2.15)

Proof .

||Em||∞ ≤

∣∣∣∣∣
m∑
k=1

ek+1(x)

∣∣∣∣∣ ≤ C∗m(∆t)2 = C∆t. (2.16)

□

3. Quasilinearisation

In this section, the semi-discrete non-linear equation (2.1) is transformed into a sequence of linear
convection diffusion problems by the quasilinearisation technique in [4]. The linearisation of the non-
linear term (uk+1(x))2 in Equation (2.1) is done by choosing uk+1

0 (x) to be the initial approximation
of the function uk+1(x) in the (uk+1(x))2. Now we expand (uk+1(x))2 around uk+1

0 (x) in Taylor series
to obtain

[uk+1
1 (x)]2 = [uk+1

0 (x)]2 + 2[uk+1
0 (x)][uk+1

1 (x)− uk+1
0 (x)] + ... (3.1)

Using j = 0, 1, 2, ..., as the iteration index, Equation (3.1) can be written as

[uk+1
j+1(x)]

2 = [uk+1
j (x)]2 + 2[uk+1

j (x)][uk+1
j+1(x)− uk+1

j (x)] + ... (3.2)

Truncating Equation (3.2) and utilizing it in (2.3) yields

−ε
∂2

∂x2
uk+1
j+1(x) +

(
uk+1
j (x)]2 + 2[uk+1

j (x)][uk+1
j+1(x)− uk+1

j (x)
) ∂

∂x
uk+1
j+1(x) + dk+1(x)uk+1

j+1(x) =
uk+1
j+1

∆t
.

Further simplification results in

−ε
∂2

∂x2
uk+1
j+1(x) +

(
uk+1
j (x)

)2 ∂

∂x
uk+1
j+1(x) +

(
2uk+1

j (x)
∂

∂x
uk+1
j+1(x) + dk+1(x)

)
uk+1
j+1

=
uk
j+1

∆t
+ 2

(
uk+1
j

)2 ∂

∂x
uk+1
j+1(x), x ∈ Ω, k ≥ 0, j = 0, 1, ... (3.3)
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along with the initial and boundary conditions

u0
j+1(x) = φ(x), uk+1

j+1(0) = 0, uk+1
j+1(1) = 0. (3.4)

Rescaling (3.3) and using Green’s function, this equation is transformed into the integral equation

ε
(
uk+1
j+1 − uk+1

j

)
(x) =

∫ 1

0

G(x, s)

[
G(uk+1

j )−G(uk+1
j−1)− (uk+1

j − uk+1
j−1)

∂G

∂uk+1
j−1

uk+1
j−1

+(uk+1
j+1 − uk+1

j )
∂G

∂uk+1
j

uk+1
j

]
ds. (3.5)

Here G(x, s) is the Greens function of the form

G(x, s) =
{

(x− 1)s, 0 ≤ s ≤ x ≤ 1,
x(s− 1), 0 ≤ x ≤ s ≤ 1,

and satisfies |G(x, s)| ≤ 1
4
, ∀ x, s ∈ [0, 1] and G(uk) =

∂uk

∂x2
(x), x ∈ Ω, k ≥ 0.

From the mean value theorem, we have

G(uk+1
j )−G(uk+1

j−1) =
(
uk+1
j − uk+1

j−1

) ∂G

∂uk+1
uk+1
j−1 +

(
uk+1
j − uk+1

j−1

)2
2

∂2G(θ)

∂(uk+1)2
, (3.6)

where uk+1
j−1 ≤ θ ≤ uk+1

j . Now substituting (3.6) into (3.5) yields

ε
(
uk+1
j+1 − uk+1

j

)
(x) =

∫ 1

0

G(x, s)

[
(uk+1

j+1 − uk+1
j )

∂G

∂uk+1
j

uk+1
j +

(
uk+1
j − uk+1

j−1

)2
2

∂2G(θ)

∂(uk+1)2

]
ds. (3.7)

Let

max
|u|≤1

∣∣∣∣ ∂G

∂uk+1
uk+1

∣∣∣∣ = s1, max
|u|≤1

∣∣∣∣ ∂2G

∂(uk+1)2
uk+1

∣∣∣∣ = s2. (3.8)

Equation (3.7) yields∣∣∣∣(uk+1
j+1 − uk+1

j )
∣∣∣∣ ≤ s2

(8ε− 2s1)

∣∣∣∣uk+1
j − uk+1

j−1

∣∣∣∣2 .
Therefore the sequence of (uk+1

j ) converges quadratically.
In the next section, we estimate the solution of the semi-discrete problem and its derivatives.

4. A Priori Estimate of the Linear Semi-discrete Problem

In this section bounds of the solution of the semi-discrete problem and it derivatives are presented.

Lemma 4.1. Maximum principle
Suppose Ψ̃k+1(x) is a smooth function satisfying Ψ̃(k+1)(x) ≥ 0, ∀ x ∈ ∂Ω. Then Lm,l

ε Ψ̃(k+1)x ≥
0, ∀ x ∈ Ω, implies that Ψ̃(k+1)x ≥ 0, ∀ x ∈ Q̄.

Proof . The proof of this Lemma is similar to Lemma 3.1 of [7]. □
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Lemma 4.2. Stability estimate
Let ũk+1(x) be the solution of the linear problem (3.3)–(3.4). Then we have

|ũk+1(x)| ≤ c−1
0 ||f ||, k = 0, 1, 2, ...m. (4.1)

Proof . The proof follows the same lines as in the proof of Lemma 2.2 of [8]. □

Lemma 4.3. |ũk+1
x (x)| ≤ C(1 + ε−1 exp(−α(1− x)/ε), x ∈ Ω̄.

Proof . Equation (3.3)–(3.4) is written as

−εũk+1
xx + ã(x)ũk+1

x = h1(x), (4.2)

where h1(x) = f̃(x)− c̃(x)ũk+1(x) and for notational simplicity we let uk+1
j+1(x) = ũk+1(x). Using the

integration factor techniques yields

ũk+1
x (x) = ũk+1

x (1) exp(−ε−1(A(1)− A(x))) + z1(x), (4.3)

where z1(x) is given by

z1(x) = ε−1

∫ 1

x

h1(γ) exp(−ε−1A(γ)− A(x))dγ.

To derive the bound of uk+1
x (1) in (4.3) we integrate (4.3) from x to 1, to obtain

ũk+1(1)− ũk+1(x) = ũk+1
x (1)

∫ 1

x

exp(−ε−1(A(1)− A(s)))ds+

∫ 1

x

z1(s)ds. (4.4)

Evaluating (4.4) at x = 0 yields

ũk+1
x (1) = −

∫ 1

0
z1(s)ds∫ 1

0
exp(−ε−1(A(1)− A(s)))ds

, (4.5)

since ũk+1(1) = ũk+1(0) = 0. Substituting (4.5) into Equation (4.3) and taking the norm yield

|ũk+1
x (x)| ≤ C

(
1 +

| exp(ε−1ᾱx)|
|
∫ 1

0
exp(ε−1αs)ds|

)
, (4.6)

where ᾱ is an upper bound of a(x) over [0, 1] and C is also an upper bound of |z1(x)| over Ω̄. Further
simplification of (4.6) results in

|ũk+1
x (x)| ≤ C

(
1 +

αε−1 exp(ᾱε−1x) exp(−ᾱε−1)

exp(αε−1)− 1

)
. (4.7)

Since 0 < ε << 1, we can find ε0 such that 0 < ε0 < ε and hence exp(ᾱε−1) < exp(ᾱε−1
0 ). Thus the

estimate (4.7) can be written as

|ũk+1
x (x)| ≤ C exp(ᾱε−1

0 )

(
1 +

αε−1 exp(−ᾱ(1− x)ε−1)

exp(αε−1)− 1

)
. (4.8)

Let f be a real valued function defined by f(α) = exp(αε−1) over the interval [0, 1]. Now expanding
f(α) in Maclaurin series yields α ≤ (exp(αε−1)− 1) and then the estimate (4.8) reduces to

|ũk+1
x (x)| ≤ C5(1 + ε−1 exp(−ᾱ(1− x)/ε), (4.9)

where C5 = C exp(ᾱε−1
0 ). □

The proof the higher order derivatives can be derived in a similar manner.
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Theorem 4.4. The solution of the sequence of linear problems (3.3)–(3.4) and its derivatives satisfy∣∣∣∣ ∂i

∂xi
ũk+1(x)

∣∣∣∣ ≤ C(1 + ε−i exp(−α(1− x)/ε)), x ∈ Ω,

where i is a non-negative integer which satisfies 0 ≤ i ≤ 6.

Proof . The proof of this Theorem for 0 ≤ i ≤ 1, follows from the lemma 4.3. The proof of the
higher order derivatives, that is 1 < i ≤ 6, can be obtained analogously. □

5. Spatial Discretization

In this section we construct a fitted operator finite difference scheme to solve the sequence of linear
problems. We adapt the notation Ui ≡ U(xi) as the numerical solution of ũk+1(xi). Notice that we
have dropped the superscript index for notational simplicity. Now we perform the discretisation as
follows:

Lm,l,n
ε Ui ≡ −ε

Ui+1 − 2Ui + Ui−1

ϕ2
i

+ âi
Ui − Ui−1

h
+ ĉiUi = f̂i, i = 1, 2,..., n− 1, (5.1)

U(0) = 0, U(1) = 0, (5.2)

where n is the number of sub-intervals. The denominator function, the coefficient functions and the
source term are given by

ϕ2
i (h, ε) =

εh

âi

(
exp

(
âih

ε

)
− 1

)
, âi =

ai + ai−1

2
, ĉi =

ci + ci−1

2
, f̂i =

fi + fi−1

2
,

respectively.
In matrix notation, the scheme (5.1)–(5.2) is a triadiagonal systems of linear equation

AU = F,

where A is a ((n − 1) × (n − 1)) square matrix whilst U and F are vectors of size (n − 1). Their
entries are given by

Aij = r−i , i = 2, 3, ..., n− 1, j = i− 1,

Aij = rci , i = 1, 2, ..., n− 1, j = i,

Aij = r+i , i = 1, 2, ..., n− 2, j = i+ 1,

Fi = f̂i, i = 1, 2, ..., n− 1,

with

r−i =
−ε

ϕ2
i

− âi
h
, rci =

2ε

ϕ2
i

+
âi
h

+ ĉi, r+i =
−ε

ϕ2
i

.

6. Stability of the Scheme

Here we establish the stability of the scheme (5.1)–(5.2).

Lemma 6.1. Discrete maximum principle
The operator Lm,l,n

ε defined by the scheme (5.1)–(5.2) satisfies a discrete maximum principle. That
is if ξ(xi) is a mesh function which satisfies ξ(xi) ≥ 0, ∀ xi ∈ ∂Ωn and Lm,l,n

ε ξ(xi) > 0, ∀ xi ∈ Ωn.
Then ξ(xi) ≥ 0, ∀ xi ∈ Ω̄n.
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Proof . Let s be an index such that ξs = min
xi∈Ω̄n

ξi, holds and assume ξs < 0. Clearly s ̸= 0, s ̸= n.

On the domain xi ∈ Ωn, we have

Lm,l,n
ε ξs ≡ − ε

ϕ2
i

(ξs+1 − 2ξs + ξs−1) +
âs
h
(ξs − ξs−1) + ĉsξs ≤ 0,

which is a contradiction. Therefore, ξi ≥ 0, ∀ (xi) ∈ Ω̄n. □
Next we show that the scheme (5.1)–(5.2) satisfies a uniform stability estimate below.

Lemma 6.2. Let ui be the solution of the discrete problem (5.1)–(5.2). Then it satisfies

|ui| ≤ c−1
0 max

xi∈Ω̄
|Lm,l,n

ε ui|.

Proof . Let z = c−1
0 maxxi∈Ω̄ |Lm,l,n

ε ui|, and define the mesh function Ψ±
i by Ψ±

i = z ± ui. At i = 0
and i = n, we have Ψ±

n = z ± ui ≥ 0. Further on the domain xi ∈ Ωn we obtain

Lm,l,n
ε Ψ±

i =ε

(
z+ui+1−2(z + ui) +z ±ui−1

ϕ2
i (h, ε)

)
+ âi

(
z ±ui− (z ±ui−1)

h

)
+ ĉi(z ± ui)

= ĉiz ± Lm,l,n
ε ui = ĉi

(
c−1
0 max

xi∈Ω̄
|Lm,l,n

ε ui|
)
± f̂i ≥ 0.

From Lemma 6.1, Ψ±
i ≥ 0, ∀ xi ∈ Ω̄n, and this completes the proof. □

7. Error Estimate

The error associated with the spatial discretisation is estimated as follows:

Lm,l,n
ε (u(xi)− U(xi)) = Lm,l,n

ε u(xi)− Lm,l,n
ε U(xi) = Lm,n

ε u(xi)− f̂i

= Lm,l,n
ε u(xi)− Lm,l

ε u(xi−1/2)

= −ε
(
δ2ui − u′′(xi−1/2)

)
+ âi

(
D−ui − u′(xi−1/2)

)
.

Using a truncated Taylor series expansion of the terms ui−1, ui and ϕ2
i and simplifying further gives

Lm,l,n
ε (u(xi)− U(xi))=

(
− ε

8.3!
uiv +

âi
8.3!

uiii

)
h2 +

(
− ε

32.5!
uvi +

âi
32.5!

uv

)
h4 + ...

From theorem 4.4 and noticing that the exponential terms vanish as ε → 0 (see [13] for proof), yields
the estimate

|Lm,l,n
ε (u(xi)− U(xi))| ≤ Ch2.

Application of Lemma 6.1 leads to the following result.

Lemma 7.1. The error associated with the fitted operator finite difference scheme based on the
midpoint satisfies

|ui − Ui| ≤ Ch2.

From the lemmas 2.2 and 7.1, we obtain the main results in this paper.

Theorem 7.2. (Uniform Convergence)
Let u be the exact solution of the continuous Problem (1.1)-(1.2) and U be the approximate solution.
The error associated with the proposed numerical scheme satisfies

max
0≤i≤n;0≤k≤m

|u(xi, tk)− U(xi, tk)| ≤ C(h2 +∆t).
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8. Numerical Results

In this section, a test problem is simulated numerically using the proposed scheme to demonstrate
the method in practice. Both the maximum pointwise error and the rate of convergence will be
computed. The exact solutions of the test problem is not available thus to compute the maximum
pointwise errors, we use the formula

Eε,n = max
0≤i≤n;0≤k≤m

|U(xi, t
k)− U2n(xi, t

k)|,

where U2n(xi, t
k) is a computed solution with 2n and m mesh points.

Also, the numerical rates of convergence are calculated using the formula

r = log2

(
Eε,n

Eε,2n

)
. (8.1)

To obtain the ε uniform maximum errors and the ε-uniform rates of convergence we use the formulae

E = max
0<ε≤1

Eε,n and R = max
0<ε≤1

r,

respectively.

Example 8.1. [8] Consider the problem

ut(x, t) − εuxx(x, t) + u2ux(x, t) = 0, (x, t) ∈ Q,

u(x, 0) = sin(πx), u(0, t) = u(1, t) = 0, t ∈ [0, T ].

9. Conclusion

A numerical scheme was proposed to solve a modified Burgers’ equation in this paper. The scheme
was combination of the implicit Euler finite difference scheme and a fitted operator finite difference
scheme. More specifically, the implicit Euler finite difference scheme was first used to discretise the
time variable. This resulted in a sequence of non-linear boundary value problems which was then
quasilinearized to sequence of linear problems. A fitted operator finite difference scheme based on
the midpoint upwind scheme was then designed to solve the boundary value problems. Convergence
analysis lead to a first order accuracy in time and second order in space. To confirm the theoretical
findings, numerical simulation were conducted and the results were in conformity with Theorem 7.2.

As future direction of this research, the scheme is being explored on non-linear problems with
delays and non-smooth data.
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Table 1: Maximum pointwise error and rate of convergence for Example 8.1.

ε m=n=32 64 128 256 512 1024
10−4 6.57E-03 1.73E-03 4.42E-04 1.12E-04 2.81E-05 7.04E-06

1.9262 1.9667 1.9842 1.9924 1.9962
10−6 6.57E-03 1.73E-03 4.42E-04 1.12E-04 2.81E-05 7.04E-06

1.9262 1.9667 1.9842 1.9923 1.9962
10−8 6.57E-03 1.73E-03 4.42E-04 1.12E-04 2.81E-05 7.04E-06

1.9262 1.9667 1.9842 1.9923 1.9962
...

...
...

...
...

...
10−10 6.57E-03 1.73E-03 4.42E-04 1.12E-04 2.81E-05 7.04E-06

1.9262 1.9667 1.9842 1.9923 1.9962
E 6.57E-03 1.73E-03 4.42E-04 1.12E-04 2.81E-05 7.04E-06
R 1.9262 1.9667 1.9842 1.9923 1.9962
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