
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,797 |
تعداد دریافت فایل اصل مقاله | 7,656,271 |
The effect of calcination temperature on the X-ray peak broadening of t-CuFe2O4 | ||
Progress in Physics of Applied Materials | ||
مقاله 4، دوره 1، شماره 1، اسفند 2021، صفحه 19-24 اصل مقاله (1.42 M) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22075/ppam.2021.23435.1006 | ||
نویسندگان | ||
Mohsen Choupani؛ Ahmad Gholizadeh* | ||
School of Physics, Damghan University, Damghan, Iran | ||
تاریخ دریافت: 26 اردیبهشت 1400، تاریخ بازنگری: 18 خرداد 1400، تاریخ پذیرش: 13 تیر 1400 | ||
چکیده | ||
CuFe2O4 ferrite was synthesized by citrate precursor and then calcined at 800, 900, and 1000 °C. Structural properties showed that the X-ray diffraction patterns of the samples could be easily indexed to tetragonal CuFe2O4 ferrite with the spatial group the I 41/AMD. As the calcination temperature increased, the larger Cu2+ ion at the tetragonal site substituted the smaller Fe3+ ion at the octahedral site. The half-width of X-ray diffraction peaks can be affected by several factors such as instrumentation, crystallite size, and lattice microstrain broadening. The results of crystallite size and Microstrain estimated by different methods for the samples show that the Size-strain Plot method is more accurate, the value of R2 is close to 1 and all data points touch the fitting line better than other methods. The results showed that the increase in crystal size with calcination temperature could be mainly attributed to the increase of stretching microstrain. | ||
کلیدواژهها | ||
CuFe2O4؛ spinel structure؛ Crystallite sizes؛ Lattice micro-strain؛ Isotropic line broadening | ||
مراجع | ||
[1] Y. Slimani, M.A. Almessiere, A. Demir Korkmaz, S. Guner, H. Güngüneş, M. Sertkol, A. Manikandan, A. Yildiz, S. Akhtar, Sagar E. Shirsath, A. Baykal, Ni0.4Cu0.2Zn0.4TbxFe2-xO4 nanospinel ferrites: Ultrasonic synthesis and physical properties, Ultrason. Sonochem. 59 (2019) 104757. [2] R.S. Yadav, J. Havlica, J. Masilko, L. Kalina, J. Wasserbauer, M. Hajd´uchov´a, V. Enev, I. Kuˇritk, Z. Koˇz´akov´a, Cation Migration-Induced Crystal Phase Transformation in Copper Ferrite Nanoparticles and Their Magnetic Property, J. Supercond. Nov. Magn. 29 (2016) 759–769. [3] H. Hou, G. Xu, S. Tan, Y. Zhu, A facile sol-gel strategy for the scalable synthesis of CuFe2O4 nanoparticles with enhanced infrared radiation property: Influence of the synthesis conditions, Infrared Phys. Technol. 85 (2017) 261–265. [4] R. Yogamalara, R. Srinivasan, A. Vinu, K. Ariga, A. C. Bose, X-ray peak broadening analysis in ZnO nanoparticles, Solid State Commun. 149 (2009) 1919- 1923. [5] A. Khorsand Zak, W.H. Abd. Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods, Solid State Sci. 13 (2011) 251-256. [6] H. Yang, J. Yan, Z. Lu, X. Cheng, Y. Tang, Photocatalytic activity evaluation of tetragonal CuFe2O4 nanoparticles for the H2 evolution under visible light irradiation, J. Alloys Compd. 476 (2009) 715–719. [7] J. Calvo-de la Rosa, M. Segarra Rubí, Influence of the Synthesis Route in Obtaining the Cubic or Tetragonal Copper Ferrite Phases, Inorganic Chemistry 59 (2020) 8775-8788. [8] M.J. Iqbal, N. Yaqub, B. Sepiol, B. Ismail, A study of the influence of crystallite size on the electrical and magnetic properties of CuFe2O4, Mater. Res. Bull. 46 (2011) 1837-1842. [9] D. Thapa, N. Kulkarni, S.N. Mishra, P.L. Paulose, P. Ayyub, Enhanced magnetization in cubic ferrimagnetic CuFe2O4 nanoparticles synthesized from a citrate precursor: the role of Fe2+, J. Phys. D: Appl. Phys. 43 (2010) 195004. [10] K. D. Rogers, P. Daniels, An X-ray diffraction study of the effects of heat treatment on bone mineral microstructure, Biomaterials 23 (2002) 2577. [11] A. Gholizadeh, A comparative study of physical properties in Fe3O4 nanoparticles prepared by coprecipitation and citrate methods, J. Am. Ceram. Soc. 100 (2017) 3577–3588. [12] A. R. Stokes, A. J. C. Wilson, The diffraction of X rays by distorted crystal aggregates –I, Proc. Phys. Soc. 56 (1944) 174. [13] G. K. Williamson, W. H. Hall, X-RAY LINE BROADENING FROM FILED ALUMINIUM AND WOLFRAM, Acta Metall. 1 (1953) 22. [14] B. D. Cullity, Elements of X-ray Diffraction, AddisonWesley Publishing Company Inc., California, 1956. [15] M.A. Tagliente, M. Massaro, Strain-driven (002) preferred orientation of ZnO nanoparticles in ionimplanted silica, Nucl. Instrum. Methods. B 266 (2008) 1055–1061. [16] N.C. Halder, N.C.J. Wagner, Separation of particle size and lattice strain in integral breadth measurements, Acta Crystallogr. 20 (1966) 312. [17] J. E. Langford, International Conference Accuracy in Powder Diffraction II, National Institut of Standards and Technology, Special Publication, Gaithersburg, MD, USA, 846 (1992) 145. | ||
آمار تعداد مشاهده مقاله: 461 تعداد دریافت فایل اصل مقاله: 555 |