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Abstract
This paper presents a new sub-equation method based on an auxiliary equation which is imple-
mented via the well-known generalized Kudryashov method, to construct new traveling waves to
the Telegraph equation with time and space conformable derivatives. To illustrate its effectiveness,
it was tested for seeking traveling wave solutions to the (1+1)-Telegraph equation with space-time
conformable derivatives. With the help of Maple Software we derive some new solitary waves solu-
tions. It can be concluded that the proposed method is an accurate tool for solving several kind of
nonlinear evolution equations.
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1. Introduction

Nowadays, differential equations with conformable derivative order become powerful tool for
modeling nonlinear phenomena that are encountered in many fields, such as Physics, Mechanics,
Engineering, etc. Finding accurate method for solving such problems has been undertaken by many
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researchers [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].
to this end a variety of powerful methods have been presented such as sine-cosine method [1, 2],
homotopy perturbation method [3, 4], tanh-sech method [5, 6], homogeneous balance method [7, 8],
F-expansion method [9, 10], Exp-function method [11, 12, 13], (G’/G)-expansion method [14, 15,
16], modified Kudryashov method [17, 18, 19], generalized Kudryashov method [20, 21, 22], double
auxiliary equations method [27, 28, 29, 30], and so on.
Our study focusses on presenting a novel technique to solve partial differential equations with time
and space conformable derivatives by combining the generalized Kudryashov method to the auxiliary
equation technique. We implement this novel method to seek traveling waves for the space-time non
linear Telegraph equation with conformable derivatives. The remainder of this paper is organized
as follows. In section 2, we recall some basic definitions of conformable derivative and some of its
useful mathematical properties that will be used throughout the paper. Section 3, deals with the the
description of the new method. In section 4, we construct solitary wave solutions for the space-time
non linear Telegraph Equation. In section 5, the behavior of the wave solutions of space-time non
linear Telegraph Equation are displayed graphically and discussed in detail. In section 6 concluding
remarks are given.

2. Preliminaries

Following the works by Khalil et al.[31] and Abdeljawad et al. [32, 33, 34, 35, 36], the Conformable
derivative of order α with respect to x is defined as the following

Dα
t (f(t)) = limϵ−>0

f(t+ ϵt1−α)− f(t)

ϵ
, for all t > 0 0 < α ≤ 1. (2.1)

Here, we recall some useful properties of Conformable derivative:

Dα
t f (g (t)) = f ′

g[g (t)]D
α
t (g (t) , (2.2)

Dα
t (f (t) g (t)) = f (t)Dα

t g (t) + g(t)Dα
t f (t) , (2.3)

Dα
t (t

u) = u.tu−α, (2.4)
Dα

x (c) = 0,where c is a constant, (2.5)

Dα
t (f) (t) = t1−α.

df

dt
. (2.6)

3. Description of the method

We present here the main steps of the proposed method. Consider a general nonlinear equation
with conformable derivatives as the following

P (u, ux, uy, uz, . . . , D
δ
t , D

α
x , D

β
y , D

γ
z , . . . ) = 0. (3.1)

Where u is a function of independent variables, (x, y, z, . . . , t), Dα
t , D

α
x , D

β
y and Dα

z are the Con-
formable derivatives of u with respect to t, x, y and z and P is polynomial in u.
To seek the traveling wave solutions u of Eq. 3.1 explicitly, we will follow the next three steps:
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• Step 1. Using the wave transformation

U (x, y, z, . . . , t) = U (η) , η =
kxα

α
+

lyβ

β
+

hzγ

γ
+ · · · − vtδ

δ
. (3.2)

Where k, l, h and v are constants to be determined later, Eq.(3.2) converts Eq.(3.1) to an
ordinary differential equation with new variable η

H (u, u′, u′′, u′′′, . . . ) = 0 (3.3)

where the prime stands for differentiation with respect to η.

• Step 2. Assume that the exact solution of Eq.(3.3) can be written as

u (η) =

∑N
i=0 ai

(
h(η)
g(η)

)i
∑M

j=0 bj

(
h(η)
g(η)

)j . (3.4)

Here ai (i = 0, ..., N) , bj (j = 0, ...,M) are constants to be determined later, (aN , bM) ̸= (0, 0),
and

(
h(η)
g(η)

)
is the solution of(

h(η)

g(η)

)′

= A

(
h(η)

g(η)

)2

+B

(
h(η)

g(η)

)
+ C, (3.5)

where g(η) = exp(η) (h(η))′. Eq. (3.5) has the following set of solutions
1. Family1 : When ∆ = B2 − 4AC > 0,(

h(η)

g(η)

)
=

−2C[1− tanh(
√
∆
2
η) tanh(

√
∆
2
k1)]

B − B tanh(
√
∆
2
η) tanh(

√
∆
2
k1)−

√
∆[tanh(

√
∆
2
η)− tanh(

√
∆
2
k1)]

. (3.6)

k1 is a constant.
2. Family 2 : When ∆ = B2 − 4AC < 0, then(

h(η)

g(η)

)
=

−2C[1 + tan(
√
−∆
2

η) tan(
√
−∆
2

k1)]

B +B tan(
√
−∆
2

η) tan(
√
−∆
2

k1) +
√
−∆[tan(

√
−∆
2

η)− tan(
√
−∆
2

k1)]
. (3.7)

k1 is a constant.
3. Family 3: When ∆ = B2 − 4AC = 0, AC > 0, then(

h(η)

g(η)

)
= − C(η − k1)√

AC(η − k1)− 1
, (3.8)

k1 is a constant.
4. Family 4: When C = 0, B ̸= 0, then(

h(η)

g(η)

)
= − B exp(Bη)

A expBη +Bk1
, (3.9)

k1 is a constant.
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5. Family 5: When B = 0, C = 0, (
h(η)

g(η)

)
= − 1

Aη + k1
, (3.10)

k1 is a constant.

• Step 3: To compute the positive integer number N and M in Eq. (3.4) we balance the highest
order linear term and the highest order nonlinear term occurring in Eq.(3.3) This completes
the determination of the value of N and M .

Substituting Eq.(3.4) along with Eq.(3.5) into Eq. (3.3), we calculate all the necessary deriva-
tives u′, u′′, . . . As a result of this substitution,we get then a polynomial of

(
h(η)
g(η)

)
, setting the co-

efficients of the same power of
(

h(η)
g(η)

)
to zero, we obtain a system of algebraic equations.Solving

this system we get the unknown parameters A,B,C, ai (i = 0, . . . , N) , bj, (j = 0, . . . ,M) ,
k, l, h, ... and v. We finally obtain the exact solutions of Eq.(3.3). Substituting these results
into the solutions of Eq(3.5) and using Eq.(3.2) we get the exact solutions of Eq. (3.1).

4. Derivation of new traveling waves to the Telegraph equation

In this section we seek the exact solutions of the Telegraph Equation through above described
method. Such equation with time-space conformable derivatives can be written as

D2α
tt u−D2α

xxu+Dα
t u+ γu+ βu3 = 0. (4.1)

Where α is a parameter describing the order of derivation in conformable sense. When α = 1, Eq.
(4.1) reduces to the nonlinear Telegraph equation. Using the complex transform

η =
kxα

α
− ctα

α
(4.2)

, Eq.(4.1) is reduced to the following ordinary differential equation

(c2 − k2)u′′ − cu′ + γu+ βu3 = 0. (4.3)

Balancing the order of u′′ and u3 in Eq. (4.3), we obtain N = 2 and M = 1. Then the solution
can be expressed as

u (η) =
a0 + a1

(
h(η)
g(η)

)
+ a2

(
h(η)
g(η)

)2
b0 + b1

(
h(η)
g(η)

) . (4.4)

Substituting Eq.(4.4) and its derivatives using Eq.(3.5) into Eq.(4.3), collecting the coefficients
of each power of

(
h(η)
g(η)

)i
, (i = 0, . . . , N), (i = 0, . . . ,M),

and set them to zero, we obtain a system of algebraic equations. Solving this system of algebraic
equations with the aid of Maple, we obtain the following sets:
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• Set 1:

a0 = 0, a1 = ±
√
2b1
4

√
−2γ(B2+∆−2B ∆√

∆
)

β∆
, a2 = ±

√
2b1
8C

√
−2γ(B2+∆−2B ∆√

∆
)

β∆
(B + ∆√

∆
), b0 = 0,

k = ±
√

9γ2−2γ
4∆

, c = 3γ√
4∆

,∆ = B2 − 4AC.

(4.5)

Substituting these result into Eq (4.4) we have :

u1 (η) = ± 1

4C

√
−γ(B2 +∆− 2B ∆√

∆
)

β∆

(
2C + (B +

∆√
∆
)

(
h(η)

g(η)

))
(4.6)

where

η = ±
√

9γ2−2γ
4∆

xα

α
− 3γ√

4∆
tα

α
The exact solution u1 (η) exists under the constraint condition ∆ > 0.

• Set 2:

a0 = ± b0
2

√
(−γ
β∆

)[B − ∆√
∆
], a1 = ±1

2

√
(−γ
β∆

)[b1B + 2b0A− ∆b1√
∆
], a2 = ±Ab1

√
γ

−β∆
,

k = ±1
2

√
9γ2−2γ

∆
, c = 3γ

2
√
∆
,∆ = B2 − 4AC.

(4.7)

substituting these results in Eq (4.4), we have :

u2 (η) = ±1

2

√
−γ

β∆

(
B − ∆√

∆
+ 2A

h(η)

g(η)

)
. (4.8)

where η = ±1
2

√
9γ2−2γ

∆
xα

α
− 3γ

2
√
∆

tα

α
.

• Set 3:
a0 = ±Cb1

4A

√
Aγ
βC

, a1 = ± b1
4A

√
γA
Cβ
1√

−4AC

, a2 = ∓ b1
4

√
Aγ
Cβ

, b0 = 0, B = 0,

k = ±1
4

√
9γ2−2γ
−4AC

, c = 3γ

4
√
−4AC

.

(4.9)

Substituting these results in Eq (4.4), we have :

u3 (η) = ∓1

4

√
Aγ

βC

(
− C√

∆
− h(η)

g(η)
+ A√

∆

(
h(η)
g(η)

)2)
A√
∆

(
h(η)
g(η)

) . (4.10)

Where η = ±1
4

√
9γ2−2γ
−4AC

xα

α
− 3γ

4
√
−4AC

tα

α
.
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• Set 4:
a0 = ±b0

√
(−γ
β∆

)

4B
[B2 − 2∆B√

∆
+∆], a1 = ±

b0A
√

(−γ
β∆

)[−∆√
∆
+B]

B
,

a2 = ± b0A2

B

√
(−γ
β∆

), b1 =
2b0A
B

,∆ = B2 − 4AC,

k = ±
√

9γ2−2γ
16∆

, c = 3γ√
16∆

.

(4.11)

Substituting these results in Eq (4.4), we have :

u4 (η) = ±1

4

√
(
−γ

β∆
)

 [B2 − 2B∆√
∆
+∆] + A[4B − 4 ∆√

∆
]
(

h(η)
g(η)

)
+ 4A2

(
h(η)
g(η)

)2
B + 2A

(
h(η)
g(η)

)
 (4.12)

where η = ±
√

9γ2−2γ
16∆

xα

α
− 3γ√

16∆
tα

α
.

• Set5 :
a0 = ±b0

√
−γ
β
, a1 = 0, a2 = 0, b1 =

2Bb0
C

, A = 0,

k = ±
√

9γ2−2γ

2B
, c = −3γ

2B
, BC ̸= 0

(4.13)

Substituting these result into Eq (4.4) we have :

u5 (η) =
±
√

−γ
β

1 + 2B
C

(
h(η)
g(η)

) (4.14)

where η = ±
√

9γ2−2γ

2B
xα

α
+ 3γ

2B
tα

α
.

• Set 6:

a0 = ±b0

√
−γ
B
, a1 = ±Bb0

C

√
−γ
B
, , a2 = 0, b1 =

−b0B
C

, A = 0,

k = ±
√

9γ2−2γ

2B
, c = 3γ

2B
.

(4.15)

substituting these result into Eq (4.4) we have :

u6 (η) = ±
√

−γ

β

(
C +B h(η)

g(η)

−C +B h(η)
g(η)

)
(4.16)

where η = ±
√

9γ2−2γ

2B
xα

α
− 3γ

2B
tα

α
.
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• Set 7:

a0 = ±
√
2b0

2(B2−∆)

(√
−2γ(B2+∆+2B ∆√

∆
)

β
(B − ∆√

∆
)

)
, a1 = ±

√
2b0
4C

(√
−2γ(B2+∆+2B ∆√

∆
)

β

)
a2 = 0, b1 =

b0
2C

(
B − 3 ∆√

∆

)
k = ±1

2

√
9γ2−2γ

∆
, c = 3γ

2
√
∆
,∆ = B2 − 4AC.

(4.17)

Substituting these result into Eq (4.4) we have :

u7 (η) = ±

√
−γ(B2 +∆+ 2B ∆√

∆
)

β

 2BC − 2∆C√
∆
+ (−∆+ B2)

(
h(η)
g(η)

)
(B2 −∆)

(
2C + (B − 3 ∆√

∆
)
(

h(η)
g(η)

))
 (4.18)

where η = ±1
2

√
9γ2−2γ

∆
xα

α
− 3γ

2
√
∆

tα

α
.

• Set 8:
a0 = ±b0

√
−γ
β
, a1 = ±Ab0

B

√
−γ
β
, a2 = 0, C = 0,

k = ±1
2

√
9γ2−2γ

B2 , c = −3γ
2B

.

(4.19)

substituting these results in Eq (4.4), we have :

u8 (η) = ±b0

√
−γ

β

 1 + A
B

(
h(η)
g(η)

)
b0 + b1

(
h(η)
g(η)

)
 (4.20)

where η = ±1
2

√
9γ2−2γ

B2
xα

α
+ 3γ

2B
tα

α
.

• Set 9:
a0 = ±Cb1

B

√
−γ
β
, a1 = 0, , a2 = 0, b0 = 0, A = 0,

k = ±
√

9γ2−2γ

2B
, c = −3γ

2B
.

(4.21)

Substituting these results in Eq (4.4), we have

u9 (η) =
±C

B

√
−γ
β(

h(η)
g(η)

) . (4.22)

where η = ±
√

9γ2−2γ

2B
xα

α
+ 3γ

2B
tα

α
.

• Set 10:
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a0 = ±1
2

√
−

2γ[2C2b21+2b0b1C
∆√
∆
+b20∆+2b20CA−2BCb0b1−Bb20

∆√
∆
]

β∆
,

a1 = ±
√
2

√
−

γ(2C2b21+2
b0b1C∆√

∆
+b20∆+2b20CA−2b0b1BC− B√

∆
b20∆)

β∆

(B+ ∆√
∆
)

4C
, a2 = 0,

k = ±1
2

√
9γ2−2γ

∆
, c = 3γ

2
√
∆
,∆ = B2 − 4AC.

(4.23)

Substituting these results in Eq (4.4), we have :

u10 (η) = ±

(
2C + (B + ∆√

∆
)
(

h(η)
g(η)

))
4C(b0 + b1

(
h(η)
g(η)

)
)

√
−γ([B2 +∆− 2B ∆√

∆
]b20 + 4C2b21 + 4b0b1(

C∆√
∆
− BC))

β∆

(4.24)

where η = ±
√

9γ2−2γ
4∆

xα

α
− 3γ√

4∆
tα

α

• Set 11:
a0 =

Ca1
B

, a2 = 0, b0 = 0, b1 = ±a1

√
−β
γ
, A = 0,

k = ±
√

9γ2−2γ

2B
, c = 3γ

2B
.

(4.25)

Substituting these results in Eq (4.4), we have :

u11 (η) = ±
C
B
+
(

h(η)
g(η)

)
√

−β
γ

(
h(η)
g(η)

) (4.26)

where η = ±
√

9γ2−2γ

2B
xα

α
− 3γ

2B
tα

α
.

• Set 12:

a0 = ±
√

−γ[(∆+2CA−B ∆√
∆
)b20+2Cb0b1(

∆√
∆
−B)+2C2b21]

2β∆
,

a1 = ±
√

−2γ[(∆+2CA−B ∆√
∆
)b20+2Cb0b1(

∆√
∆
−2B)+2C2b21]

β∆

(B+ ∆√
∆
)

4C
, , a2 = 0,

k = ±1
2

√
9γ2−2γ

∆
, c = 3γ

2
√
∆
.

(4.27)

Substituting these results in Eq (4.4), we have :

u12 (η) = ±

√
−γ[(∆ + B2 − 2B ∆√

∆
)b20 + 4b0b1C( ∆√

∆
− B) + 4C2b21]

β∆

2C + (B + ∆√
∆
)
(

h(η)
g(η)

)
4C(b0 + b1

(
h(η)
g(η)

)
)

 .

(4.28)
where η = ±1

2

√
9γ2−2γ

∆
xα

α
− 3γ

2
√
∆

tα

α
.
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• Set 13:
a0 = 0, a2 = 0, b0 =

B
Aγ

(b1γ + a1
√
−βγ), C = 0,

k = ± 1
2B

√
9γ2 − 2γ, c = 3γ

2B
.

(4.29)

Substituting these results in Eq (4.4), we have

u13 (η) =
a1

(
h(η)
g(η)

)
B
Aγ

(b1γ + a1
√
−βγ) + b1

(
h(η)
g(η)

) . (4.30)

Where η = ± 1
2B

√
9γ2 − 2γ xα

α
− 3γ

2B
tα

α
.

In particular, the new exact solution of the Telegraph Equation with conformable space-time
derivatives (4.1) with the help of Eq. (3.6) to Eq. (3.10) as follows:

When C = 0, B ̸= 0,

u1.1 (η) = ± 1
4C

√
−γ(B2+∆−2B ∆√

∆
)

β∆

(
2C + (B + ∆√

∆
)− B exp(Bη)

A expBη+Bk1

)
,

η = ±
√

9γ2−2γ
4∆

xα

α
− 3γ√

4∆
tα

α

(4.31)

The solution u1,1 (η) exists under the constraint condition ∆ > 0.
When ∆ = B2 − 4AC > 0,

u1.2 (η) = ± 1
4C

√
−γ(B2+∆−2B ∆√

∆
)

β∆

(
2C + (B + ∆√

∆
)

−2C[1−tanh(
√
∆
2

η) tanh(
√
∆
2

k1)]

B−B tanh(
√
∆
2

η) tanh(
√
∆
2

k1)−
√
∆[tanh(

√
∆
2

η)−tanh(
√
∆
2

k1)]

)
,

η = ±
√

9γ2−2γ
4∆

xα

α
− 3γ√

4∆
tα

α

(4.32)
The other solutions can be derived in an analogous way.

5. Graphical illustrations and discussion

For the sake of briefness, we present here the profiles of some obtained solutions. The figures
has been plotted by the Matlab software. In Figs.1-5, the 3D profiles and the contour plots of those
solutions are given for some selected parameters satisfying the above mentioned calculations for each
case. We underline that the resulting solutions were substituted in the studied equation to verify
their correctness of the method. All computations were done using Maple17 software.
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(a) (b)

Figure 1: (a)Profile of the solution u1(x, y) for A = 2, B = 5, C = 2, α = 0.5, β = −1, γ = 1 and w1 = 1. (b) Contour
plots corresponding to u1(x, y).

(a) (b)

Figure 2: Profile of the solution u2(x, y) for A = −2;B = −1;C = 5;α = 1
2 ;β = − 1

3 ; γ = 1
2 and w1 = 0. (b) Contour

plots corresponding to u2(x, y).
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(a) (b)

Figure 3: Profile of the solution u3(x, y) for A = 1, B = 0, C = −8, α = 1
3 , β = −2, γ = 3 and w1 = 8. (b) Contour

plots corresponding to u3(x, y).

(a) (b)

Figure 4: Profile of the solution u4(x, y) for A = 3, B = 4, C = 1, α = 0.9, β = 0.25, γ = 1 and w1 = 1. (b) Contour
plots corresponding to u4(x, y).
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(a) (b)

Figure 5: Profile of the solution u5(x, y) for A = 0, B = −2, C = 3, α = 0.9, β = 3, γ = −1 and w1 = 5. (b) Contour
plots corresponding to u5(x, y).

The others solutions are also hyperbolic, trigonometric, exponential or rational solutions. They
have similar profiles to the formers.

6. Conclusion

In the present paper, a new method was proposed using the auxiliary equation and the general
Kudryashov method. Its accuracy has been tested by applying it successfully to the Telegraph
equation with time-space conformable derivatives. It can be seen through this study, that this method
is a powerful mathematical technique for finding traveling wave solutions for the partial differential
equations. This method could be applied to the nonlinear evolution equations which arising in
many fields of science. We derived various solitary waves for the (1+1)-Telegraph equation with
space-time conformable derivatives, namely : hyperbolic, trigonometric, exponential and rational
solutions. Some of the results have already been reported in the literature and some of them are
new. The outcomes of this work would be beneficial to understand the behaviors of wave propagation
in nonlinear science with beta derivatives or M-derivatives.
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