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Abstract

This paper aims to study a generalized (2+1)-dimensional Bogoyavlensky-Konopelchenko equation.
We perform symmetry reduction and derive exact solutions of a generalized (241)-dimensional
Bogoyavlensky-Konopelchenko equation. In addition, conservation laws for the underlying equation
are constructed.
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1. Introduction

The generalized (2+1)-dimensional Bogoyavlensky-Konopelchenko equation is given by [1]

Dt + WPazy + 68Pszy + 6ap.p + 48pyp + 4Bp.0; 'p, = 0, (1.1)

where o and [ are non-zero arbitrary constants while p = p(t, z, y) denotes the wave profile and the
variables ¢,  and y represent time and space respectively. In [2], equation (1.1)) with o = 0 is also
referred to as the Calogero-Bogoyavlensky-Schiff equation. Several methods for example, the Dardoux
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transformation and the inverse scattering method have been employed to solve equation ((1.1)). See
for example [3, 4] and references therein. The term J,!p is a spatial antiderivative of p which is
i

defined through the Fourier transform by the multiplier ; and 9;' = [ dx is the inverse scattered
transformation. When substituting 9, 'p = u into equation (1.1 one can obtain the equivalent form
of (1.1]), namely

Uty + VUgggy + 6BUggey + 60Uz U, + 48Uty + 4Bugpu, = 0. (1.2)

Motivated by recent work in [I], 5], we revisit the (241)-dimensional Bogoyavlensky-Konopelchenko
equation ([1.1)).

The objective of this work is twofold. Firstly, we seek to establish new exact solutions [0, 7, 8] of a
generalized (2+1)-dimensional Bogoyavlensky-Konopelchenko equation using the Lie symmetry
method [9, [10, 1T}, 12] T3], 14], [15], 16]. Thereafter, we aim to derive low-order local conservation laws
of equation (1.2]) using the invariance and multiplier approach based on the well known results that
the Euler-Lagrange operator annihilates the total divergence.

2. Symmetry analysis of equation (2)

The vector field operator

0 0 0
X = &(tz,yu )8t+€(tl‘y, )%Jr&g(t,x,y,u)a—y

is a Lie point symmetry of (1.2)) if

0
+ n(txuy?u)%

— 07
2

where X is the fourth extension of (2.1)). Expanding the above equation and splitting the mono-
mials leads to linear overdetermined system of partial differential equations. These are

§=0,6=0¢=08=0¢8=0¢ =08, =0,1,=0,m1, =0,

Now = 05 My = 0, 1, + &5 = 0, =401, + & =0, 3¢, —n,, =0,

&y — Tyu = 0, 6an, +48n, — & = 0, 481, +ny, — &, =0,

4BE; — 3a) + 307 = 0, & — &) +n, — & =0, B — a&) + an, + 2a€7 = 0.
Solving the above systems of partial differential equations prompt the following two cases.

Case 1. a # —f
In this case equation (1.2]) admits six Lie point symmetries, namely

X[4] {utx + QUpgze + GBuxxzy + 6aux:vua: + 46uxyux + 4/8u:m:uy = O}

. B 0 0 ,, 0
B 0 0 0 a 0 3 9
R =G o Ty T e M T v B o (at By
o N N,
Xs = dp(t)6o -+ ()5, Xe=a(t)5 .

Case 2. a=—0
Again equation ((1.2) has six symmetries. These are

0 8 8 0 8 8
) 9 a Y 9
Xy= (22 +3y)5- + 8tﬂa—y, X; = 4p(t)5£ ()5 Xe = alt) 5.
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2.1. Symmetry reductions of

In this section we construct symmetry reductions and exact solutions of equation ([1.2)). Firstly,
we consider Case 1 when o # —f. Here we get the following subcases.

Case 1.1.

We begin with X4 which transform ([1.2)) into a partial differential equation in two independent
variables. The symmetry X4 yields the following three invariants:

_ay—pa
B B

Using the above invariants, we then transform equation (|1.2)) into

g — 204504 = 0. (2.2)
The Lie point symmetries of equation (2.2)) are
0

f:tJ Y ¢:u'

B 0 o 0 9 5,0 0
T1—2faag g8¢, T2—4fozaf+4fgozag ga¢, Tg——ag7
0 0 0 0 0 0
=g +20— Ys=—, Ye=f——c—, Yy= ey

Considering a linear combination ;Y3 + Y5, one obtains the invariants

Y

P
o]

Y \P:(b

and this leads to following nonlinear ordinary differential equation

200" (2)V'(2) — > W (2) = 0, (2.3)
whose solution is

U(z) = Ciz + Oy, (2.4)

where C} and C, are constants of integration. Using equation (2.4) and reverting back into the
original variables, the group-invariant solution of equation ([1.2) is

_ BuCit + aCry — BCyx + BuCsy

ult, 7,) = (2.5)
B
Case 1.2.
We now consider Yg and one obtains the following invariants
z=9, Y=/fe

Employing these invariants, equation (2.2)) reduces to the following nonlinear ordinary differential
equation

209" (2)Y'(2) + ¢'(2) = 0. (2.6)
The solution of equation ({2.6)) is

122
U(z) = _ZE+012+02’ (2.7)
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where C and Cy are constants. Invoking equation ([2.7]) and reverting back into the original variables,
the group-invariant solution of equation (|1.2)) is given by

_4aC1(ay7,B:r) + 40[62 i (ay—Bz)?

B B?
t =- . 2.8
ult,z,y) = 5 v (2.8)
Case 1.3.
We now choose Y4 and one gets the following invariants
i=f w=2
g

and this leads to the nonlinear ordinary differential equation

—4a¥?(z) + V'(2) = 0, (2.9)
whose solution is
1
U(s) — 2.10

where (] an integration constant. Employing (2.10) and relapsing back into the original variables,
we get
(ay — Bx)?

ult, z,y) = P(—dat 1 O, (2.11)

as the solution of equation (|1.2]).

Case 1.4.
Choosing Y3, one obtains two invariants, namely
14 2
Zzi, wz_m, (2.12)
g 4 of
which gives the following nonlinear ordinary differential equation
2" ()Y (2) +2(¢/(2))* = 0, (2.13)
whose solutions is
C
(z) = Cy+ 72 (2.14)
Consequently, we conclude that the solution of equation (|1.2)) is
2
14aCyt — 40402(‘;y—5$) _ (ayggd?)
tv ) = 7 3 215
u(t,z,y) 4 at ( )
where C] and Cy are constants.
Case 1.5.

Taking X5, equation ((1.2) transforms to a partial differential equation in two independent vari-
ables. The symmetry X yields the following three invariants, viz.,

b= 1 165%tu + 3ay? — 4Bzy

oy — o
N 16 B2t

f:t7 /6 Y
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By employing the above invariants, we transform equation (|1.2)) into
200f Ggg®g — f&rg — 9Pgg — Pg = 0.

The Lie point symmetries of the above equation are

8 a g¢*0 0
Y, = 2 Y, =4da— — 5 — —
8 g 0 8 H(f) o
a=f° f+fg8 5 +f(9gz§ 6 f@g’ 7 2 9
Now considering symmetry Y1, one gets two invariants, namely
imf v
g
and this leads to the following nonlinear ordinary differential equation
—4az(V)? 4 20 (2) + 20 = 0, (2.16)
whose solution is
1
U(z) = ——— 2.17
(2) 2(2C1 + 4a)’ (2.17)

where (] is a constant of integration. As a results, we conclude that the group-invariant solution of

equation ([1.2)) is
1 3aty?C, — 4BtaxyCy — 4a*y? + 16afxy — 163%2>

t =— 2.18
ultwy) =~ B2H(tCy + 4a) (2.18)
Case 1.6.
We now work with Y3 and we obtain two invariants, namely
S
Z = ?a w = ¢

and this yileds the following nonlinear ordinary differential equation

Sz () (2) + 12022 (Y (2))* + 29" (2) + ¢/ (2) = 0, (2.19)

whose solution is

Cl Ol
S . _CyIn(14/16aCz +1
49 11+ /16aCiz 41 1++/T6aCiz+1 ! n( Tvibataz )

1
+Cl 111(—1 + vV 1606012 + 1) + @ + CQ, (220)

where C' and Cj are arbitrary constants of integration. Thus, the group-invariant solution of equation
(1.2)) is given by

1
u(t,z,y) = [— } x{
(ay . /81,)2 |: - 1 + 16082C1t + 1:| (1 + 16aB2C1t + 1)

(oy—pz)? (ay—pBz)?
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2
Cy (1601 In [1 + 16af7Cht + 1} af?t —
(ay

— ﬁx)Q
1604/8201t :| 2 2 9 1604520175
16CiIn | =14/ ——— +1|aft+ 2« — 41
! l \/ (ay— o TNy e
1604520175 2 9 160&6201t
_4aﬁxy\/—<ay ) +1425% —(ay ) +1
—16a3*Cot + a*y* — 252x2) } (2.21)

Case 1.7.
Considering the scalings symmetry X3, we convert equation ((1.2)) into a partial differential equa-
tion in two independent variables. This symmetry X3 yields the following three invariants, namely

Y t
f:_7 9257 ¢:u1'

Employing the above invariants, equation (1.2 reduces to the following nonlinear partial differential
equation

—30¢gg — fbrg — B brsrr — 36Bfdyss +8lag bgggq + f ' brsrr + 1692097 b4
—2789%P1g9q + 960 f Oy — 32400g” (dg)? — 248 (d5)? + 248 f (¢5)? + 816arg,
—12Bf%pss; — 162BG%Pseg + T20f2 b — 1868901, + T560g° bygq + 16866 1+

16af3¢sp + 24ap — 2480, — 12a¢* — 4¢, + 3689° 01,0, + 108G ¢ 909 —

1620,° 9y g — 360 fTdr — 14dagdd, + 96890y — 6af>drdrp — 6o f>dds s+

86120 fdrr +4BL b + 120 f g r1g + 1800 f>gdrry — IBL 9P s11g + TA4af gy,

—908f90rrq + 12890055 + 540 f> G P r9g + 6480 f g* Drgg — 2T8F 9° Df g9~

5A0g® gy + 36897 D dgy — DAaf G Prdgy — 108 f g° by sy — 360uf>gdphpy—
18afgg g — 36afgpdry + 368 f9prdry +128f 9050y — 180afgprh, = 0.  (2.22)

Consequently, we conclude that the group-invariant solution of equation (|1.2)) is
1 t
u(t,:v,y) = _¢(y7_)7 (223)

where ¢ is any solution of equation (2.22)).
Lastly, we consider Case 2 when a@ = —(. Here we obtain the following subcases.

Case 2.1.
Taking the linear combination of the translation symmetries I' = X; + X5 and thereafter, solving
the characteristics equations yields the following three invariants:

f:xv g:t_ya gb:u

Employing the above invariants, we transformed equation ([1.2)) into a partial differential equation
with two independent variables, namely

Grg — BOrrsr — Bbrrig — 680sr0r — 4BPre0r — APdsrog = 0.



A generalized (2+1)-dimensional Bogoyavlensky-Konopelchenko equation ;
Volume 12, Special Issue, Winter and Spring 2021,709-718 715

The above equation admits the following Lie point symmetries

0 0 0 0 0 0
+4gﬁ8—g+(46¢+2f 39)=—, Y2 Yz3=——+-—, Yy4=

Y= s o0 2T gt oy 9

of
Considering a linear combination of Y3 + Y4, one obtains the following the invariants
z= f -9, V= —9g + ¢

and this leads to the following nonlinear ordinary differential equation
28V (2)W'(z) — 40V"(2) — W"(z) = 0, whose solution is ¥(z) = 2z + %% + Ch.
Consequently, we conclude that the group-invariant solution of equation ({1.2)) is

128C, — 26t +4 28y —1
ult,n,g) = AT AL T LE Y (2.24)
2 g
where (] is a constant of integration.
Case 2.2.

We now choose the combination of symmetries I' = X; + X5. Solving the Lagrange system, we
get the following three invariants:
f:xv g=1t—-vy, ¢:U,

Invoking the above invariants, equation (1.2]) transforms into a partial differential equation, namely

Grg — BOsrsr — BOrrrg — 68Pss0fr — 4680505 — APdsrg =0,

which possess the follow Lie point symmetries

0 0 0 0 0 0
=4 — +4gfa— 2 Yo=a—, 7T Y, = —.
1y fﬂaf‘F 95049 (=B +2f — 39)8¢ 2 Oéaf, 3= af—l-a 4= 35
Considering Y 3, one obtains the invariants

z=f-9, Vv=9¢

and this leads to following nonlinear ordinary differential equation
264" (2)Y'(z) — " (2) = 0, whose solution is ¢ (z) = 32 + C}.
1.'

Therefore the group-invariant solution of equation (|1.2)) is

128C, —t+z+y

ta,y) =~ , 2.25
ult,7,9) = : (2.25)
where (] is an integration constant.

Case 2.3.

Taking symmetries, I' = X4, we get the following three invariants:
1 165tu — 4y — 3y
Bt

Using the above invariants, equation (1.2)) transformed into

60f Gg9Pg + B bgg99 — fOrg — 9099 — g = 0.

The Lie point symmetries of the above equation are

9 ZaT o 9 9 90 y 40 R(f) 0

of ~ frag Y23 gp T ag, ~ 9pe o =iy, o e T g T T g

f:ta 921'7 Qb—

T, = 128—
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Using Y5, one obtains the invariants
z = %, U =g
and this leads to following nonlinear ordinary differential equation
818250 (2) — 1628220 (2)W”(2) 4 7568220 (2) — 54823V (2)V” (2)

—324323(V'(2))? + 169282° 0" () — 14482°W(2)V'(2) + 816822 V'(2)
—1282(V(2))? — 6220"(2) + 24B2V(z) — 112V (2) — ¥(2) = 0. (2.26)

Consequently, the group-invariant solution of equation (|1.2)) is

vy 3y U(2) t
f o) — _ 2.27

where W(z) is any solution of equation ([2.26]).

Case 2.4.

Considering the linear combination of the translation symmetries, I' = X; + X5 and solving the
characteristics equations, yields the following three invariants:

f:xv g=1t—-vy, Qb:U,

Employing the above invariants, equation (|1.2)) becomes
Pig = Bbsrrr — BOsrrg — 6Bbspr — ABbsgds — 469 srdy = 0.

The Lie point symmetries of the above equation are given by

0 0 0 0 0 0 0
Y, =4ff— +496— + (—4 2f —39)—, Yo=—,T3=—+—, Yy4=—.
1 fﬁaf+ gﬁag‘l‘( Bo+2f 39)8¢’ 2= 5 1 8f+8g’ 1= 5%
Considering Y1, one obtains the invariants
1 -2

g 8 B

and this leads to a nonlinear ordinary differential equation, namely

82" (2)Y/ (2) + 29" (2) + ()Y (2) — 60" () (2) + 8(¢¥'(2))* — ¥ (2) + 4" (2) = 0. (2.28)
Therefore we conclude that the group-invariant solution of equation is

oz 3ty vk . T

with ¢ (2) being any solution of equation ([2.28)).
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3. Conservation laws

In this section we derive the low-order conservation laws of the equation ([1.2)) using the multiplier
approach. Here we will consider the multiplier of the second order, namely
A=At 2, y, u, s, Uy, Uy, Wiy, Uy, gy, Ugt, Uy, Uy ). The determining equation for the multiplier A is

)
Expanding the above equation with the aid of Maple computer algebra package prompts the following
second order multiplier A, namely

where kq(t), ko(t) are arbitrary functions of ¢ and 8, C are arbitrary constants. Corresponding to
the above second order multiplier A, we obtain the following conservation laws

1
T = —u,?
T 4 3 4 2 1 2
Ty = —gﬁuuxuwy + 2au;, + gﬂuxuy + 2Buzuy + QUgUppy + 38U ULy — §aum
_?’Bumcuzy + Bﬁumux:py + 3ﬁuua¢xzy + 26uu1y7

4
T3y — gﬁuuggumm — Qﬁuum — 36uuzzmx7
i = u, (2BF(t)u, + F'(t)y),
16 16
Ty = —g B utstis +8aBF (), + 2 F F (t)uguy + 126%utisssy + 85°F (t)utsy

+H4aBE () Ugtlpry + 1282 F () Uptlyey + 8B F (t)ugtty, — 20B8F (#)tyy” — 126% F () Uppiny
+128%F () tuytpes — 28F () yunty, + 3au, F'(t)y + 2BF (t)uzu,y — 28F' (t)uu, +
aF' (t)yugey + 66F (1) Yty + 40F (t)yu, — F" (t)yu,

Ty = ;ﬁu (8BF (t)uptipy — 12B8F (t)tgye — 18BF () Uzzs + 3F' () Ytizs) ;

I = F(t)ug,

Ty = —2BF(t)utlyy + 3aF (t)u? + 2B8F (t)uyt, + aF () tpey + 68F (1) tzy
+4BF (t)u, — F'(t)u,

Ty = 2BF(t)uze — 20utiyy.

associated with C1, kq(t) and ko(t) respectively. Here we observe that due to the presence of the
arbitrary functions in the conservation laws, one can generate an infinite number of conservation
laws for equation ([1.2)).

4. Concluding remarks

In this paper new exact solutions and conservation laws were computed for a generalized (2+1)-
dimensional Bogoyavlensky-Konopelchenko equation (|1.2)). The Lie symmetry method was used to
derive exact solutions and the multiplier method was employed to compute conservation laws. The
generalized (2+1)-dimensional Bogoyavlensky-Konopelchenko equation consists of an infinite
number of local conservation laws due to the arbitrary elements embedded in the conserved quantities.
Furthermore, higher order conservation laws for a generalized (2+1)-dimensional Bogoyavlensky-
Konopelchenko equation can be derived by increasing the order of the multiplier. However, this
remains to be studied elsewhere.



718 Podile, Muatjetjeja, Adem

References

[1] S.S. Ray, On conservation laws by Lie symmetry analysis for (2+1)-dimensional Bogoyavlensky-Konopelchenko
equation in wave propagation, Comput. Math. Appl. 74(6) (2017) 1158-1165.
[2] K. Toda, S. J Yu, A study of the construction of equations in (2+1)dimensions, Inverse Prob. 17(4) (2001)
1053-1060.
[3] O.I. Bogoyavlenskii, Quverturning solitons in new two dimensional integrable equation, Math. USSR-Izvest. 34(2)
(1990) 245-259.
[4] F. Calogero, A method to generate solvable nonlinear evolution equation, Lett. Nuovo Cim. 14(12 (1975) 443-447.
[5] M.A. Abdulwahhab, Comment on the paper ”On the conservation laws by Lie symmetry analysis for (2+1)-
dimensional (2+1)-dimensions Bogoyavlensky-Konopelchenko equation in wave propagation” by S. Saha Ray,
Comput. Math. Appl. 75(12) (2018) 4300-4304.
[6] S. Bendaas and N. Alaa, Periodic wave shock solutions of Burgers equation, a news approach, Int. J. Nonlinear
Anal. Appl. 10(1) (2019) 119-129.
[7] E. Shivanian and S. Abbasbandy, Multiple solutions of a nonlinear reactive transport model using least square
pseudo-spectral collocation method, Int. J. Nonlinear Anal. Appl. 9(2) (2018) 47-57.
[8] M. Golchian, M. Gachpazan and S. H. Tabasi, A new approach for computing the exact solutions of DAFEs in
generalized Hessenberg forms, Int. J. Nonlinear Anal. Appl. 11(1) (2020) 199-206.
[9] H. Stephani, Differential Equations: Their Solutions Using Symmetries, Cambridge University Press, Cambridge,
1989.
[10] G. Bluman, S. Kumei, Symmetries and Differential Equation, vol. 81, Springer—Verlag, New York, 1989.
[11] P. Olver, Applications of Lie Groups to Differential Equations, vol.107, Springer-Verlag, New York, 1986.
[12] L.D. Moleleki, B. Muatjetjeja, A.R. Adem, Solution and conservation laws of a (3+1)-dimensional Zakharov-
Kuznetsov equation, Nonlinear Dyn. 87(4) (2017) 2187-2192.
[13] L. D. Moleleki, Solution and conservation laws of a generalized 3D Kawahara equation, The European Physical
Journal Plus 133(12) (2018), 496.
[14] J.C. Camacho, M. Rosa, M.L. Gandarias and M.S. Bruzon, Classical symmetries, travelling wave solutions and
conservation laws of a generalized Fornberg-Whitham equation, J. Comput. Appl. Math. 318 (2017) 149-155.
[15] A.R. Adem, X. Lii, Travelling wave solutions of a two-dimensional generalized Sawada-Kotera equation, Nonlinear
Dyn. 84(2) (2016) 915-922.
[16] D. Mothibi, Conservation laws for Ablowitz-Kaup-Newell-Segur equation, ATP Conf. Proc. 1738 (2016) 480102.



	Introduction
	Symmetry analysis of equation (2)
	Symmetry reductions of (1.2)

	Conservation laws
	Concluding remarks

