| تعداد نشریات | 21 |
| تعداد شمارهها | 675 |
| تعداد مقالات | 9,837 |
| تعداد مشاهده مقاله | 69,889,590 |
| تعداد دریافت فایل اصل مقاله | 49,213,632 |
A Smart Method for Multi-zonal Virtual Power Plant Scheduling with Presence of Electric Vehicles | ||
| Journal of Modeling and Simulation in Electrical and Electronics Engineering | ||
| مقاله 2، دوره 1، شماره 2 - شماره پیاپی 4، آبان 2021، صفحه 9-20 اصل مقاله (1.85 M) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22075/mseee.2021.20727.1048 | ||
| نویسندگان | ||
| Zahra Moravej* ؛ Saeid Molaei؛ Alireza Jodaei | ||
| Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran. | ||
| تاریخ دریافت: 07 تیر 1399، تاریخ بازنگری: 08 اردیبهشت 1400، تاریخ پذیرش: 21 شهریور 1400 | ||
| چکیده | ||
| Microgrids are practical views of integration of distributed generations (DGs) into distribution systems. In this regard, utilizing appropriate technologies and accurate recognition of energy generation and storage systems, as well as optimal scheduling for these resources are of the paramount importance in microgrids. Therefore, connection of DG resources and storages to the grid in the form of virtual power plant in order to increase efficiency and owners’ interest has attracted significant attention of researchers and distribution network operators. This research presents a model for optimal day-ahead scheduling of heat-power generation units in a multi-zonal virtual power plant (VPP). This VPP includes a number of combined heat-power generations, distribution network loads, and electrical vehicles with smart charging as well as energy storages. In order to approach the reality of distribution systems, uncertainty related to behavior of electrical vehicles was modeled with Monte-Carlo simulation while uncertainties of generation and electrical/thermal loads were modeled using a probabilistic method. Matlab software and swarm robotics search & rescue (SRSR) has been used as an optimization tool in this paper. The results confirmed the effectiveness of the proposed method. | ||
| کلیدواژهها | ||
| renewable energy sources؛ energy storage؛ combined heat and power generation؛ virtual power plant؛ load uncertainty؛ electric vehicles | ||
| مراجع | ||
|
1] Yavuz, L., Önen, A., Muyeen, S. M., & Kamwa, I. (2019). Transformation of microgrid to virtual power plant–a comprehensive review. IET Generation, Transmission & Distribution, 13(11), 1994-2005. [2] Nosratabadi, S. M., Hooshmand, R. A., & Gholipour, E. (2017). A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems. Renewable and Sustainable Energy Reviews, 67, 341-363. [3] Nguyen, H. T., Le, L. B., & Wang, Z. (2018). A bidding strategy for virtual power plants with the intraday demand response exchange market using the stochastic programming. IEEE Transactions on Industry Applications, 54(4), 3044-3055. [4] Kabalci, Y. (2016). A survey on smart metering and smart grid communication. Renewable and Sustainable Energy Reviews, 57, 302-318. [5] Vanhoudt, D., Claessens, B. J., Salenbien, R., & Desmedt, J. (2018). An active control strategy for district heating networks and the effect of different thermal energy storage configurations. Energy and Buildings, 158, 1317-1327. [6] Kardakos, E. G., Simoglou, C. K., & Bakirtzis, A. G. (2015). Optimal offering strategy of a virtual power plant: A stochastic bi- level approach. IEEE Transactions on Smart Grid, 7(2), 794-806. [7] Braun, M. (2007). Technological control capabilities of DER to provide future ancillary services. International journal of distributed energy resources, 3(3), 191-206. [8] Lombardi, P., Stötzer, M., Styczynski, Z., & Orths, A. (2011, July). Multi-criteria optimization of an energy storage system within a Virtual Power Plant architecture. In 2011 IEEE Power and Energy Society General Meeting (pp. 1-6). IEEE. [9] Li, H., Tan, Z., Chen, H., & Guo, H. (2018). Integrated heat and power dispatch model for wind-CHP system with solid heat storage device based on robust stochastic theory. Wuhan University Journal of Natural Sciences, 23(1), 31-42. [10] Ramsay, C. and Aunedi, M., “Characterisation of LSVPPs”, Fenix project, Del. D1.4.1. [Online]. Available: http://fenix.iwes.fraunhofer. de/html/documents.htm [11] Vanhoudt, D., Claessens, B. J., Salenbien, R., & Desmedt, J. (2018). An active control strategy for district heating networks and the effect of different thermal energy storage configurations. Energy and Buildings, 158, 1317-1327. [12] Zdrilić, M., Pandžić, H., & Kuzle, I. (2011, May). The mixed- integer linear optimization model of virtual power plant operation. In 2011 8th International Conference on the European Energy Market (EEM) (pp. 467-471). IEEE. [13] Zamani, A. G., Zakariazadeh, A., Jadid, S., & Kazemi, A. (2016). Stochastic operational scheduling of distributed energy resources in a large scale virtual power plant. International Journal of Electrical Power & Energy Systems, 82, 608-620. [14] Kuzle, I., Zdrilić, M., & Pandžić, H. (2011, May). Virtual power plant dispatch optimization using linear programming. In 2011 10th International Conference on Environment and Electrical Engineering (pp. 1-4). IEEE. [15] Ruiz, N., Cobelo, I., & Oyarzabal, J. (2009). A direct load control model for virtual power plant management. IEEE Transactions on Power Systems, 24(2), 959-966. [16] Caldon, R., Patria, A. R., & Turri, R. (2004, September). Optimisation algorithm for a virtual power plant operation. In 39th International Universities Power Engineering Conference, 2004. UPEC 2004. (Vol. 3, pp. 1058-1062). IEEE. [17] Maanavi, M., Najafi, A., Godina, R., Mahmoudian, M., & MG Rodrigues, E. (2019). Energy Management of Virtual Power Plant Considering Distributed Generation Sizing and Pricing. Applied Sciences, 9(14), 2817. [18] Okpako, O., Rajamani, H. S., Pillai, P., Anuebunwa, U., & Swarup, K. S. (2017, September). A Comparative Assessment of Embedded Energy Storage and Electric Vehicle Integration in a Community Virtual Power Plant. In International Conference on Wireless and Satellite Systems (pp. 127-141). Springer, Cham. [19] Wang, M., Mu, Y., Jia, H., Wu, J., Yu, X., & Qi, Y. (2017). Active power regulation for large-scale wind farms through an efficient power plant model of electric vehicles. Applied Energy, 185, 1673- 1683. [20] Ju, L., Li, H., Zhao, J., Chen, K., Tan, Q., & Tan, Z. (2016). Multi- objective stochastic scheduling optimization model for connecting a virtual power plant to wind-photovoltaic-electric vehicles considering uncertainties and demand response. Energy Conversion and Management, 128, 160-177. [21] Rostami, M. A., & Raoofat, M. (2016). Optimal operating strategy of virtual power plant considering plug‐in hybrid electric vehicles load. International Transactions on Electrical Energy Systems, 26(2), 236-252. [22] Kahlen, M., & Ketter, W. (2015, February). Aggregating electric cars to sustainable virtual power plants: The value of flexibility in future electricity markets. In Twenty-Ninth AAAI Conference on Artificial Intelligence. [23] Giuntoli, M., & Poli, D. (2013). Optimized thermal and electrical scheduling of a large scale virtual power plant in the presence of energy storages. IEEE Transactions on Smart Grid, 4(2), 942-955. [24] “World Wind Energy Association- Press Release”, http://www.wwindea.org,Feb.2009. [25] Barsali, S., Ceraolo, M., Giglioli, R., & Poli, D. (2003, June). Aggregation and management of the demand in a deregulated electricity market. In 2003 IEEE Bologna Power Tech Conference Proceedings, (Vol. 4, pp. 4-pp). IEEE. [26] Barsali, S., Bechini, A., Giglioli, R., & Poli, D. (2012, September). Storage in electrified transport systems. In 2012 IEEE International Energy Conference and Exhibition (ENERGYCON) (pp. 1003- 1008). IEEE. [27] Qian, K., Zhou, C., Allan, M., & Yuan, Y. (2010). Modeling of load demand due to EV battery charging in distribution systems. IEEE transactions on power systems, 26(2), 802-810. [28] Li, G., & Zhang, X. P. (2012). Modeling of plug-in hybrid electric vehicle charging demand in probabilistic power flow calculations. IEEE Transactions on Smart Grid, 3(1), 492-499. [29] Rezaee, S., Farjah, E., & Khorramdel, B. (2013). Probabilistic analysis of plug-in electric vehicles impact on electrical grid through homes and parking lots. IEEE Transactions on Sustainable Energy, 4(4), 1024-1033. [30] Dulău, L. I., Abrudean, M., & Bică, D. (2014, September). Distributed generation and virtual power plants. In 2014 49th International Universities Power Engineering Conference (UPEC) (pp. 1-5). IEEE. [31] Saber, A. Y., & Venayagamoorthy, G. K. (2011). Resource scheduling under uncertainty in a smart grid with renewables and plug-in vehicles. IEEE systems journal, 6(1), 103-109. [32] Vanderbei, R. J. (2020). Linear programming: foundations and extensions (Vol. 285). Springer Nature. [33] Wong, J. Y. (2014). Testing the Nonlinear Integer Programming Solver Here with Generalized Euler Bricks. [34] Alemany, J., Magnago, F., Moitre, D., & Pinto, H. (2014). Symmetry issues in mixed integer programming based Unit Commitment. International Journal of Electrical Power & Energy Systems, 54, 86-90. [35] Gil, E., Aravena, I., & Cárdenas, R. (2014). Generation capacity expansion planning under hydro uncertainty using stochastic mixed integer programming and scenario reduction. IEEE Transactions on Power Systems, 30(4), 1838-1847. [36] Bakhshipour, M., Ghadi, M. J., & Namdari, F. (2017). Swarm robotics search & rescue: A novel artificial intelligence-inspired optimization approach. Applied Soft Computing, 57, 708-726. [37] Italy4th Conto Energia (Summary), May 2011, European Photovoltaic Industry Association. [38] ItalyAnnual Report, Aug. 2011, International Energy Agency Wind. [39] Kariuki, K. K., & Allan, R. N. (1996). Evaluation of reliability worth and value of lost load. IEE proceedings-Generation, transmission and distribution, 143(2), 171-180. [40] Li, W. (2006). Expected Energy Not Served (EENS) Study for Vancouver Island Transmission Reinforcement Project. Report- BCTC. | ||
|
آمار تعداد مشاهده مقاله: 334 تعداد دریافت فایل اصل مقاله: 391 |
||