
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,914 |
تعداد دریافت فایل اصل مقاله | 7,656,367 |
Growth estimate for rational functions with prescribed poles and restricted zeros | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 19، دوره 13، شماره 1، خرداد 2022، صفحه 247-252 اصل مقاله (338.89 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.23465.2544 | ||
نویسندگان | ||
Ishfaq Ahmad Dar* ؛ Nisar Ahmad Rather؛ Mohd Shafi Wani | ||
Department of Mathematics, University of Kashmir, Srinagar-190006, India | ||
تاریخ دریافت: 01 بهمن 1399، تاریخ پذیرش: 08 خرداد 1400 | ||
چکیده | ||
Let $r(z)= f(z)/w(z)$ where $f(z)$ be a polynomial of degree at most $n$ and $w(z)= \prod_{j=1}^{n}(z-a_{j})$, $|a_j|> 1$ for $1\leq j \leq n.$ If the rational function $r(z)\neq 0$ in $|z|< k$, then for $k =1$, it is known that $$\left|r(Rz)\right|\leq \left(\frac{\left|B(Rz)\right|+1}{2}\right) \underset{|z|=1}\sup|r(z)|\,\,\, for \,\,\,|z|=1$$ where $ B(z)= \prod_{j=1}^{n}\left\{(1-\bar{a_{j}}z)/(z-a_{j})\right\}$. In this paper, we consider the case $k \geq 1$ and obtain certain results concerning the growth of the maximum modulus of the rational functions with prescribed poles and restricted zeros in the Chebyshev norm on the unit circle in the complex plane. | ||
کلیدواژهها | ||
Rational functions؛ Polynomial Inequalities؛ Zeros | ||
مراجع | ||
[1] N.C. Ankeny and T.J. Rivlin, On a Theorem of S. Bernstein, Pacific J. Math. 5(1955) 849–852. [2] A. Aziz, Q.M. Dawood, Inequalities, Inequalities for a polynomial and its derivative, J. Approx. Theory 54 (1998) 306-313. [3] A. Aziz and N.A. Rather, Growth of maximum modulus of rational functions with prescribed poles, J. Math. Inequal. Appl. 2(2) (1999) 165–173. [4] G.V. Milovanovi´c, D.S. Mitrinovic and Th.M. Rassias, Topics in Polynomials: Extremal Properties, Inequalities, Zeros, World Scientific Publishing Co., Singapore, 1994. [5] G. P´olya and G. Szeg¨o, Problems and Theorems in Analysis, Vol. I, Springer-Verlag, New York, 1972. [6] M. Reisz, U¨ber einen satz des herrn Serge Bernstein, Acta. Math. 40 (1916) 337–347. [7] J.L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, Amer. Math. Soc., Providence, 1969. | ||
آمار تعداد مشاهده مقاله: 15,915 تعداد دریافت فایل اصل مقاله: 515 |