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Abstract

In this article, we present a new fractional integral with a non-singular kernel and by using Laplace
transform, we derived the corresponding fractional derivative. By composition between our fractional
integration operator with classical Caputo and Riemann-Liouville fractional operators, we establish
a new fractional derivative which is interpolated between the generalized fractional derivatives in a
sense Riemann-Liouville and Caputo-Fabrizio with non-singular kernels. Additionally, we introduce
the fundamental properties of these fractional operators with applications and simulations. Finally,
a model of Coronavirus (COVID-19) transmission is presented as an application.

Keywords: Fractional integral; fractional derivative; non-singular kernels; Mittag-Leffler function;
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1. Introduction

Fractional calculus has become a popular and significant area of study. It is due mainly to the
widespread use of fractional differential equations in various technical and scientific fields, including
physics, biology, chemistry, control theory, economics, signal and image processing, blood flow phe-
nomena, biophysics, aerodynamics and data fitting[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Fractional derivatives
are also well-suited to describing the memory and heredity characteristics of different materials and
processes. Because of these properties of fractional derivatives, fractional-order models are seen to
be more realistic and practical than integer-order models, which ignore such effects. There are many
kinds of fractional derivatives, like Riemann-Liouville, Caputo, Hadamard, Grunwald-Letnikov, and
Hilfer, for more details; see [11, 12, 13, 14].

By developing the kernel of the fractional derivative (integral) operator, the researchers tried
to reach the best description of the mathematical models for many real-world problems. Lately,
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many researchers have been interested in developing new types of fractional operators without sin-
gular kernels. Caputo and Fabrizio, in [15], introduced a new fractional derivative without singular
(exponential) kernel, and in [16], they presented some of its applications. Atangana and Baleanu
in [17] suggested a new definition of a fractional derivative without singular (Mittag-Leffler) kernel
for Riemann–Liouville and Caputo sense. Al-Refai in [18] presented the definition of the weighted
Atangana–Baleanu fractional derivative in a Caputo sense. In 2020, Hattaf [19] presented a gen-
eralization definition of the fractional derivative given in [18]; also, he introduced the weighted
Atangana–Baleanu fractional derivative in a Riemann–Liouville sense with related fractional inte-
gral. The fractional derivatives without singular kernels gave adequately described for models of
dissipative phenomena where the classical fractional operators cannot give it, see [20, 21, 21].

This work aims to establish and investigate properties of a new definition of fractional derivative,
as an interpolate fractional derivative between generalized fractional derivatives Caputo-Fabrizio and
Riemann-Liouville with Mittag- Leffler kernels. The rest of the article is structured as follows. In
Sec. 2, we mention some important results and definitions related to the fractional calculus. In Sec.
3, we present a new fractional integral with a non-singular kernel and establish some properties and
application with simulation. In Sec. 4, we derive a fractional derivative associated with the fractional
integral in Sec. 3 and its properties with simulation. As for Sec. 5, it represents our main purpose in
this article, where we introduce a new fractional derivative with fractional integral related to it and
establish their fundamental properties with applications and simulations. In Sec. 6, an application
is presented.

2. Basics and Preliminaries

In this section, we recall some definitions, lemmas and notations, which help us later to establish
our main results. For more details, we refer to the references [13, 14].

Definition 2.1. The Mittag-Leffler function of one parameter is defined as

Eρ(θt
ρ) =

∞∑
j=0

θj
tρj

Γ(ρj + 1)
, (0 6= θ ∈ R,t ∈ C,ρ > 0), (2.1)

and the generalization of the Mittag-Leffler function with two parameters ρ and σ is given by

Eρ,σ(θtρ) =
∞∑
j=0

θj
tρj

Γ(ρj + σ)
, (0 6= θ ∈ R,t, σ ∈ C,ρ > 0), (2.2)

where Eρ,1(θtρ) = Eρ(θt
ρ).

We recall that the Laplace transform of the Mittag-Leffler functions (2.1) and (2.2)

L{Eρ(θtρ)} (λ) =
λρ−1

λρ − θ
, L

{
tσ−1Eρ,σ(θtρ)

}
(λ) =

λρ−σ

λρ − θ
, respectively. (2.3)

It should be noted, the Mittag-Leffler function is a generalization function of the exponential function,
where E1 (z) =

∑∞
j=0

zj

j!
= exp (z) .

Let −∞ < â < a < ∞. Let Cδ [â, a] be the weighted space of continuous functions
Cδ [â, a] = {x : (â, a]→ R : (t− â)δx(t) ∈ C[â, a]}, δ ∈ [0, 1), with the norm

‖x‖Cδ
=
∥∥∥(t− â)δx (t)

∥∥∥
C
,
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and for n ∈ N, let Cn
δ [â, a] be the space of continuously differentiable on [â, a] up to order n − 1

such that Dnx(t) ∈ Cδ[â, a]
(
Dn = dn

dtn

)
, with the norm

‖x‖Cnδ
=

n−1∑
k=0

∥∥Dkx
∥∥
C

+ ‖Dnx‖Cδ
.

Remark 2.2. The above spaces have the following properties

i. C0 [â, a] = C [â, a] ,

ii. C0
δ [â, a] = Cδ [â, a] ,

iii. if 0≤ δ1 < δ2 < 1, then Cδ1 [â, a] ⊂ Cδ2 [â, a] .

Next, we recall the following definitions related to fractional calculus.

Definition 2.3. The fractional integral of order q > 0 with the lower limit â for a function
ζ ∈ Cδ [â, a] and defined by

RLIqâζ (ε) =
1

Γ (q)

∫ ε

â

(ε− s)q−1ζ (s) ds, ε ∈ (â, a ] , q > 0,

is called Riemann-Liouville, where Γ(·) is the Gamma function.

Definition 2.4. For a function ζ ∈ Cδ [â, a] the expression

RLDq
âζ (ε) =

1

Γ (1− q)
d

dε

∫ ε

â

(ε− s)−qζ (s) ds = DI1−q
â ζ (ε) , ε ∈ (â, a ] 0 < q < 1,

is called Riemann-Liouville derivative of order q.

Definition 2.5. For a function ζ (ε) ∈ C1
δ [â, a] the expression

CDq
âζ (ε) =

1

Γ (1− q)

∫ ε

â

(ε− s)−q ζ̇ (s) ds = I1−q
â Dζ (ε) , ε ∈ (â, a ] 0 < q < 1,

is called the Caputo derivative of order q.

Lemma 2.6. For t > â we have

i.
[
RLIqâ(τ − â)p−1] (t) = Γ(p)

Γ(p+q)
(t− â)p+q−1 q ≥ 0, p > 0,

ii.
[
RLDq

â(τ − â)q−1] (t) = 0 0 < q < 1.

Lemma 2.7. For q > 0, Iqâ maps C [â, a] into C [â, a] .

Lemma 2.8. Let q > 0 and δ ∈ [0, 1) . Then RLIqâ is bounded from Cδ [â, a] into Cδ [â, a] :

∥∥RLIqâx∥∥Cδ
≤ (a− â)q

Γ(1− δ)
Γ(q + 1− δ)

‖x‖Cδ

Lemma 2.9. Let q > 0 and δ ∈ [0, 1) . If δ ≤ q, then RLIqâ is bounded from Cδ [â, a] into C [â, a] .



828 K. O. Hussain, N. J. Al-Jawari, A. K. O. Mazeel,

Lemma 2.10 (semigroup property). Let q > 0, δ ∈ [0, 1) , p ≥ 0 and ζ ∈ Cδ [â, a]. Then

RLIpâ
(
RLIqâζ

)
(t) =

(
RLIp+qâ ζ

)
(t) , t ∈ (â, a ] .

Lemma 2.11. Let 0 < q < 1, δ ∈ [0, 1) and ζ ∈ Cδ [â, a]. Then

RLDq
â

(
RLIqâζ

)
(t) = ζ(t) for all t ∈ (â, a]

Lemma 2.12. Let 0 < q < 1, δ ∈ [0, 1) . If ζ ∈ Cδ [â, a] and RLIq−1
â ζ ∈ C1

δ [â, a], then

RLIqâ
(
RLDq

âζ
)

(t) = ζ (t)−
(
RLI1−q

â ζ
)

(â)

Γ (q)
(t− â)q−1 for all t ∈ (â, a ] .

Lemma 2.13. If 0 < q < 1 and ζ ∈ Cδ [â, a], then(
RLIqâ

CDq
âζ
)

(t) = ζ (t)− ζ (â) for all t ∈ (â, a ] .

Remark 2.14. For q ∈ (0, 1) , λ > 0 the Laplace transform of operators RLIq0 ,
RLDq

0and cDq
0 are

given by

L
{(

RLIq0ζ
)

(t)
}

(λ) = λ−qL{ζ (t)} (λ) ,

L
{(

RLDq
0ζ
)

(t)
}

(λ) = λqL{ζ (t)} (λ)−
(
RLI1−q

â ζ
)

(0) ,

L
{(

CDq
0ζ
)

(t)
}

(λ) = λqL{ζ (t)} (λ)− λq−1 (ζ) (0) ,

respectively.

3. Generalized Fractional Integral

In this section, we introduce a new fractional integral definition by generalizing the Caputo-
Fabrizio fractional integral[16], where we replace the exponential kernel with the Mittag-Leffler kernel.
Additionally, we establish properties for this integral.

Definition 3.1. Let 0<α< 1,β> 0 and x ∈ Cδ [â, a]. The new fractional integral of order α,β of
the function x(t) is defined as follows(

Kα,βâ x
)

(t) =
1

α

∫ t

â

Eβ

[
−Cα(t− s)β

]
x (s) ds, (3.1)

where Cα = 1−α
α

and Eβ(z) =
∑∞

j=0
zj

Γ(βj+1)
is Mittag-Leffler function.

To show that the new fractional integral Kα,βâ is actuality a generalization of the Caputo-Fabrizio
fractional integral [16]. Taking β= 1 leads to

(
Kα,1â x

)
(t) =

1

α

∫ t

â

E1

[
−Cα(t− s)1]x (s) ds =

1

α

∫ t

â

exp [−Cα (t− s)]x (s) ds,

Below we establish some properties related to the fractional integral operator Kα,βâ .
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Theorem 3.2. For any α, β , x satisfying the conditions from Definition 3.1, the fractional integral
operator Kα,βâ can be written as(

Kα,βâ x
)

(t) =
1

α

∞∑
n=0

(−Cα)n
(
RLInβ+1

â x
)

(t) . (3.2)

Proof . According to Definition 2.1 and Definition 2.3, we have(
Kα,βâ x

)
(t) =

1

α

∫ t

â

x (s)
∞∑
n=0

(−Cα)n

Γ (nβ + 1)
(t− s)nβds

=
1

α

∞∑
n=0

(−Cα)n

Γ (nβ + 1)

∫ t

â

x (s) (t− s)nβds =
1

α

∞∑
n=0

(−Cα)n
(
RLInβ+1

â x
)

(t),

where RLIγâ is the standard Riemann-Liouville fractional integral of order γ. �

Dealing with convergent series is essential in fractional calculus, so the series which is given in
Theorem 3.2 will be helpful to study the properties of fractional integral Kα,βâ .

Remark 3.3. By linearity of Riemann-Liouville fractional integral, the fractional Kα,βâ is linear
operator, that is

Kα,βâ [ux (t) + vy (t)] = uKα,βâ x (t) + vKα,βâ y (t) ,

holds for all scalars u, v and x, y ∈ Cδ [â, a] .

According to the analytically of the Mittag-Leffler function Eβ

[
−Cα(t− s)β

]
at any point s in

the interval [â, t) . Also, we know that lims→−t Eβ

[
−Cα(t− s)β

]
= 1 , and by continuity of x(t) the

fractional integral Kα,βâ is well-defined.

Lemma 3.4. For 0≤δ< 1 and α∈ (0, 1), the fractional integration operator Kα,βâ is bounded from
Cδ [â, a] into space C [â, a] : ∥∥∥(Kα,βâ x

)
(t)
∥∥∥
C
≤M‖x‖Cδ,

(3.3)

where

M =
Γ (1−δ)
α

(a− â)1−δE
β,2−δ

[
Cα(a− â)β

]
Proof . Note that by the definition of the space Cδ [â, a] and Lemma 2.9, we have (t− â)δx (t) ∈
C [â, a] and∥∥∥(Kα,βâ x

)
(t)
∥∥∥
C

=

∥∥∥∥∥ 1

α

∞∑
n=0

(−Cα)n
(
RLInβ+1

â x
)

(t) .

∥∥∥∥∥
C

≤ 1

α

∞∑
n=0

(Cα)n
∥∥∥(RLInβ+1

â x
)

(t)
∥∥∥
C
,

Lemma 2.6 (i), gives∥∥∥(Kα,βâ x
)

(t)
∥∥∥
C
≤ 1

α

∞∑
n=0

(Cα)n
Γ(1−δ)

Γ(kβ + 2− δ)
(t− â)kβ+1−δ ‖x (t)‖

Cδ

≤M‖x‖Cδ
.

�
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Lemma 3.5. Let x (t) ∈ Cδ [â, a]. Then Kα,βâ x (t) ∈ C1
δ [â, a] .

Proof . By the definition of the space C1
δ [â, a] , it suffices to show that DKα,βâ x (t) ∈ Cδ [â, a]. For

this, let {xk}∞k=1 be any convergent sequence in the space Cδ [â, a], i.e.
there exists x∈ Cδ [â, a] such that xk → x, as k →∞. Now we need to prove that
DKα,βâ xk (t)→ DKα,βâ x (t) , as k →∞ , using Remark 3.3, yields∥∥∥DKα,βâ xk (t)−DKα,βâ x (t)

∥∥∥
Cδ

=
∥∥∥DKα,βâ [xk (t)− x(t)]

∥∥∥
Cδ

=

∥∥∥∥ 1

α

d

dt

∫ t

â

Eβ

[
−Cα(t− s)β

]
[xk (s)− x (s)] ds

∥∥∥∥
Cδ

Leibniz integral rule gives us∥∥∥DKα,βâ xk (t)−DKα,βâ x (t)
∥∥∥

Cδ
=

∥∥∥∥ 1

α
[xk (t)− x (t)] +

1

α

∫ t

â

[xk (s)− x (s)]

(
∂

∂t
E
β

[
−Cα(t− s)β

])
ds

∥∥∥∥
Cδ

=

∥∥∥∥∥ 1

α
[xk (t)− x (t)] +

1

α

∞∑
n=0

(−Cα)n

Γ (nβ)

∫ t

â

[xk (s)− x (s)] (t− s)nβ−1ds

∥∥∥∥∥
Cδ

Since the Mittag-Leffler function and its t-derivative are analytic functions at every point s in [â, t)
and the Riemann fractional integrals RLInβâ (n = 1, 2, ..) is well-defined for any function in the
space Cδ [â, a] , then the integrals∫ t

â

[xk (s)− x (s)] (t− s)nβ−1ds, n = 1, 2, ..

are converges. Hence∥∥∥DKα,βâ xk (t)−DKα,βâ x (t)
∥∥∥

Cδ
≤ 1

α
‖xk (t)− x (t)‖Cδ

+
1

α

∞∑
n=0

(−Cα)nRLInβâ ‖xk (t)− x (t)‖Cδ

By our assumption, the right-hand side leads to zero whenever k →∞ . �

Lemma 3.6. Let α∈ (0, 1) , 0≤δ< 1 and x ∈ Cδ [â, a]. Then the fractional integration operator Kα,βâ
is bounded in Cδ [â, a] : ∥∥∥(Kα,βâ x

)
(t)
∥∥∥

Cδ
≤M‖x‖Cδ

,

Where M = Γ(1−δ)
α

(a− â)Eβ,2−δ

[
Cα(a− â)β

]
.

Moreover (
Kα,βâ x

)
(a) := lim

t→a
Kα,βâ x (t) = 0.

Proof . Since x ∈ Cδ [â, a] then (t− â)δx (t) ∈ C [â, a] and thus

‖x (t)‖Cδ
=
∥∥∥(t− â)δx (t)

∥∥∥
C
.

Using Theorem 3.2, we get that∥∥∥(Kα,βâ x
)

(t)
∥∥∥

Cδ
=

∥∥∥∥∥ 1

α

∞∑
k=0

(−Cα)k
(
RLIkβ+1

â x
)

(t)

∥∥∥∥∥
Cδ

≤ 1

α

∞∑
k=0

(Cα)k
∥∥∥(RLIkβ+1

â x
)

(t)
∥∥∥

Cδ
,
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on the other hand, we have∥∥∥(RLIkβ+1
â x

)
(t)
∥∥∥

Cδ
≤ (t− â)δ

Γ(kβ + 1)

∫ t

â

(t− s)kβ(s− â)−δ‖x(s)‖Cδ ds

let s = â+ γ(t− â). Then∫ t

â

(t− s)kβ(s− â)−δ ds =

∫ 1

0

(t− τ)kβ(1− â)kβ(t− â)−δγ−δ(t− â) dγ

Hence ∥∥∥(RLIkβ+1
â x

)
(t)
∥∥∥

Cδ
≤ Γ (1− δ)

Γ (kβ + 2− δ)
(t− â)kβ+1‖x‖Cδ

,

and then ∥∥∥(Kα,βâ x
)

(t)
∥∥∥

Cδ
≤ 1

α

∞∑
k=0

(Cα)k
Γ(1− δ)

Γ(kβ + 2− δ)
(t− â)kβ+1‖x‖Cδ

=
Γ(1− δ)

α
(t− â)Eβ,2−δ

[
Cα(t− â)β

]
‖x‖Cδ ≤M‖x‖Cδ

Directly we conclude that the right-hand side approach to zero as t→ â. �

In the following result, we derive the formula for Laplace transform of Kα,βâ .

Lemma 3.7. The Laplace transform of fractional integral Kα,βâ is given by

L
{(
Kα,βâ x

)
(t)
}

(λ) =
λβ−1

αλβ + (1− α)
L{x (t)} (λ) .

Proof . According to the Laplace convolution operator theorem, we have

L
{(
Kα,βâ x

)
(t)
}

(λ) =
1

α
L
{
Eβ

[
−Cαtβ

]}
(λ)L{x (t)} (λ) ,

and by identity (2.3)

L
{(
Kα,βâ x

)
(t)
}

(λ) =
1

α

λβ−1

λβ + Cα
L{x (t)} (λ) =

λβ−1

αλβ + (1− α)
L{x (t)} (λ) .

�

Now, we apply the fractional integral Kα,βâ of a power function (t− â)p, p > −1, that is we derive(
Kα,βâ (τ − â)p

)
(t) where we have use Theorem 3.2 as follows

(
Kα,βâ (τ − â)p

)
(t) =

1

α

∞∑
n=0

(−Cα)n
(
RLInβ+1

â (t− â)p
)

(t) ,

and from Lemma 2.6 (i), we get(
Kα,βâ (τ − â)p

)
(t) =

1

α

∞∑
n=0

(−Cα)n
Γ (p+ 1)

Γ (nβ + p+ 2)
(t− â)nβ+p+1

=
Γ (p+ 1)

α
(t− â)p+1E

β,p+2

[
−Cα(t− â)β

]
(3.4)
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Figure 1: Graph of (3.4) for â = 0, β = 0.8 , p = 1 and deference values of α.

Property 3.8. If x (t) ∈ Cδ [â, a] , then for α,ω∈ (0, 1) , 0≤δ< 1,

Kα,βâ
(
Kω,βâ x

)
(t) = Kω,βâ

(
Kα,βâ x

)
(t) .

That is, the fractional integral operators Kα,βâ are commutative.
Proof . We have

Kα,βâ
(
Kω,βâ x

)
(t) = Kα,βâ

[
1

ω

∞∑
n=0

(−Cω)n
(
RLInβ+1

â x
)]

(t)

=
1

α

∞∑
k=0

(−Cα)k
(
RLIkβ+1

â

[
1

ω

∞∑
n=0

(−Cω)n
(
RLInβ+1

â x
)])

(t)

=
1

ω

1

α

∞∑
k=0

∞∑
n=0

(−Cα)k (−Cω)
nRLIkβ+1

â

(
RLInβ+1

â x
)

(t)

=
1

ω

1

α

∞∑
k=0

∞∑
n=0

(−Cα)k (−Cω)
n
(
RLInβ+kβ+2

â x
)

(t) .

Which completes the proof. �

4. Fractional Derivative Associated to the Fractional Integral Kα,βâ
After introducing the fractional integral Kα,βâ of order α∈ (0, 1), it became necessary to introduce a

fractional derivative of order α∈ (0, 1). In this section, we establish a fractional derivative associated
with the fractional integral.

Consider the following integral equation(
Kα,βâ x

)
(t) = y (t) , α∈ (0, 1) , β> 0. (4.1)

Using Laplace transform and applying Lemma 3.7 leads to
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λβ−1

αλβ + (1− α)
L{x (t)} (λ) = L{y (t)} (λ) ,

or equivalently,

L{x (t)} (λ) = αλL{y (t)} (λ) +
1− α
λβ−1

L{y (t)} (λ) .

According to Lemma 3.6 and by using the inverse Laplace we get

x (t) = αDy (t) + (1− α) RLIβ−1
â y (t) (4.2)

Based on the preceding, we will present the definition of the fractional derivative that we will be

denoted by KD
α,β
â . Also, we establish some properties related to this derivative.

Definition 4.1. Let 0<α< 1, β > 0 and x ∈ C1
δ [â, a]. We define the corresponding fractional

derivative to the fractional integral Kα,βâ as follows(
KD

α,β

â x
)

(t) = αDx (t) + (1− α) RLIβ−1
â x (t) . (4.3)

When α= 1,β > 0, we obtain the first-order derivative. Otherwise,

if α= 0,β = 1 ,then
(
KD

0,1
â x

)
(t) = x (t) .

From Definition 4.1, we notice that of the fractional derivativeKD
α,β
â is well defined if the Riemann

fractional integral. Depending on the linearity of the Riemann fractional integral, the fractional

derivative KD
α,β
â is also a linear operator. It is easily seen that the fractional differential operator

KD
α,β
â belongs to space Cδ [â, a] follows from the definition of C1

δ [â, a] and Lemma 2.8.
In the following result, we derive the formula of the Laplace transforms of fractional derivative

KD
α,β
â . Where we have used Laplace transforms of the first derivative and Reimann fractional integral.

Lemma 4.2. The Laplace transform of the fractional differential operator KD
α,β
â is given by

L
{(
KD

α,β

â x
)

(t)
}

(λ) = αλL{x (t)} (λ) + α x (0) + (1− α)
1

λβ−1
L{x (t)} (λ) .

Lemma 4.3. Let x ∈ C1
δ [â, a] . Then(

KD
α,β

â x
)

(â) := lim
t→â

(
KD

α,β

â x
)

(t) = 0 ,

Proof . Since x ∈ C1
δ [â, a], then x ∈ C [â, a] and Dx (t) ∈ Cδ [â, a] . From Remark 2.2 and Lemma

2.8, we have the following∥∥∥(KDα,β

â x
)

(t)
∥∥∥

Cδ
≤ α‖Dx (t)‖Cδ

+ (1− α)
∥∥∥(RLIβ−1

â x
)

(t)
∥∥∥

Cδ
,

≤ α
∥∥∥(t− â)δDx (t)

∥∥∥
C

+ (1− α)
∥∥∥(t− â)δ

(
RLIβ−1

â x
)

(t)
∥∥∥

C
.

Consequently,
∥∥∥(KDα,β

â x
)

(t)
∥∥∥

Cδ
approach to zero as t→ â. �

The following result shows the relationship between the fractional operatorsKD
α,β
â and Kα,βâ . In

fact, the derivative operator KD
α,β
â is a left inverse of integral operator Kα,βâ and their composition

is not commutative.
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Theorem 4.4. Let α∈ (0, 1) , 0≤δ< 1.

i. If x (t) ∈ Cδ [â, a], then
KD

α,β

â

(
Kα,βâ x (t)

)
= x (t) . (4.4)

ii. If x (t) ∈ C1
δ [â, a], then

KD
α,β

â

(
Kα,βâ x (t)

)
= x (t)− x(â)Eβ

[
−Cα(t− â)β

]
. (4.5)

Proof . Our proof is based on Theorem 3.2, Definition 4.1 and Lemma 2.10, for (i) we have

KDα,β
â

(
Kα,βâ x (t)

)
= KD

α,β

â

[
1

α

∞∑
n=0

(−Cα)n
(
RLInβ+1

â x
)

(t) .

]

=
∞∑
n=0

(−Cα)nD
(
RLInβ+1

â x
)

(t) +
(1− α)

α

∞∑
n=0

(−Cα)nRLIβ−1
â

(
RLInβ+1

â x
)

(t)

=
∞∑
n=0

(−Cα)n
(
RLInβâ x

)
(t)−

∞∑
n=0

(−Cα)n+1
(
RLI

(n+1)β
â x

)
(t)

= x (t) ;

concerning (ii),

Kα,βâ
(
KD

α,β

â x (t)
)

= Kα,βâ
[
αDx (t) + (1− α) RLIβ−1

â x (t) .
]

= αKα,βâ (Dx (t)) + (1− α)Kα,βâ
(
RLIβ−1

â x (t)
)

=
∞∑
n=0

(−Cα)n
(
RLInβ+1

â Dx
)

(t) +
(1− α)

α

∞∑
n=0

(−Cα)nRLInβ+1
â

(
RLIβ−1

â x
)

(t)

=
∞∑
n=0

(−Cα)n
(
RLInβâ [x (t)− x(â)]

)
+

(1− α)

α

∞∑
n=0

(−Cα)nRLInβ+1
â

(
RLIβ−1

â x
)

(t)

=
∞∑
n=0

(−Cα)nRLInβâ [x (t)− x(â)]−
∞∑
n=0

(−Cα)n+1RLI
(n+1)β
â (x) (t)

=
∞∑
n=0

(−Cα)nRLInβâ x (t)−
∞∑
n=0

(−Cα)n+1RLI
(n+1)β
â x (t)−

∞∑
n=0

(−Cα)nRLInβâ x (â)

Lemma 2.6 (i) now leads to

= x (t)− x (â)
∞∑
n=0

(−Cα)n
(t− â)nβ

Γ (nβ + 1)

Therefore,

Kα,βâ
(
KD

α,β

â x (t)
)

= x (t)− x (â)Eβ

[
−Cα(t− â)β

]
.

�
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Figure 2: Graph of (4.6) for â = 0, β = 0.8 , p = 2 and deference values of α

Let us consider the fractional KD
α,β
â of a function x (t) = (t− â)p , p > −1(

KD
α,β

â (τ − â)p
)

(t) = αp(t− â)p−1 + (1− α)
Γ (p+ 1)

Γ (β + p)
(t− â)β+p−1. (4.6)

In particular, if p = 0, then (
KD

α,β

â 1
)

(t) = (1− α)
(t− â)β−1

Γ (β)

This means the fractional derivatives of a constant are, in general, not equal to zero.
The following is a direct result of Theorem 4.4.

Corollary 4.5. If x (t) ∈ C1
δ [â, a], and x (â) = 0,then, for α∈ (0, 1) , 0≤δ< 1,

Kα,βâ
(
KD

α,β

â x (t)
)

= KD
α,β

â

(
Kα,βâ x (t)

)
= x (t) .

It should be noted that the fractional derivatives operators KD
α,β
â are, in general, not commutative

operators. To illustrate this, we set that x (t) = et. Hence,

KD
1
2
, 3
2

0

(
KD

1
3
, 3
2

0

(
et
))

= KD
1
2
, 3
2

0

[
1

3
D
(
et
)

+
2

3
I

1
2
0

(
et
)]

= KD
1
2
, 3
2

0

[
1

3
et +

2

3
t
1
2E1, 3

2
(t)

]
=

1

2
D

[
1

3
et +

2

3
t
1
2E1, 3

2
(t)

]
+

1

2
I

1
2
0

[
1

3
et +

2

3
t
1
2E1, 3

2
(t)

]
=

[
1

6
et +

1

6
t−

1
2E1, 1

2
(t)

]
+

[
1

6
t
1
2E1, 3

2
(t) +

1

3
tE1,2 (t)

]
.

similarly,

KD
1
3
, 3
2

0

(
KD

1
2
, 3
2

0

(
et
))

=

[
1

6
et +

1

12
t−

1
2E1, 1

2
(t)

]
+

[
1

3
t
1
2E1, 3

2
(t) +

1

3
tE1,2 (t)

]
.
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5. A New Fractional Derivative

Our goal in this section is to introduce a new fractional derivative and establish its properties.

Definition 5.1. Let α∈ (0, 1) , β > 0 and let x (t) ∈ Cδ [â, a] such that
(
RLI1−µ

â x
)

(t)∈C1
δ [â, a].The

fractional derivative for the function x (t) of order α,β and type 0 ≤ µ ≤ 1, is defined as follows:(
Dα,β
â,µx

)
(t) =

(
CD1−µ

â K1−α,βRL
â Dµ

âx
)

(t), (5.1)

where RLD, cD are the Riemann-Liouville and Caputo fractional derivatives, respectively.

It is not hard to show that the expression (5.1) is well defined. Indeed our condition(
RLI1−µ

â x
)

(t)∈C1
δ [â, a] leads to RLDµ

âx = D
(
RLI1−µ

â x
)
∈Cδ [â, a] . According to Lemma 3.5, we have

K1−α,β
â

(
RLDµ

âx
)
∈C1

δ [â, a], this means D
(
K1−α,β
â

RLDµ
âx
)
∈Cδ [â, a]. Now we already know from

Lemma 2.8 that RLIµâD
(
K1−α,β
â

RLDµ
âx
)
∈Cδ [â, a], it follows that

(
CD1−µ

â K1−α,β
â

RLDµ
âx
)

(t)∈Cδ [â, a] .

It is worth noting that the above definition contains special cases existing previously, as follows:

1. When µ = 1, we get the Hattaf fractional derivative of Caputo sense CDα,β
â [19] given by(

Dα,β
â,1 x

)
(t) =

(
K1−α,β
â (Dx)

)
(t) =

1

1−α

∫ t

â

Eβ

[
−λα(t− s)β

]
(Dx) (s) ds.

(
λα =

1

Cα

)
2. When µ = 0, we get the Hattaf fractional derivative of Riemann-Liouville derivative sense

RDα,β
â [19] given by(

Dα,β
â,0 x

)
(t) =

(
D K1−α,β

â x
)

(t) =
1

1−α
d

dt

∫ t

â

Eβ

[
−λα(t− s)β

]
x (s) ds.

3. When µ = 1, β=α we obtain the Atangana-Baleanu (ABC)fractional derivative of Caputo
senseABCDα

â [17] given by(
Dα,α
â,1 x

)
(t) =

(
K1−α,α
â Dx

)
(t) =

1

1−α

∫ t

â

Eα [−λα(t− s)α] (Dx) (s) ds.

4. When µ = 0, β=α we obtain the Atangana-Baleanu(ABR) fractional derivative of Riemann-
Liouville senseABRDα,β

â [17]] given by(
Dα,α
â,0 x

)
(t) =

(
DK1−α,α

â x
)

(t) =
1

1−α
d

dt

∫ t

â

Eα [−λα (t− s)α]x (s) ds.

5. When µ = 1, β= 1 we have the Caputo-Fabrizio fractional derivative [15] given by(
Dα,1
â,1x

)
(t) =

(
K1−α,1
â (Dx)

)
(t) =

1

1−α

∫ t

â

exp [−λα (t− s)] (Dx) (s) ds.

By the series formula (3.2), for any α,β,µ, x satisfying the conditions from Definition 5.1, obviously
to see that the fractional derivative Dα,β

â,µ can be expressed as(
Dα,β
â,µx

)
(t) =

1

1− α

∞∑
n=0

(−λα)n
(

CD1−µRL
â Inβ+1RL

â Dµ
âx
)

(t), (5.2)

The above series is helpful for us to show some properties of the fractional derivative Dα,β
â,µ ,

for instance, the linearity of the fractional derivative Dα,β
â,µ which we get from the linearity of the

operators RLD, cD, RLI , and others will be presented later.
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Remark 5.2. If α= 0, then(
D0,β
â,µx

)
(t) =

(
CD1−µ

â I RLDµ
âx
)

(t) , particularly

(
D0,β
â,µx

)
(t) =

{
x (t)− x (â) , µ = 1,
x (t) , µ = 0.

Theorem 5.3. Let α,β,µ and x be satisfying the conditions from Definition 5.1. Then(
Dα,β
â,µx

)
(t) =

(
Dα,β
â,0 x

)
(t)−

(
RLI1−µ

â x
)

(â)

1− α
(t− â)µ−1Eβ,µ

[
−λα(t− s)β

]
(5.3)

Proof. Using the formula (5.2) and semigroup property of Riemann-Liouville fractional integral,
we have (

Dα,β
â,µx

)
(t) =

1

1−α

∞∑
n=0

(−λα)n
(
RLInβ+µ

â
RLDµ

âx
)

(t)

Applying Lemma 2.12, we obtain

(
Dα,β
â,µx

)
(t) =

1

1−α

∞∑
n=0

(−λα)nRLInβâ

(
x (t)−

(
RLI1−µ

â x
)

(â)

Γ (µ)
(t− â)µ−1

)

=
1

1−α

∞∑
n=0

(−λα)nRLInβâ x (t)− 1

1−α

(
RLI1−µ

â x
)

(â)

Γ (µ)

∞∑
n=0

(−λα)nRLInβâ (t− â)µ−1

=
1

1−α
d

dt

∞∑
n=0

(−λα)nRLInβ+1
â x (t)−

(
RLI1−µ

â x
)

(â)

1−α

∞∑
n=0

(−λα)n
(t− â)nβ+µ−1

Γ (nβ + µ)

=
(
D K1−α,β

â x
)

(t)−
(
RLI1−µ

â x
)

(â)

1−α
(t− â)µ−1Eβ,µ

[
−λα(t− s)β

]
.

This completes the proof. �

In particular, when µ = 1, we have(
Dα,β
â,1 x

)
(t) =

(
Dα,β
â,0 x

)
(t)− x (â)

1− α
Eβ

[
−λα(t− s)β

]
. (5.4)

Theorem 5.4. The fractional derivative Dα,β
0,µ has the following Laplace transformation

L
{(
Dα,β

0,µ x
)

(t)
}

(λ) =

[
λβL{x (t)} (λ)− λβ−µ

(
RLI1−µ

0 x
)

(0)

(1− α)λβ + α

]

Proof. Using Remark 2.14 (third relation), we obtain

L
{(
Dα,β

0,µ x
)

(t)
}

(λ) = λ1−µL
{(
K1−α,β

0
RLDµ

0x
)

(t)
}
− λ−µ

(
K1−α,β

0
RLDµ

0x
)

(â) ,

follows from Lemma 3.6

L
{(
Dα,β

0,µ x
)

(t)
}

(λ) = λ1−µL
{(
K1−α,β

0
RLDµ

0x
)

(t)
}



838 K. O. Hussain, N. J. Al-Jawari, A. K. O. Mazeel,

Lemma 3.7 now yields

L
{(
Dα,β

0,µ x
)

(t)
}

(λ) = λ1−µ
[

λβ−1

(1− α)λβ + α
L
{(

RLDµ
0x
)

(t)
}

(λ)

]
Remark 2.14 (second relation) shows that

L
{(
Dα,β

0,µ x
)

(t)
}

(λ) =

[
λβL{x (t)} (λ)− λβ−µ

(
RLI1−µ

0 x
)

(0)

(1− α)λβ + α

]
. �

Theorem 5.5. Let α,β,µ and x be satisfying the conditions from Definition 5.1. Then the fractional
differential operator Dα,β

â,µ is bounded:∥∥∥(Dα,β
â,µx

)
(t)
∥∥∥

Cδ
≤ K

∥∥RLDµ
âx
∥∥

Cδ
,

where

K =
(a− â)µΓ (1− δ)

(1− α)Γ (µ+ 1− δ)

[
1 + (a− â)Eβ

[
λα(a− â)β

]]
.

Proof. By Lemma 2.8, we have∥∥∥(Dα,β
â,µx

)
(t)
∥∥∥

Cδ
≤ (a− â)µ

Γ (1− δ)
Γ (µ+ 1− δ)

∥∥∥D (K1−α,β
â

RLDµ
âx
)

(s)
∥∥∥

Cδ

= (a− â)µ
Γ (1− δ)

Γ (µ+ 1− δ)

∥∥∥∥ 1

1− α
d

dt

∫ t

â

Eβ

[
−λα(t− s)β

] (
RLDµ

âx
)

(s) ds

∥∥∥∥
Cδ

=
(a− â)µΓ (1− δ)

(1− α)Γ (µ+ 1− δ)

∥∥∥∥(RLDµ
âx
)

(t) +

∫ t

â

(
RLDµ

âx
)

(s)

(
∂

∂t
E
β

[
−λα(t− s)β

])
ds

∥∥∥∥
Cδ

Analysis similar as in the proof of Lemma 3.5 shows that∥∥∥(Dα,β
â,µx

)
(t)
∥∥∥

Cδ
≤ (a− â)µΓ (1− δ)

(1− α)Γ (µ+ 1− δ)
∥∥(RLDµ

âx
)

(t)
∥∥

Cδ

+
(a− â)µΓ (1− δ)

(1− α)Γ (µ+ 1− δ)

∞∑
n=0

(λα)nRLInβâ
∥∥(RLDµ

âx
)

(t)
∥∥

Cδ

≤ (a− â)µΓ (1− δ)
(1− α)Γ (µ+ 1− δ)

∥∥(RLDµ
âx
)

(t)
∥∥

Cδ

+
(a− â)µΓ (1− δ)

(1− α)Γ (µ+ 1− δ)
∥∥(RLDµ

âx
)

(t)
∥∥

Cδ

∞∑
n=0

(λα)n
1

Γ(nβ + 1)
(t− â)nβ+1

≤ (a− â)µΓ (1− δ)
(1− α)Γ (µ+ 1− δ)

[
1 + (a− â)Eβ

[
λα(a− â)β

]] ∥∥(RLDµ
âx
)

(t)
∥∥

Cδ
.

This completes the proof. �

From the above theorem, the following identicality can be obtained immediately(
Dα,β
â,µx

)
(â) := lim

t→â

(
onDα,β

â,µx
)

(t) = 0 . (5.5)
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Now, let us consider, the fractional derivative Dα,β
â,µ , of a particular function x (t) = (t− â)p,

p > −1.(
Dα,β
â,µ (τ − â)p

)
(t) =

1

1−α

∞∑
n=0

(−λα)n
(
CD

1−µ
â

RLInβ+1
â

RLDµ
â (τ − â)p

)
(t)

=
1

1−α

∞∑
n=0

(−λα)n
(
CD

1−µ
â

RLInβ+1
â

Γ (p+ 1)

Γ (p+ 1− µ)
(τ − â)p−µ

)
(t)

=
1

1−α

∞∑
n=0

(−λα)n
(
CD

1−µ
â

Γ (p+ 1)

Γ (nβ + 2 + p− µ)
(τ − â)nβ+1+p−µ

)
(t)

=
Γ (p+ 1)

1−α

∞∑
n=0

(−λα)n
(

(t− â)nβ+p

Γ (nβ + 1 + p)

)
Or, equivalent (

Dα,β
â,µ (τ − â)p

)
(t) =

Γ (p+ 1)

1−α
(t− â)pEβ,p+1

[
−λα(t− s)β

]
. (5.6)

In particular, if p = 0, then(
Dα,β
â,µ 1

)
(t) =

1

1−α
(t− â)Eβ

[
−λα(t− s)β

]
This means that the fractional derivatives Dα,β

â,µ of a constant are, in general, not equal to zero.
On the other hand, for 0 < µ ≤ 1,(

Dα,β
â,µ (τ − â)µ−1

)
(t) = 0, (5.7)

Indeed, (
Dα,β
â,µ (τ − â)µ−1

)
(t) =

(
CD1−µ

â K1−α,β
â D

[
RLI1−µ

â (τ − â)
µ−1
])

(t)

=
(
CD1−µ

â K1−α,β
â D [Γ (µ)]

)
= 0

In the following, we will establish a fractional integral associated with the fractional derivative. For
this, let us consider the following (

Dα,β
0,µ x

)
(t) = u (t) (5.8)

Using the Laplace transform, we get

λβL{x (t)} (λ)− λβ−µ
(
RLI1−µ

0 x
)

(0)

(1− α)λβ + α
= L{u (t)} (λ)

Therefore

L{x (t)} (λ) = λ−µ
(
RLI1−µ

0 x
)

(0) + (1− α)L{u (t)} (λ) +
α

λβ
L{u (t)} (λ) ,

applying the inverse Laplace leads to

x (t) =

(
RLI1−µ

0 x
)

(0)

Γ (µ)
tµ−1 + (1− α)u (t) + α

(
RLIβ0 u

)
(t) .

Relying on the above work, we present the following definition.
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Figure 3: Graph of (5.6) for â = 0, β = 1 , p = 2 and deference values of α.

Definition 5.6. The fractional integral associated with the fractional derivative
(
Dα,β
â,µx

)
, is defined

by (
Iα,βâ x

)
(t) = (1− α)x (t) + α

(
RLIβâ x

)
(t) . (5.9)

We obtain the original function when α = 0. Otherwise, we have

(
I1,1
â x
)

(t) =

∫ t

â

x (s) ds.

The fractional integral Iα,βâ defined in [19] as the fractional integral associated with the generalized
fractional Riemann-Liouville derivative sense.

The Laplace transform of the fractional integral Iα,β0 is given by

L
{(
Iα,β0 x

)
(t)
}

(λ) =
(1− α)λβ + α

λβ
L{x (t)} (λ) . (5.10)

From Lemma 2.8, it can be directly verified that the fractional integral Iα,βâ is bounded.

Theorem 5.7. The fractional integration operator Iα,βâ with 0 < α < 1, β > 0 is bounded in Cδ [â, a]:∥∥∥(Iα,βâ x
)

(t)
∥∥∥

Cδ
≤ C‖x‖Cδ

,

where

C = (1− α) +
α(a− â)βΓ(1− δ)

Γ(β + 1− δ)
.

In the following theorem, we derive the composition relations between the fractional integration
operator Iα,βâ with the fractional differentiation operator Dα,β

â,µ .
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Theorem 5.8. The equalities(
Iα,βâ Dα,β

â,µx
)

(t) = x (t)−
(
RLI1−µ

â x
)

(â)

Γ (µ)
(t− â)µ−1, (5.11)

and (
Dα,β
â,µ I

α,β
â x

)
(t) = x (t)−

(
RLI1−µ

â x
)

(â) (t− â)µ−1Eβ

[
−λα(t− â)β

]
, (5.12)

are valid whenever α,β,µ and x satisfy the conditions from Definition 5.1.

Proof. According to Theorem 5.3, we obtain

(
Iα,βâ Dα,β

â,µx
)

(t) = Iα,βâ

(
Dα,β
â,0 x

)
(t)−

(
RLI1−µ

â x
)

(â)

1− α

∞∑
n=0

(−λα)n

Γ (βn+ µ)
Iα,βâ (t− â)

βn+µ−1

= (1− α)
(
Dα,β
â,0 x

)
(t) + αRLIβâ

(
Dα,β
â,0 x

)
(t) +

(
RLI1−µ

â x
)

(â)
∞∑
n=0

(−λα)n

Γ (βn+ µ)
(t− â)

βn+µ−1

+
α

1− α
(
RLI1−µ

â x
)

(â)
∞∑
n=0

(−λα)n

Γ (βn+ µ)
RLIβâ (t− â)

βn+µ−1

=
∞∑
n=0

(−λα)n
(
RLInβâ x

)
(t) +

α

1− α

∞∑
n=0

(−λα)nRLIβâ

(
RLInβâ x

)
(t)

+
(
RLI1−µ

â x
)

(â)
∞∑
n=0

(−λα)n

Γ (βn+ µ)
(t− â)

βn+µ−1

+
α
(
RLI1−µ

â x
)

(â)

1−α

∞∑
n=0

(−λα)n

Γ (β (n+1) +µ)
(t−â)

β(n+1)+µ−1

=
∞∑
n=0

(−λα)n
(
RLInβâ x

)
(t)−

∞∑
n=0

(−λα)n+1
(
RLI

(n+1)β
â x

)
(t)

+
(
RLI1−µ

â x
)

(â)
∞∑
n=0

(−λα)n

Γ (βn+ µ)
(t− â)

βn+µ−1

−
(
RLI1−µ

â x
)

(â)
∞∑
n=0

(−λα)n+1

Γ (β (n+ 1) + µ)
(t− â)

β(n+1)+µ−1

=x(t)−
(
RLI1−µ

â x
)

(â)

Γ(µ)
(t− â)µ−1.
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For identity (5.11), we have

(
Dα,β
â,µ I

α,β
â x

)
(t) =

(
Dα,β
â,0 I

α,β
â x

)
(t)−

(
RLI1−µ

â Iα,βâ x
)

(â)

1− α
(t− â)µ−1Eβ,µ

[
−λα(t− s)β

]
= (1− α)

(
Dα,β
â,0 x

)
(t) + α

(
RLIβâD

α,β
â,0 x

)
(t)

− 1

1− α

[
(1− α) RLI1−µ

â x (t) + αRLI1−µ
â

RLIβâ x (t)
]

(â)(t− â)µ−1Eβ,µ

[
−λα(t− s)β

]
=
∞∑
n=0

(−λα)n
(
RLInβâ x

)
(t) +

α

1− α

∞∑
n=0

(−λα)nRLIβâ

(
RLInβâ x

)
(t)

−
[(

RLI1−µ
â x

)
(â) +

α

1− α

(
RLIβ+1−µ

â x
)

(â)

]
(t− â)µ−1Eβ,µ

[
−λα(t− s)β

]
=
∞∑
n=0

(−λα)n
(
RLInβâ x

)
(t)−

∞∑
n=0

(−λα)n+1
(
RLI

(n+1)β
â x

)
(t)

−
[(
RLI1−µ

â x
)

(â)
]

(t− â)µ−1Eβ,µ

[
−λα(t− s)β

]
=x (t)−

[(
RLI1−µ

â x
)

(â)
]

(t− â)µ−1Eβ,µ

[
−λα(t− s)β

]
This completes the proof. �

As particular cases of the previous theorem, if µ = 0, then the fractional integration operator
Iα,βâ is a left and right inverse to the fractional differentiation operator Dα,β

â,0 , i.e.(
Iα,βâ Dα,β

â,0 x
)

(t) =
(
Dα,β
â,0 I

α,β
â x

)
(t) = x (t) . (5.13)

On the other hand, if µ = 1, then they satisfy the following Newton-Leibniz formula(
Iα,βâ Dα,β

â,1 x
)

(t) = x (t)− x (â) , (5.14)

also, we obtain (
Dα,β
â,1 I

α,β
â x

)
(t) = x (t)− x (â)Eβ

[
−λα(t− s)β

]
. (5.15)

For the function x (t) = (t− â)p, p > −1. We have(
Iα,βâ (τ − â)p

)
(t) = (1− α) (t− â)p + α

Γ (p+ 1)

Γ (β + p+ 1)
(t− â)β+p. (5.16)

6. An application

Since the outbreak epidemic of the Corona (COVID-19) in the Chinese city of Wuhan in 2019,
researchers have rushed to provide mathematical modeling of it. For example, in [23], the authors used
the Caputo fractional derivative to present a mathematical model for the transmission of COVID-19.
Baleanu et al. [24]presented a fractional-order model for the Coronavirus (COVID-19) transmission
with Caputo–Fabrizio derivative. In [19], the author considered the following model:

CDα,β
â I (t) = kS (t) I (t)− (s+m)I (t) ,

CDα,β
â S (t) = A−mS (t)− kS (t) I (t) ,

CDα,β
â R (t) = sI (t)−mR (t) .

(6.1)
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Figure 4: Graph of (5.16) for â = 0, β = 0.8 , p = 2 and deference values of α.

Where CDα,β
â is the generalized Caputo-Fabrizio fractional derivative with α ∈ (0, 1) , β > 0.R (t) , I (t)

and S (t) are the numbers of removed individuals, infected and susceptible at time t, respectively.
The parameters s, k,m and A constitute the removal rate, the infection rate, the natural death rate
and the recruitment rate, respectively.

Let us denote the total population by H(t). Then

CDα,β
â H (t) = A−mH (t) . (6.2)

The fractional differential equation (6.2) has an important role in the science of viruses and epidemics.
In particular, H(t) can describe the intensity of healthy CD4+ T cells for H.I.V infection, where A
and m represent the rate of production of CD4+ T cells and the rate of dying it, respectively. In
this section, we consider the following model(

Dα,β
0,µH

)
(t) = A−mH (t) . (6.3)

Where α ∈ (0, 1) , β > 0 and 0 ≤ µ ≤ 1. Applying Laplace transform to both sides (6.3), we get
that

L
{(
Dα,β

0,µH
)

(t)
}

(λ) =
A
λ
−mL{H (t)} (λ) .

From Theorem 5.5, we obtain

λβL{H (t)} (λ)− λβ−µ
(
RLI1−µ

0 H
)

(0)

(1− α)λβ + α
=
A
λ
−mL{H (t)} (λ) ,

and

λβL{H (t)} (λ)− λβ−µ
(
RLI1−µ

0 H
)

(0) =
(1− α)λβA+ αA

λ
−
[
(1− α)λβm+ αm

]
L{H (t)} (λ) ,

hence,

λβL{H (t)} (λ) +
[
(1− α)λβm+ αm

]
L{H (t)} (λ) = λβ−µ

(
RLI1−µ

0 H
)

(0) +
(1− α)λβA+ αA

λ
.
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Therefore,

(
[1 + (1− α)m]λβ + αm

)
L{H (t)} (λ) = λβ−µ

(
RLI1−µ

0 H
)

(0) +
(1− α)λβA+ αA

λ
.

For simplicity, let zα = 1 + (1− α)m. Then

L{H (t)} (λ) =
λβ−µ

λβ + αm
zα

(
RLI1−µ

0 H
)

(0)

zα
+

λβ−1

λβ + αm
zα

(1− α)A
zα

+
αA

zαλβ+1 + αmλ

Or equivalent,

L{H (t)} (λ) =
λβ−µ

λβ + αm
zα

(
RLI1−µ

0 H
)

(0)

zα
+

λβ−1

λβ + αm
zα

(1− α)A
zα

+
A
mλ
− A
m

λβ−1

λβ + αm
zα

.

Using the inverse Laplace leads to

H (t) =
A
m

+

(
RLI1−µ

0 H
)

(0)

zα
tµ−1Eβ,µ

(
−αm
zα

tβ
)

+

(
(1− α)A

zα
− A

m

)
Eβ

(
−αm
zα

tβ
)

=
A
m

+

(
RLI1−µ

0 H
)

(0)

zα
tµ−1Eβ,µ

(
−αm
zα

tβ
)
− A

mzα
Eβ

(
−αm
zα

tβ
)
. (6.4)

In particular, if µ = 1, then

H (t) =
A
m

+

(
H (0)

zα
− A

mzα

)
Eβ

(
−αm
zα

tβ
)
. (6.5)

Which is a solution of the fractional differential equation (6.2).

7. Conclusion

The fractional-order derivatives presented in [15, 17] have been of interest to many researchers
because they describe many real-world problems more accurately than others since they contain
non-local and non-singular kernels [20, 21, 22]. In this work, we introduced a new fractional integral
Kα,βâ (0<α< 1,β> 0 ) by generalized the fractional integral given in [16] where we replaced the kernel
from the exponential to Mittag-Leffler, and we expressed it by a series of Riemann-Liouville fractional
integrals, which helped to study some properties related to it, where we found the Laplace trans-
form of Kα,βâ and showed that the fractional integration operator Kα,βâ is bounded from Cδ [â, a] into

C [â, a] and the fractional integrals operators Kα,βâ are commutative. We used the Laplace transforms

to derived the corresponding fractional derivative KD
α,β
â and we established its properties where we

proved that it is a left inverse of integral operator Kα,βâ and in general, is not the right inverse; also,

we showed that the fractional derivatives operators KD
α,β
â are, in general, not commutative. Via

composition, our fractional integral Kα,βâ with the classical Riemann-Liouville and Caputo deriva-

tives, we introduced a new fractional derivative Dα,β
â,µ (0 ≤ µ ≤ 1) which is an interpolated fractional

derivative between the generalized fractional derivatives in a sense Riemann-Liouville and Caputo
with non-singular kernels presented in [19]. We obtain the Hattaf fractional derivative of Riemann-
Liouville derivative sense RDα,β

â [19] when µ = 0 and the Hattaf fractional derivative of Caputo

sense CDα,β
â [19] if µ = 1. We expressed the fractional derivative Dα,β

â,µ by a series of compositions of
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classical Riemann-Liouville fractional integrals with classical Riemann-Liouville and Caputo deriva-
tives, which may be more applicable in numerical investigation than the original formula. Also, we
derived the Laplace transform of derivative Dα,β

â,µ and showed that fractional differential operator Dα,β
â,µ

is bounded in Cδ [â, a]. We also determined the corresponding fractional integral of the fractional
derivative Dα,β

â,µ with some properties related to it. As a numerical example, we applied all these
fractional operators to the power function (t− â)p, p > −1 accompanied by graphics. Coronavirus
(COVID-19) transmission model was our application to the fractional derivative Dα,β

â,µ .
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