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Abstract

In this paper, we use an irreducible plane-cubic curves in the projective plane PG(2,q) to con-
struct (k,3)-arcs of size 4v where [W] <v< LW] Each of these arcs gives rise to an
error-correcting code that corrects the maximum possible number of errors for its length. Further-
more, we discuss the completeness of each arc. The isotropy subgroup of each arc are determined.
All Griesmer codes that correspond to plane-cubic curves are given for 7 < g < 37, ¢ is a prime.
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1. Introduction

The subject of this paper depends on themes of Projective geometry over a finite field of prime
order, Group theory, Field theory, Presentation theory. The strategy to construct the stabilizer
groups and also to embedded the arcs is given as following:

A (k,d)-arc K in the projective plane over Galios field F,, F, being the finite field with ¢ elements,
is a set of k elements such that no line in PG(2,¢) meets K in more than d points. The (k, d)-arc is
called complete if it is not contained in a (k + 1, d)-arc. For the completeness of plane cubic curves
over finite fields which are precisely (k, 3)-arcs, we can see [3]. For basic facts on arcs the reader is
referred to [[7] (see also the references therein), [8], [1], and [16].
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A natural example of a (k, d)-arc is the set X;(F,) of F,-rational points of a plane curve X; with-
out linear components and defined over F, , where k equal to the cardinality of X;(F,) and d is the
degree of X;. As a matter of terminology, we shall say that X; has the arc property whenever Xy(F,)
is a complete (k, d)-arc with k£ and d as above. As a matter of fact, the interplay between the theory
of algebraic curves and finite geometries was initiated by Segre around 1955. In [13] (see also [[7] he
established an upper bound for the second largest size that a complete (k, 2)-arc in PG(2, ¢) can have.

Problems in combinatorics, especially in finite geometry, often require a count of the number of
solutions of an equation in one or more unknowns defined over a finite field F,. When two unknowns,
namely X,Y, occur, the equation is of type f(X,Y) = 0 with f € F,[X,Y], and the geometric
approach for solving it depends on the theory of algebraic curves over finite fields.

In this paper we are concerning with the problem of determining plane-cubic curves having the
arc property. This was asked around 1988 by Hirschfeld and Voloch [9]. Only few examples of such
curves are known. Among plane curves we have the irreducibles conics in odd characteristic [7],
certain cubics [9], and Hermitian curves [[].

For an (k,d)-arc K in PG(2,q), we define the isotropy subgroup of K as follows:
G(K) = PGLy(g), = {7 € PGLs(q) : 7(K) = K},
where PGL3(q) is the projective general linear group over F,.

Assume that [k] denotes the smallest integer greater than or equal to x and that | k] denotes
the largest integer less than or equal to k. Then the main results in our work are:

Theorem 1.1. For a prime ¢ > 7 and an integer v where | ; there is
(4v,3)-arc in PG(2,q). It follows that the maximum integer v such that a plane cubic of size 4v

+1-2 +142
T < v < |

exists in PG(2,q) is LW] Moreover, incomplete (8, 3)-arc exists for all prime ¢ > 7.

Corollary 1.2. For a prime ¢ > 7 and an integer v where LWJ <v < LWJ; there
ezists a projective [4v, 3, 4v — 3|,-code of dimension 3. In particular, the codes [12,3,9]7, [16,3,13]11,
20,3, 17)15, [24,3,21]17, [24,3,21]19, [28,3,25]10, 28,3, 25]0s, [32,3,29]23, [36,3,33]s0, [40,3,37]20,
(36, 3, 33]31, [40,3,37]31, [44,3,41]37 and [48,3,45|37 are Griesmer codes.

2. Linear codes and plane-cubic arcs

A linear [k, n,d],-code C over ¢ = p" is an n-dimensional subspace of the k-dimensional vector
space V' = V(k, ¢) over F,. The minimum distance d of the code is the smallest number of positions in
which two different elements of C differ. Equivalently, d is the smallest number of non-zero symbols
in any non-zero vector of C. From [2], the Singleton bound states that, if C is an [k, n, d],-code, then
d < k—n+1. The Singleton defect for linear code C is defined as A(C') = k+1—n—d. Linear codes
meeting the singleton bound are Maximum Distance Separable (MDS). For more information about
MDS codes, we can see [4]. In general, a linear code having singleton defect equal to 1 is Almost
Maximum Distance Separable (AMDS). Furthermore, in the later reference, we have the following
theorem:
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Theorem 2.1. There exists a projective [k, n,d],-code if and only if there exists an (k,k — d)-arc in
PG(n—1,q).

A central problem in coding theory is that of optimizing one of the parameters n,k and d for
given values of the other two and g-fixed. There are two versions introduced in [6], namely

1. Find d,(n, k), the largest value of d for which there exists an [n, k, d],-code.
2. Find n,(k, d), the smallest value of n for which there exists an [n, k, d],-code.

A code which achieves one of these two values is called d-optimal or n-optimal respectively. The
well-known lower bound for n,(k, d) is the Griesmer bound [p], [14]

k—1

ng(k,d) > gy(k, d) = Z(%w

=0
Codes with parameters [g,(k,d), k,d],, are called Griesmer codes.

Theorem 2.2. [Griesmer Bound [G]] Let C be a linear [n, k,d]|-code over GF(q) . Then we must
have that ny(k,d) > Zf;é f%}.

In [6], we see that n,(k,d) = g,(k,d) for all d when k =1 or 2. The problem of finding n,(k, d)
for all d has been solved only in the next cases (See [L1], [12]):

e k <8 for codes over GF'(2),

(2)
o k <5 for codes over GF(3),
o k <4 for codes over GF(4),
o k =3 for codes over GF(q),5 < ¢ <09.

Thus, in the case of three-dimensional codes the problem remains open when ¢ > 11.

Let F(zo,1,22) be a form, that is, a homogeneous polynomial in F,[zg, z1,22]. The vanishing
set of this form,
V ={(xo:21:22) € PG(2,q) : F(xo,21,22) =0},

is a curve in the projective plane PG(2,q). The curve is irreducible if F'(xq,x1,z2) does not factor
in F,[zg, z1, z2] where F, is the algebraic closure of F,.

A point P lying on a curve is a singular point of the curve if there is more than one tangent line
to the curve through P, [[10]. If no such point exists in PG(2, q), that is, if there is a unique tangent
line at each point of the curve considered over F,, then the curve is a non-singular. This means
that, working over the algebraic closure of [y, it is impossible to find a point P on V such that the
three partial derivatives of F' with respect to xg, z1, s are all zero at P. If a curve V in PG(2,q)
has a singular point over the algebraic closure of F,, then the curve V is singular. Geometrically, the
non-singularity of ¥ means that it has no node or cusp or isolated double point; so there is a unique
tangent line to the curve at every point P.
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Let X be a projective, geometrically irreducible, non-singular, algebraic curve defined over F,,
with ¢ = p" and p a prime. The celebrated Hasse-Weil theorem states that the number #(X,(F,))
of its rational points has an upper and lower bound:

[#(Xy(Fy)) — (¢ + 1)| < 29/; (2.1)

where g is the genous of X}, see, for example, [15].

It follows, that if X' is a plane curve, which may be singular, of degree n defined over F,, then
the size of the latter set, namely X’ satisfies

(g+1) = (n=1Dn=2)y/g <#X([F)) <(¢+1) + (n-1)(n-2)yq (2.2)

3. Irreducible plane-cubic curves and (k, 3)-arcs

In this section, we construct (k, 3)-arcs in projective plane PG(2, q) by using an irreducible plane-
cubic curve. This method having the following steps: The vanishing set of general plane cubic is
given by the following variety:

€ = V(c1md + com} + e31h + ca7iy + 5Ty + CeTTTo + CrTI T + CyT5T0 + CoTITY + CloTTIT2).
Consider the set of points
Coo={(1:0:0),(0:1:0),(0:0:1)}

and
Coi={(1:1:0),(1:0:1),(0:1:1),(1:1:1)}.

For ¢ is a prime and ¢ > 7, the points in Cyo U Cy forms a (7,3)-arc in PG(2,q) which is a
quadrangle with vertices, namely the points

(1:0:0),(0:1:0),(0:0:1),(1:1:1),
and with the diagonal points, namely the points
(1:1:0),(1:0:1),(0:1:1).
By substituting these points in the homogeneous equation of €, we get
c1=cy=c3=0,

and cg = —cy, cg = —C5, g = —c7 and 231'21 ¢; = 0. Consequently, we get cj9 = 0.

It follows that the vanishing set of plane cubic passing through Cyo U C; 1 becomes

C = V(camioy + csxix0 — 42370 + 1Ty — C5T3T — CrTATY ).

It is clear that if % is irreducible then ¢; # 0 for £ = 4,5,7. So assume that ¢, # 0 for k =4,5,7.
Then
Grr =€ = V(xim) + A\rjre — Ti2T0 + TTIT — ATST0 — TT5TY), (3.1)
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where A\ = ¢5/cy and 7 = ¢7/cq. Let us assume xo = 1, we have the following affine cubic curve
of degree 3, namely

Crr = V(zgz, + Aok — 22w + 72° — Apg — T11).

Grr = V(220 + A2 — 22a0 + T80 — Avg — T21). (3.2)
However, the cubic in Equation @ is irreducible if A #£ 0,—1, 7 # 0,1 and 7 # —)\ (mod q).
Let us consider the plane-cubic, namely
Grr = V(2321 + A2i79 — 2370 + TTITY — A\TITH — TTIT1), (3.3)

where A € F;\{0,—1},7 € F;\{0,1} and 7 # —\ (mod 7). If we assume
Enr(q) = CopUC1a U{(1:=Ar7t 77 1)}

then we get the Table EI

Table 1: (k, 3)-arcs as the set of points on the plane cubic €5 (7) over F7

The plane cubic ) ,(7) Points of €, ,(7) as (k, 3)-arc #(6)+(7))
651’2(7) (913(7) 8
C5,2(7) Eo(M)U{(1:4:6),(1:5:6),(1:4:3),(1:5:3)} 12
C52(7) Eso(M)U{(1:4:2),(1:3:5),(1:3:2),(1:4:5)}} 12
C12(7) E1a(7) 8
€13(7) Eis3(MU{(1:6:2),(1:6:3),(1:5:4),(1:5:6)}} 12
(52)3(7) 8&3(7) 8
653’3(7) 83’3<7) 8
©5,3(7) E3(7) 8
C14(7) Ea(MU{(1:3:6),(1:2:6),(1:4:5),(1:6:5)}} 12
C2,4(7) E.4(7) 8
C14(7) E14(7) 8
©5,4(7) Esa(MU{(1:5:4),(1:2:4),(1:2:3),(1:5:3)}} 12
%1’5(7) 81’5(7) 8
©3,5(7) E5(7) 8
C15(7) Eus(7) 8
Cs.5(7) Es(MU{(1:2:6),(1:3:2),(1:2:5),(1:3:4)}} 12
C5,6(7) E6(7) 8
C56(7) Ee(M)U{(1:6:2),(1:2:3),(1:5:2),( :3) ) 12
Cr6(7) Eae(T)U{(1:3:5),(1:6:4),(1:6:5),(1:3:4)}} 12
©5,6(7) Es,6(7) 8

For a prime ¢ > 7 and 5 < ¢ < 37, our program give us:
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Eo(T)={(1:4:6),(1:5:6),(1:4:3),(1:5:3)},
E3o(11) ={(1:5:7),(1:3:4),(1:3:2),(1:5:3)},
55’2(13) ={(1:6:11),(1:2:3),(1:3:11),(1:12:5)},
5572(17) ={(1:16:15),(1:3:4),(1:16:4),(1:3:15)},
EN3(19) ={(1:8:12),(1:13:9),(1:13:12),(1:8:9)},
52*72(11):{(1:9:4),(1:8:4),(1:9:2),(1:6:3),(1:4:7),(1:4:3),

(1:8:2),(1:6:7)},

ETo(13) = {(1:11:6),(1:7:12),(1:12:4),(1:10:5),(1:7:5),(1:11:4),
(1:12:6),(1:10:12)},

ET(17) ={(1:13:11),(1:5:3),(1:5:14),(1:12:3),(1:15:7),(1: 16 : 7),
(1:12:14),(1:9:11)},

E35(19) ={(1:14:6),(1:7:3),(1:4:8),(1:4:3),(1:7:8),(1:8:6),
(1:8:16),(1:14:16)},

E35(23) ={(1:8:6),(1:7:2),(1:8:13),(1:3:8),(1:11:6),(1:11:13),
(1:7:8),(1:3:2)},

E3o(13) ={(1:10:3),(1:6:10),(1:8:2),(1:12:10),(1:6:8),(1:8:9),
(1:12:8),(1:3:2),(1:9:3),(1:2:11),(1:7:11),(1:3:9)},

5;;2(17):{(1:16:11),(1:3:6),(1:10:7) (1:8:10),(1:6:11),(1:4:7),
(1:8:13),(1:3:2),(1:15:13),(1:15: 10) (1:5:2),(1:5:6)},

5;;2(19):{(1:4:11),(1:16:13) (1:12:11),(1:5:12),(1:5:17),(1:12:5),
(1:9:4),(1:18:13),(1:16:2),(1:9: 14) (1:18:2),(1:4:5)},

£5,(23) = {(1:17:10),(1:5:19),(1:19:17), (1 : 8: 10), (1 : 12: 19), (1 : 19 : 20),
(1:17:15),(1:8:15),(1:18:20), (1:12:21), (1 :5: 21), (1 : 18 : 17)},

E104(29) ={(1:3:4),(1:3:6),(1:16:19),(1:7:4),(1:16:13),(1:10:20),
(1:8:24),(1:8:21),(1:10:23),(1:4:23),(1:4:20),(1:7:6)},

E3o(17) ={(1:2:8),(1:12:4),(1:3:16),(1:3:12),(1:11:8),(1:13:3),
(1:4:3),(1:7:15),(1:12:15),(1:8:12),(1:7:4),(1:8:16),
(1:4:14),(1:2:5),(1:11:5),(1:13:14)},

ETo(19) = {(1:17:5),(1:6:17),(1:18:5),(1:6:12),(1:5:2),(1:4:12),
(1:11:4),(1:7:14),(1:7:4),(1:11:14),(1:10:13),(1:10:2),
(1:18:11),(1:4:17),(1:5:13),(1:17:11)},

E35(23) ={(1:4:5),(1:3:17),(1:19:15),(1:6:10),(1:19:10),(1:6:15),
(1:15:19),(1:17:4),(1:11:20),(1:4:3),(1:3:20),(1:2:21),
(1:2:19),(1:15:21),(1:17:7),(1:11:17)},

E1o(29) = {(1:21:7),(1:6:28),(1:25:27),(1:11:7),(1:20:18),(1:6:20),
(1:12:14),(1:11:25),(1:21:25),(1:10:8),(1:13:28),(1:25:18),
(1:13:20),(1:12:8),(1:10:14),(1:20:27)},



&1 ={(1

(1:5:18),(1:25:18),(1:3:25),(1:25:12),(1:18:30),(1:13:25),
(1:13:22),(1:3:22),(1:18:11),(1:2: 15)},

£5,(19) = {(1:14:12),(1:8:4),(1:10:4),(1:3:7),(1:2:3),(1:3:18),
(1:2:8),(1:9:3),(1:18:6),(1:12:9),(1:15:12),(1:8: 14),
(1:14:17),(1:12:15),(1:9:8),(1: 18 : 16), (1 : 4: 6), (1 : 10 : 14),
(1:4:16),(1:15:17)},

E55(23) ={(1:13:19),(1:11:2),(1:8:17),(1:22:8),(1:3:14),(1:11:8),
(1:14:6),(1:20:9),(1:6:20),(1:4:19),(1:4:21),(1:3:9),
(1:5:6),(1:13:21),(1:14:13),(1:20:14),(1:5:13),(1:6:17),
(1:8:20),(1:22:2)},

E2(29) = {(1:28:17),(1:22:17),(1:28:4),(1:21:2),(1:15:16),(1:11:9),
(1:21:10),(1:20:10),(1:16:21),(1:22:4),(1:13:6),(1:13:11),
(1:26:21),(1:15:22),(1:4:11),(1:23:16),(1:7:9),(1:4:6),
(1:23:22),(1:20:2)},

£5,(31) = {(1:17:21),(1:18:3),(1: 9 5) (1:4:3),(1:4:19),(1:6:2),
(1:12:26),(1:6:21),(1:24:5),(1:18:19),(1:12:9), (1: 24 : 28),
(1:23:26),(1:23:9),(1:20:8),(1:9:28),(1:5:8),(1:17:2),
(1:20:17),(1:5:17)},

Eo(37) = {(1:31:34),(1:32:29),(1:35:22),(1:28:29),(1:31:27),(1:8:3),
(1:20:16),(1:30:34),(1:12:16),(1:9:22),(1:11:24),(1:32:31),
(1:30:27),(1:11:6),(1:19:6),(1:25:3),(1:19:24),(1:25:30),
(1:28:31),(1:8:30)},

E5,(23) = {(1:9:4),(1:3:18),(1:17:8),(1:15:13),(1:7:15),(1:20: 2),
(1:9:7),(1:13:8),(1:20:8),(1:15:6),(1:2:4),(1:18:10),
(1:4:6),(1:3:11),(1:2:7),(1:18:15),(1:14:3),(1:4: 13),
(1:14:5),(1:17:5),(1:19:22),(1:13:2),(1:7:10),(1: 19: 16)},

£55(20) = {(1:21:23),(1:11:3),(1:9:19),(1:3:6),(1:14:6),(1:16: 13),
(1:19:4),(1:2:17),(1:5:19), (1:9:24), (1:7:23),(L: 14 : 11),
(1:3:11),(1:4:3),(1:4:12),(1:5:24),(1:23:13),(1:11:12),
(1:19:17),(L:7:5), (1:21:5),(1:2:4),(1:16:26), (1:23:26)},

E5,(31) = {(1:8:28),(1:5:25),(1:20:21),(1:15:8),(1:13:27),(1: 11:22),
(1:20:2),(1:21:18),(1:21:12),(1:10:17),(1:15:17),(1: 5: 22),
(1:25:5),(1:25:28),(1:8:5),(1:3:21),(1:11:25),(1:9:12),
(1:3:2),(1:9:18),(1:13:4),(1:18:4),(1:10:8),(1:18:27)},

On the (4v, 3)-arcs in PG(2,q) and the related linear codes; 12 (2021) No. 2,2589-2599
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ET37) ={(1:9:6),(1:20:35),(1:2:34),(1:4:7),(1:22:27),(1:34:28),
(1:12:9),(1:2:27),(1:14:20),(1:9:24),(1:23:35),(1:33:25),
(1:20:8),(1:31:25),(1:31:2),(1:21:24),(1:12:7),(1:33:2),
(1:22:34),(1:34:20),(1:14:28),(1:23:8),(1:21:6),(1:4:9)},

£5,(20) = {(1:27:9),(1:18:26),(1:12:19),(1:3:10),(1:9:10),(1: 18 : 13),
(1:24:16),(1:26:8),(1:14:16), (1:2:24),(1:9:2),(1:20:9),
(1:12:24),(1:15:20), (1:4:28), (1:15:28), (1: 21 : 26), (1 : 25 : 14),
(1:3:2),(1:24:22),(1:21:13),(1:5:21),(1:14:22),(1:8: 21),
(1:4:20),(1:26:14),(1:25:8),(1:2:19)},

E5,(31) = {(1:28:24), (1:18:17),(1:30:2), (1:27:6),(1:30:21),(1:28: 15),

1:22:29),(1:23:28),(1:22: 13),

A\_/

(1:7:17),(1:4:30),(1:18:8),
(1:20:29),(1:2:6),(1:6:11),(1:6:30),(1:24:2),(1:7:8),
(1:20:13),(1:10:5),(1:11:24),(1:11:15),(1:10:28), (1 : 27 : 23),
(1:23:5),(1:2:23),(1:24:21),(1:4:11)},

€5,(37) = {(1:11:26),(1:29:3),(1:13:18),(1:30: 26), (1:34: 16), (1 : 15 : 18),
:4:30),(1:14:29),(1:30:15),(1:16:21),(1:4,3),(1:15:10),
:9:29),(1:17:36),(1:10:21),(1:14:31),(1:29:30),(1:32:13),
) ( S ( )
) ( (1 )

—_
[\

1
6

—_

w
\_/\_/\_/\_/

:35:16),(1:10:5),(1:32: 1:19:22),(1:9:31),(1:17:13),
:16:5),(1:11:15),(1:13:10 :25:22)},

£55(20) = {(1:17:3),(1:17:12),(1: 18 : 7), (1 : 26 : 22), (1: 27 : 3), (1 : 15 : 24),
:19:13),(1:24:5),(1:16:2),(1:14:7),(1:9:27),(1:14:25),
£16:10), (1: 18 : 25), (1: 25 : 10),(1: 20 : 13), (1 : 24 : 23), (1 : 15 : 19),
:26:16),(1:12:16),(1:4:5),(1:28:19),(1:7:27),(1:4:23),
:9:18),(1:20 (1:12:22),(1:19:26),(1:28:24),(1:27:12),
:7:18),(1:25

(1:
1:
(

~~ /N /N
—_ —_

—_

—_ —_

e N N N N
—_

—_

(1:20: 26),
(1:25:2)},
E5,(31) = {(1:21:20), (1:4:25),(1:6:17),(1:20:27),(1:21: 14),(1:7: 12),
24:22),(1:15:21),(1:30:28),(1:19:17),(1:3:28), (1: 12 : 22),
$13:14),(1:8:21),(1:19:8),(1:26: 10), (1: 22: 10), (1: 26 : 7),
:3:5),(1:8:2),(1:13:20),(1:7:18),(1:6:8),(1:30:5),
$15:2),(1:23:18),(1:23:12),(1:12:25),(1:22:7),(1: 11 : 27),
£20:4),(1: 11 : 4)},

E5,(37) = {(1:26:20), (1:13:26), (1: 13 : 15), (1 : 32 : 18), (1: 34 : 21), (1: 27 : 11),
022:28),(1:25:4),(1:33:10),(1:31:14),(1:29:5),(1:25:11),
:30:13),(1:15:32),(1:31:32),(1:10:2),(1:28:26),(1:19:13),
©29:21),(1:22:20),(1:34:5),(1:28:15),(1:17:2),(1:30:36),
) ( (
) (

N N N T
g VG G S

—_

Y

—_
—_
—_

[\)
—

—_
—_
—_

:33:18),(1:15:14),(1:10:25),(1:32:10),(1:17:25),(1:26:28),
1:19:36),(1:27:4)},
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£5,(37) = {(1:35:21),(1:19:34),(1:33:6),(1:5:27),(1:30:20),(1:26:10),
1:2:10),(1:28:21),(1:22:13),(1:33:24),(1:27:13),(1: 15: 22),
1:2:18),(1:11:16), (1:5:34), (1:31:26), (1:29:22),(1:28:5),
£922:36), (1:19:27), (1:30:28), (1:35:5), (1:10: 15), (1 : 26 : 18),
18 28),(1 18 :20), (1:27:36), (1:24:2),(1:24: 25), (1 : 31 : 15),

24),(1:3:2),(1:21:16), (1:34:6), (1:3:25),(1: 10 : 26)},
55:2(37):{(1:36.2) (1:19:15),(1:29:12),(1: 22 : 15), (1: 27 : 20), (1 : 35 : 33),
1:10:29), (1:31:5),(1:6:12),(1:27:28),(1:36:25),(1:35: 17),
1:6:23), (1 (1:28:2),(1:15:33),(1:18:35), (1: 22 : 26),
:29:23),(1:9: (1:5:9),(1:24:3),(1:32:5),(1:5:7),
:15:17),(1:25:8),(1:11:9),(1:21:28),(1:25:35),(1:11:7),
£ 24 : 30), ( 1:10:31),(1:18:8),(1:9:3),(1:32:21),
1:19:26), ( 1:13:29),(1:31:21)}.

—_ =

(
(
(
(
(

—_

—_ = =

(
(
(
(
(
(

—
[\

(0¢]

[\

(@)
~
—~

1:21:20),

From the above results, we construct the Table E that illustrates the possible size of the plane
cubic €),(q) over F,. Furthermore, in Table P, we determined which of these plane cubics are
complete as (k, 3)-arcs. Also, all the correspond isotropy subgroups of (k,3)-arcs are given in Table

3.1. Proof Theorem

For a prime ¢ > 7, the Hasse-Weil theorem states that the number #(X)(F,)) of its rational
points has an upper and lower bound:

[#(X1(Fy)) — (¢ + 1] < 2V/3g;

where g = 1 is the genous of X}.

Our computer programs, states that the size of the plane cubic is 4v (See Table B) It follows
that the integer v satisfies (%ﬁ <v< L%J. Consequently, there is (4v, 3)-arc in PG(2, q)
for all values of v in the above range. It follows that the maximal value of v such that the plane

142
cubic of size 4v exists is v = Lq+ 2V

Recall that &, ,(g) is the set of all points in CooUCy 1 U{(1: —=A7"1:771)} where
Coo=4(1:0:0),(0:1:0),(0:0:1)}
and
Coi={(1:1:0),(1:0:1),(0:1:1),(1:1:1)}.

Note that these points form the projective plane PG(2,2) which is in turn a (7, 3)-arc. Furthermore,
if we assume A € F,\{0,—1},7 € F,\{0,1} and 7 # —\ (mod ¢). Then for odd prime ¢ > 7, the set
Exr(q) forms incomplete (8, 3)-arc on the plane cubic é) - (q).
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Table 2: Size of points on the plane cubic %) ,(¢) over F,, where ¢ is a prime and 7 < ¢ < 37

Grr(q) #(%6)-(q)) complete/incomplete isotropy subgroup
<6172(5) = 5172(5) 8 incomplete Z/4Z
©1.2(7) = E12(7) 8 incomplete 727

G22(7) = E22(T) U E35(7) 12 complete 737 x 7/]3Z
©12(11) = E15(11) 8 incomplete Z)27
Gap(11) = Ep(11) U &5 ,(11) 16 complete 727
%372 11) = 5372(11) U 5:;2(11) 12 incomplete Z/SZ
%172(13) = 5172(13) U 5{:2(13) 16 incomplete Z/GZ
G2,2(13) = E22(13) U £5,5(13) 12 incomplete 7)37
C32(13) = E32(13) U E5,(13) 20 complete Z]AZ
©53(13) = E53(13) 8 incomplete Z]AZ
C12(17) = E12(17) U E75(17) 16 incomplete 7]27
C22(17) = E22(17) U E5,(17) 24 complete Z/3Z
C32(17) = E32(17) U &5,(17) 20 complete 727
%6,2(17) = 56,2(17) U 5&2(17) 12 incomplete Z/SZ
612(19) = &1 2(19) U &1 ,(19) 24 complete S3
G2.2(19) = £22(19) U E5,(19) 16 incomplete 7.)27
C12(19) = £42(19) U E5,5(19) 28 complete Z]6Z
C5,2(19) = E52(19) U &5 ,(19) 20 complete 727
(51173(19) = 51173(19) U 5{173(19> 12 incomplete Z/SZ X Z/3Z
©12(23) = £1,(23) U £}, (23) 32 complete 7,27
62,2(23) = £22(23) U £5,(23) 24 complete 7)3Z
C32(23) = £32(23) U £5,(23) 16 incomplete Z7)27
C1,2(23) = E42(23) U £ ,(23) 20 incomplete 727
C5,2(23) = E52(23) U &5 ,(23) 28 complete 727
%12(29) = 5172(29) U 5{:2(29) 24 complete 63
©r2(29) = £35(29) U £5,(29) 32 complete 7,27
632(29) = £32(29) U £5,(29) 36 complete Z/3Z
32(29) = £2(29) U £54(29) 28 complete 727
60,2(29) = £92(29) U &5,(29) 40 complete Z]AZ
(51074 (29) = 51074(29) U 5{074(29> 20 incomplete Z/4Z
C12(31) = £12(31) U &L ,(31) 24 complete GH
Gra(31) = £5(31) U E5,(31) 28 complete 7,27
C32(31) = E32(31) U £5,(31) 32 complete 727
C52(31) = E52(31) U & ,(31) 36 complete 737
%6,2(31) = 56,2 (31) U 5&2 (31) 40 complete Z/2Z
%172(37) = 5172 (37) U 5{:2 (37) 32 incomplete Z/QZ
G2,2(37) = E22(37) U E5,(37) 36 complete 7)3Z
C32(37) = E32(37) U E5,(37) 44 complete Z7]27
C12(37) = E42(37) U E1,(37) 40 complete 727
C52(37) = E52(37) U E,(37) 48 complete 737
%&2(37) = 56,2 (37) U 5&2 (37) 28 incomplete Z/GZ

3.2. Proof Corollary 1

Theorem @ tell us that there exists a projective [k, n,d|,-code if and only if there exists an

(k,k — d)-arc in PG(n — 1,q). So our result comes immediately from Theorem [L.1].

According to Theorem @ and Theorem @, we get the following Griesmer codes:
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36,

[127379]77 [16737 13]117 [207 3717 13, [2473721}177 {2473721]197 [28737 25]197 [2873725]237 [3273729]237
3, 33]29, [40, 3,37]29, [36, 3, 33|31, [40,3,37]s1, [44, 3, 41]37 and [48, 3,45]37.
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