Int. J. Nonlinear Anal. Appl. 12 (2021) No. 2, 2531-2537

ISSN: 2008-6822 (electronic)

http://dx.doi.org/10.22075/ijnaa.2021.5407

Weakly disk-cyclic mixing operators

Rana Abdulkareem^{a,*}, Zeana Zaki Jamil^b

^aDepartment of Mathematics, College of Education for Pure Science (Ibn Al Haitham), Baghdad University, Iraq.

(Communicated by Madjid Eshaghi Gordji)

Abstract

It is known that there are disk-cyclic operators that are not satisfy the disk-cyclic criterion. This work introduce weakly disk-cyclic operators, which are kind of disk-cyclic operators, and study its relation with disk-cyclic criterion with several results and properties.

Keywords: disk-cyclic, codisk-cyclic, mixing operators, weakly mixing operators.

1. Introduction

Let H be a separable infinite dimensional Hilbert space, and $T \in B(H)$ is said to be a hypercyclic operator if the orbit of T, orbit $(T,x)=\{T^nx:n\geq 0\}$, is dense in H [3]. The first sufficient condition for hypercyclic (the Hypercyclic Criterion) discovered independently by kitai [7] and Godefroy and Shapioro [4]. In 1974 Hilden and Wallen [5], generalized the definition of hypercyclic operators to supercyclic by cone orbit, Corbit $(T,x)=\{\alpha T^nx:\alpha\in C,n\geq 0\}$, is dense in H. Jamil in her Ph. D. thesis [6], partition the cone orbit into three parts, according to unit circle as: disk-cyclic operators when $|\alpha|\leq 1$, circle cyclic operators when $|\alpha|=1$ and codisk-cyclic operators when $|\alpha|\leq 1$. But Saavedra and Müller[9], proved that every circle cyclic operators are hypercyclic.

There are many authors studied disk-cyclic operators from multiple aspects like: Bamerni defined subspace disk-cyclic and multidisk-cyclic operators on Banach Spaces [2], and Yu-Xia Iiang and Ze-Hua Zhou introduced Disk-cyclic and Codisk-cyclic tuples of the adjoint weighted composition operators on Hilbert spaces [8].

A sufficient conditions for disk-cyclic operators were found by Jamil in 2002 [6], which is called disk-cyclic criterion. In 2016 Bamerni [1], provided another version to the disk-cyclic criterion, which is simpler than the main disk-cyclic criterion. Moreover, proved that (T satisfies disk-cyclic criterion

Received: March 2021 Accepted: May 2021

^bDepartment of Mathematics, College of Science, Baghdad University, Iraq.

^{*}Corresponding author

Email addresses: rorrana2013@gmail.com (Rana Abdulkareem), zina.z@sc.uobaghdad.edu.iq (Zeana Zaki Jamil)

if and only if $\bigoplus_{i=1}^k T$ is disk-cyclic for all $k \geq 2$) [1]. Now the national quotation.

Is $\bigoplus_{i=1}^n T \in DC(H)$ for all $n \geq 2$, disk-cyclic operator whenever T is?

This quotation motivates as to introduce a new concept of disk-cyclic phenomena which is called weakly D-mixing operator $T \in B(H)$ as:

$$T \oplus T : H \oplus H \to H \oplus H$$
 is disk-cyclic.

Weakly D-mixing operators deals with D- return sets and proper D- return sets which defined as respectively:

$$N^{D}(U,V) = N_{T}^{D}(U,V) = \{n \in N : T^{n}(\alpha U) \cap V \neq \varnothing : \alpha \in D\}$$
$$N^{D}(U_{1},V_{1}) \cap N^{D}(U_{2},V_{2}) \neq \varnothing.$$

Although the weakly D-mixing concept and Disk-cyclic Criterion are equivalent, there is still a need for studying it properties by using D- return sets.

This work discuss the necessary and sufficient conditions for an operator to be weakly D-mixing. We first tried to reduce the four open sets to three or two open sets only.

After that we studied the relation between weakly D-mixing and thick D- return sets.

Finally, we gave the sufficient conditions for an operator to be weakly D-mixing.

This work consists of two sections. In section two, we introduced four concepts (D-return set, proper D- return set and thick set) and its properties. In section three, we introduced the concept of weakly D-mixing and reduced the four open sets to three or two open sets only.

We remark $D := \alpha \in \mathbb{C}, \ 0 < |\alpha| < 1$, unless otherwise stated.

D-Return Set With Disk-cyclic Operators

The following theorem gives specific certain of disk-cyclic criterion use in this paper.

Definition 2.1 (Disk-cyclic Criterion). Suppose that $T \in B(H)$ is called satisfies disk-cyclic criterion. If there exists an increasing sequence of positive integers $\{n_k\}$ in N and $\{\alpha_{n_k}\}$ in D; For which there are a dense subsets Y, X in H and a sequence of mappings, $S_{n_k}: Y \to H$, as $k \to \infty$ such that:

(i)
$$\alpha_{n_k} T^{n_k} x \to 0$$
 for all $x \in X$

(ii) (a)
$$\frac{1}{\alpha_{n_k}} S_{n_k} y \to 0$$
 for all $y \in Y$
(b) $T^{n_k} S_{n_k} y \to y$ for all $y \in Y$.

(b)
$$T^{n_k}S_{n_k}^n y \to y$$
 for all $y \in Y$

Theorem 2.2. [1] Every operator satisfies disk-cyclic criterion is disk-cyclic operator.

Proposition 2.3. [6] Let $\{H_i\}_{i=1}^n$ be a family of separable, infinite dimensional Hilbert spaces, let $T_i \in B(H_i)$. If $\bigoplus_{i=1}^n T_i \in DC\left(\bigoplus_{i=1}^n H_i\right)$, then $T_i \in DC(H_i)$, for all $i=1,\ldots,n$.

Proposition 2.4. [1] $T \in B(H)$ satisfies the disk-cyclic criterion if and only if $\bigoplus_{i=1}^r T$ is disk-cyclic operator for all $r \geq 1$.

In flowing example we show that the disk-cyclic operators not necessary satisfy Disk-cyclic Criterion.

Example 2.5. [1] Let $T \in B(C)$, such that T(x) = 2x. Then T is a disk-cyclic operator but does not satisfy Disk-cyclic Criterion.

Proposition 2.4 and example 2.5 lead to the following main problems

Problem 2.6.

- (i) Dose every disk-cyclic operator satisfy the Disk-cyclic Criterion?
- (ii) Is $\bigoplus_{i=1}^n T \in DC(H)$ for all $n \geq 2$, disk-cyclic operator whenever T is?

Nareen in (2016) [1], proved the two above problem are equivalent.

The part two of problem 2.6 motivates as to introduce a new concept of disk-cyclic phenomena. Our starting point is the following definitions.

Definition 2.7. [2] A subsets S of N, is said to be a thick set if for every $M \in N$ there exists $t \in N$ such that $t, t + 1, ..., t + M \in S$.

Definition 2.8. Let $T \in B(H)$ and U, V be any non-empty open subsets of H, then the set

- $N^{D}\left(U,V\right)=N_{T}^{D}\left(U,V\right)=\left\{ n\in N:T^{n}\left(\alpha U\right)\cap V\neq\varnothing\right.$; $\alpha\in D\}$ is called a D-return set. While,
- $C^{D}(U,V) = C^{D}_{T}(U,V) = \{n \in N : T^{n}(\alpha U) \subset V : \alpha \in D\}$ is called a proper D- return set.

The following propositions gives some properties on D- return and proper D- return.

First we recall that if A and B are two subsets of N then the sum (difference) set $A \pm B$ is defined by $A \pm B = \{n - m : (n, m) \in A \times B, n \ge m\}$.

Proposition 2.9. Let $T \in B(H)$, and U, V, W be non-empty open subsets of H, then

- (i) $N^{D}(U,V) + C^{D}(V,W) \subset N^{D}(U,W)$
- $\left(ii\right) \ \ N^{D}\left(U,W\right) -C^{D}\left(U,V\right) \subset N^{D}\left(V,W\right) \label{eq:equation:equation:equation}$

Proof.

- (i) Let $k \in N^D(U, V) + C^D(V, W)$. Thus k = n + m; $n \in N^D(U, V)$, $m \in C^D(V, W)$. Then there exist $\alpha, \beta \in D$ such that $T^n(\alpha U) \cap V \neq \emptyset$ and $T^m(\beta V) \subset W$. Hence there is an open set X in U, such that $T^n(\alpha X) \subset V$ and $T^n(\beta \alpha X) \subset \beta V$, so $T^k(\beta \alpha X) = T^m(T^n(\beta \alpha X)) \subset T^m \beta V \subset W$. Hence $T^k(\beta \alpha X) \cap W \neq \emptyset$, so $T^k(\sigma U) \cap W \neq \emptyset$ where $\delta \in D$. Then $k \in N^D(U, W)$.
- (ii) Let $k \in N^D(U, W) C^D(U, V)$ i.e. k = n - m; $n \in N^D(U, V)$ and $m \in C^D(U, V)$. Then there exist $\alpha, \beta \in D$ such that $T^n(\alpha U) \cap W \neq \emptyset$ and $T^m(\beta U) \subset V$, so $\beta U \subset T^{-m}V$. Then $\alpha U \subset T^{-m}\left(\frac{\alpha}{\beta}V\right)$. Hence $T^n(\alpha U) \subset T^n\left(T^{-m}\frac{\alpha}{\beta}V\right) = T^k\left(\frac{\alpha}{\beta}V\right)$. Then $T^k\left(\frac{\alpha}{\beta}V\right) \cap W \neq \emptyset$. \emptyset . So $T^k(\alpha V) \cap \beta W \neq \emptyset$. Since $|\beta| < 1$, so $\beta W \subset W$, thus $T^k(\alpha V) \cap W \neq \emptyset$.

Example 2.10. Let $T \in B(H)$, U, V be any non-empty open subsets of H, then

$$N^{D}\left(U,V\right)\neq N^{D}\left(V,U\right)$$

In fact, T(x) = 2x is a disk-cyclic operator by Example 2.5. So if we take U = (1,3), V = (10,25). then for all $\alpha \in D$, $1 \notin N^D(U,V)$. While when $\alpha = \frac{1}{10}, 1 \in N^D(V,U)$.

3. Weakly Disk-cyclic Mixing Operators

This section, study some properties of a new concept on disk-cyclicity phenomena (weakly disk-mixing).

Definition 3.1. $T \in B(H)$, is called weakly disk-mixing if $T \oplus T : H \oplus H \to H \oplus H$ is disk-cyclic. We refer to it by weakly D-mixing.

Remark 3.2. The technique of the concept of weakly D-mixing is:

For any four non-empty open subsets U_1, U_2, V_1, V_2 of H, there exists some $n \in N$ and $\alpha_1, \alpha_2 \in D$ Such that $T^n(\alpha_1 U_1) \cap V_1 \neq \emptyset$ and $T^n(\alpha_2 U_2) \cap V_2 \neq \emptyset$. i.e,

$$N^{D}(U_1, V_1) \cap N^{D}(U_2, V_2) \neq \varnothing.$$

Although weakly D-mixing concept is another form of Disk-cyclic Criterion concept but we use the technique of the weakly D-mixing to prove a generalization of Example 2.5.

The technique of weakly D-mixing is an approximation property involving 4-tuples of open sets whereas the technique of disk-cyclic concept is an approximation property involving pairs of open sets. The following theorem shows that in the definition of weakly D-mixing one may reduce the four open sets to 3-tuples and even to 2-tuples.

Theorem 3.3. Let $T \in B(H)$. U, V, U_1, U_2 be non-empty open subsets of H. Then the following are equivalent:

- (i) For any U, V in H we have $N^{D}(U, V) \cap N^{D}(V, V) \neq \emptyset$.
- (ii) For any U_1 , U_2 , V in H we have $N^D(U_1, V) \cap N^D(U_2, V) \neq \emptyset$.
- (iii) T is weakly D-mixing.

Proof.

(i) \Longrightarrow (ii) Let U_1, U_2, V be non-empty open subsets of H. By (i) we can get $N^D(U, V) \neq \emptyset$, so T is a disk-cyclic operator. Hence there is some $n \in N$, $\alpha \in D$ such that $V_1 = U_2 \cap T^{-n}\left(\frac{1}{\alpha}V\right)$ is non-empty and open. By the hypothesis there is some $m \in N^D(U_1, V_1) \cap N^D(V_1, V_1)$. Thus there exist $\beta_1, \beta_2 \in D$ such that

 $T^{m}\left(\beta_{1}U_{1}\right)\cap V_{1}\neq\varnothing\ and\ T^{m}\left(\beta_{2}V_{1}\right)\cap V_{1}\neq\varnothing.$

Therefore there is $x \in V_1 \subset T^{-n}\left(\frac{1}{\alpha}V\right)$, such that $x \in T^m\left(\beta_1 U_1\right)$, then $T^{n+m}\left(\alpha\beta_1 U_1\right) \cap V \neq \emptyset$, Also, there is $y \in V_1$ such that $T^m\left(\beta_2 y\right) \in V_1$, thus $y \in U_2$ and $T^n\left(\alpha y\right) \in V$, which implies that $T^{m+n}(\alpha\beta_2 y) \in V$, then

$$T^{n+m}\left(\alpha\beta_2U_2\right)\cap V\neq\varnothing.$$

We have that

$$n+m \in N^{D}\left(U_{1},V\right) \cap N^{D}\left(,\ U_{2},V\right).$$

(ii) \Longrightarrow (iii) Let U_1, U_2, V_1, V_2 be non-empty open subsets of H. By (ii) we can get $N^D(U_1, V) \neq \varnothing$, so T is a disk-cyclic operator. Hence there is some $n \in N, \alpha \in D$ such that $V = V_1 \cap T^{-n}(\frac{1}{\alpha}V_2)$ is a non-empty open set. Moreover, since disk-cyclic operator have dense range, also $T^{-n}(U_2)$ is non-empty and open. By the hypothesis we find

$$m \in N^D(U_1, V) \cap N^D(T^{-n}(U_2), V)$$
.

Then there exist $\beta_1, \beta_2 \in D$ such that

$$T^{m}(\beta_{1}U_{1}) \cap V \neq \emptyset$$
 and $T^{m-n}(\beta_{2}U_{2}) \cap V \neq \emptyset$.

But $V \subset V_1$ then $m \in N^D(U_1, V_1)$.

On the other hand $V \subset T^{-n}\left(\frac{1}{\alpha}V_2\right)$, thus $T^{m-n}(\beta_2U_2) \cap T^{-n}\left(\frac{1}{\alpha}V_2\right) \neq \varnothing$. That is $T^m(\beta_2\alpha U) \cap V_2 \neq \varnothing$, which yields that

$$m \in N^D(U_1, V_1) \cap N^D(U_2, V_2)$$
.

Hence T is weakly D-mixing.

 $(iii) \Longrightarrow (i) Trivial$

Theorem 3.4. Let $T \in B(H)$. U, V, V_1, V_2 be non-empty open subsets of H. then the following are equivalent:

- (i) For any U, V in H we have $N^{D}(U,U) \cap N^{D}(U,V) \neq \varnothing$.
- (ii) For any U, V_1 , V_2 in H we have $N^D(U, V_1) \cap N^D(U, V_2) \neq \emptyset$.
- (iii) T is weakly D-mixing.

Proof.

(i) \Longrightarrow (ii) Let U, V_1 , V_2 be non-empty open subsets of H. By the hypothesis we can get $N^D(U,V) \neq \varnothing$, so T is a disk-cyclic operator. Hence there is some $n \in N$, $\alpha \in D$ such that $U_1 = U \cap T^{-n}\left(\frac{1}{\alpha}V_1\right)$ is a non-empty open set. Since disk-cyclic have dense range, implies that $T^{-n}\left(V_2\right)$ is non-empty and open, so that there exists some $m \in N^D\left(U_1, U_1\right) \cap N^D\left(U_1, T^{-n}\left(\frac{1}{\alpha}V_2\right)\right)$. Then there exist $\beta_1, \beta_2 \in D$ such that

$$T^{m}\left(\beta_{1}U_{1}\right)\cap U_{1}\neq\varnothing$$
 and $T^{m}\left(\beta_{2}U_{1}\right)\cap T^{-n}\left(\frac{1}{\alpha}V_{2}\right)\neq\varnothing$

Thus $T^{m+n}(\alpha\beta_2U_1) \cap V_2 \neq \varnothing$. So $n + m \in N^D(U, V_2)$.

On the other hand, there is $x \in U_1 \subset U$ such that $T^m(\beta_1 x) \in U_1 \subset T^{-n}(\frac{1}{\alpha}V_1)$, then $T^{m+n}(\alpha\beta_1 x) \in V_1$. Hence $T^{m+n}(\alpha\beta_1 U) \cap V_1 \neq \emptyset$. Therefore

$$n+m \in N^D\left(U, \ V_1\right)$$

Which implies that $n + m \in N^D(U, V_1) \cap N^D(U, V_2)$.

(ii) \Longrightarrow (iii) Let U_1 , U_2 , V_1 , V_2 be non-empty open subsets of H. By the hypothesis we can get $N^D(U,V_1)$, so T is a disk-cyclic operator. Hence there is some $n \in N, \alpha \in D$ such that $U = U_1 \cap T^{-n}(\frac{1}{\alpha}U_2)$ is a non-empty open set. Moreover, since disk-cyclic operator have dense range, also $T^{-n}(V_2)$ is non-empty and open. By the hypothesis we find $m \in N^D(U, V_1) \cap N^D(U, T^{-n}V_2)$. Then there exist $\beta_1, \beta_2 \in D$ such that $T^m(\beta_1 U) \cap V_1 \neq \emptyset$ and $T^m(\beta_2 U) \cap T^{-n}V_2 \neq \emptyset$.

In particular, there exists $x \in U \subset U_1$ with $T^m(\beta_1 x) \in V_1$. Thus

$$m \in N^D(U_1, V_1)$$
.

Also, there exists $y \in U \subset T^{-n}(\frac{1}{\alpha}U_2)$ such that $T^m(\beta_2 y) \in T^{-n}V_2$. We then conclude that $T^n(\alpha y) \in U_2$ and since $\alpha \in D$,

$$T^m \alpha \left(T^n(\beta_2 y) \right) = T^m \beta_2 \left(T^n(\alpha y) \right) \in \alpha V_2 \subset V_2.$$

While $T^m \beta_2 (T^n(\alpha y)) \in T^m \beta_2 U_2$, therefore $T^m(\beta_2 U_2) \cap V_2 \neq \emptyset$. Thus

$$m \in N^D(U_2, V_2)$$
.

Which yields that

$$m \in N^D(U_1, V_1) \cap N^D(U_2, V_2)$$
.

Hence T is weakly D-mixing.

 $(iii) \Longrightarrow (i) \ Trivial$

Theorem 3.5. Let $T \in B(H)$. The following are equivalent:

- (i) T is weakly D-mixing.
- (ii) Each $N^D(U, V) \neq \emptyset$ and for each U_1 , V_1 , U_2 , V_2 non-empty open subsets of H, there are non-empty open sets U_3 , V_3 such that $N^D(U_3, V_3) \subset N^D(U_1, V_1) \cap N^D(U_2, V_2)$.
- (iii) All sets $N^D(U, V)$ are thick.
- (iv) $N^{D}(U, V) N^{D}(U, V) = N$, for any U, V.

Proof.

(i) \Longrightarrow (ii) Let U_1 , V_1 , U_2 , V_2 be non-empty open subsets of H. Since T is weakly D-mixing, thus there is $m \in N^D(U_1, U_2) \cap N^D(V_1, V_2)$. Since U_1 , V_1 are non-empty and open we can get U_3 , V_3 , non-empty open sets such that $U_3 \subset U_1$ and $V_3 \subset V_1$, So there exist $\alpha_1, \alpha_2 \in D$ such that $T^m(\alpha_1 U_3) \subset U_2$ and $T^m(\alpha_2 V_1) \subset V_2$. Then $N^D(U_3, V_3) \subset N^D(U_1, V_1)$.

Moreover, if $n \in \mathbb{N}^D(U_3, V_3)$, then by proposition 2.9

$$n + m \in N^D(U_3, V_3) + C^D(V_3, V_2) \subset N^D(U_3, V_2),$$

so that

$$n = (n+m) - m \in N^{D}(U_3, V_2) - C^{D}(U_3, U_2) \subset N^{D}(U_2, V_2)$$

Hence $N^D(U_3, V_3) \subset N^D(U_2, V_2)$.

So $N^D(U_3, V_3) \subset N^D(U_1, V_1) \cap N^D(U_2, V_2)$.

 $(ii) \Longrightarrow (i)$ This is travel.

 $(i) \Longrightarrow (iii)$ Let U, V non-empty open subsets of H, L be a positive integer.

Since T is weakly D-mixing, then by proposition 2.9 $\bigoplus_{i=1}^{L} T \in DC(H)$. Thus, by proposition 2.9, $T \in DC(H)$. Hence one can find $n \in N$ and $\alpha \in D$ such that $T^{n}(\alpha U) \cap T^{-i}(V) \neq \emptyset$ for all i = 0, ..., L. So $n, ..., n + L \in N^{D}(U, V)$.

Therefore $N^D(U,V)$ is a thick set.

 $(iii) \Longrightarrow (iv)$ Let $M \in N$. By (iii) $N^D(U,V)$ is thick, then there exist $k \in N$ such that $k, \ldots, k+M \in N^D(U,V)$. So $M = k-k+M \in N^D(U,V)-N^D(U,V)$.

 $(iv) \Longrightarrow (i)$ Let U, V, V_2 be non-empty open subsets of H. by (iv) $N^D(U, V) \neq \emptyset$ otherwise $N = \emptyset$, thus $T \in DC(H)$. So one can find an $m \in N$, $\alpha \in D$ and a non-empty open set $V_1 \subset V$ such that $T^m(\alpha V_1) \subset V_2$. By (iv), we can take $k \in N$ such that $k \in N^D(U, V_1)$ and $k + m \in N^D(U, V_1)$. Then by proposition (2.9 part (i))

$$k+m\in N^{D}\left(U,V_{1}\right.)\cap\left[N^{D}\left(U,\ V_{1}\right.\right)+C^{D}\left(V_{1},V_{2}\right)\right]\subset N^{D}\left(U,\ V_{1}\right.)\cap N^{D}\left(U,\ V_{2}\right).$$

Hence by (2.9 part (ii)) the result done.

4. Conclusion

We gave the define of weakly D-mixing and reduced the four open sets to three or two open sets only. Every weakly D-mixing operators is another form of Disk-cyclic Criterion and every weakly D-mixing operators gave the $N^D(U, V)$ are thick sets.

References

- [1] N. Bamerni, Cyclicity of bunded linear operators on suparable banach spaces and closed subspaces, Ph.D. Thesis, University Putra Malaysia, 2016.
- [2] F. Bayart and E. Matheron, Dynamics of linear operators, Cambridge university press, France, 2009.
- [3] B. Beauzamy, Introduction to operator theory and invariant subspaces, Elsevier Science Publishers B. V., 1988.
- [4] G. Godefroy and J. H. Shapiro, Operator with dense, invariant cyclic vector manifolds, J. Functional analysis, 2 (1991) 229-269.
- [5] H. M. Hilden and L. J. Wallen, Some cyclic and non-cyclic vectors of certain operator, Indiana Univ. Math. J., 23 (1974) 557-565.
- [6] Z. Jamil, Cyclic phenomena of operators on Hilbert space, Ph.D. Thesis, University of Baghdad, 2002.
- [7] C. Kitai, Invariant closed sets for linear operators, Ph.D. Thesis, University of Toronto, 1982.
- [8] Y. Liang and Z. Zhou, Disk-cyclic and codisk-cyclic tuples of the adjoint weighted composition operators on Hilbert spaces, Bulletin of the Belgian Mathematical Society Simon Stevin, 23 (2016) 203–215.
- [9] F. L. Saavedra and V. Müller, Rotations of hypercyclic and supercyclic operators, Integr. equ. oper. theory, 50 (2004) 385–391.