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Abstract— Speeding up the system is one of the basic 

challenges in the real-world applications of Face Recognition 

(FR), whereas reducing the computational complexity can 

significantly increase the speed of the system. In recent years, 

many face recognition methods have been proposed but few of 

them give attention to this issue. Accordingly, in this article, we 

take the axis-symmetrical property of faces as a novel idea to 

speed up the face recognition algorithm as well as to reduce the 

computational complexity. Taking the axis-symmetrical property 

of faces leads us to use half of the face image. Proposing a face 

recognition system using Hidden Markov Model (HMM) as a 

classifier, we use the Singular Value Decomposition (SVD) to 

build the observation vectors. Evaluated results of the proposed 

system on Yale and Faces94 datasets show that the proposed 

system can achieve a satisfactory recognition rate with a higher 

speed. 

Keywords— Face Recognition, Hidden Markov Model 

(HMM), Singular Value Decomposition (SVD), Half of the face, 

Axis-symmetrical. 

 

 

I. INTRODUCTION 

n recent years, face recognition is one of the active branches 

of Computer Vision (CV) [1-5] and pattern recognition, and 

it has a wide range of applications in security surveillance, 

embedded systems [6], sign language recognition [7-10], law 

enforcement, robotics, human-computer interaction and 

access control [11]. Various methods have been proposed in 

the face recognition community that we review some of the 

popular methods. Eigen face is one of the most common face 

recognition methods. This method projects high dimensional 

face images in a low dimensional space using Principal 

Component Analysis (PCA) [12,13]. Linear Discriminant 

Analysis (LDA), also called Fisher face, is another face 

recognition method. The LDA method projects face images 

into the fisher-face in order to minimize the differences in 

each class and maximize the difference between classes [14-

16]. These methods have low robustness against the 
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illumination and expression changes. Hence, novel methods 

are proposed to improve face recognition, which include:  

• Artificial Neural Networks (ANN) with supervised or 

unsupervised learning models to classify the faces [17], 

• Support Vector Machine (SVM), as a binary classifier, 

determines the hyper plane to separate classes using 

maximizing the distance of each class [18],  

• Sparse representation (SR) based face recognition, where 

in these methods the face images are classified based on a 

dictionary learned using training face images [19,10].  

• Hidden Markov Model (HMM) based approaches.  

However, real-world applications of the face recognition 

suffer from computational complexity, time-consuming 

algorithms and also memory size. Face recognition for 

humans needs the facial features. The faces are axis-

symmetrical, in other words, each half of the face is another 

one’s “mirror image” [21]. The facial expressions are also 

symmetrical like facial structures [12]. Therefore, facial 

features exist symmetrically in each half of the face. Facial 

features that are extracted from facial objects include: hair, 

forehead, eyebrows, eyes, nose, mouth and chin. So, we can 

model a face image using Hidden Markov Model (HMM) by 

assigning each region of the facial object to a state [23,24]. 

Feature extraction is another main component in a face 

recognition system that has a significant effect on the system 

performance [25]. Since singular values of an image describe 

natural algebraic image properties and have the good stability, 

Singular Value Decomposition (SVD) can be used as an 

effective feature extraction tool in image processing and 

computer vision. For this reason, feature vectors of the facial 

image are represented by the singular values of the facial 

image in most of the face recognition methods [26]. In this 

paper, we propose a novel one dimensional HMM-based face 

recognition system using SVD coefficients to extract 

observation vectors. We take the axis-symmetrical property of 

the face to identify the face by using the image of half of the 

face instead of the whole image. In this way, we can speed up 

the system and reduce the computational complexity of image 

preprocessing and also the needed memory to store images. 

The proposed method is evaluated on Yale and Faces94 face 

datasets. Experimental results represent a high recognition 

rate that shows the efficiency of the proposed method. 

The rest of the paper is organized as follows. We introduce 

some related works in section 2. Section 3 reviews the 

backgrounds of HMM and SVD. In section 4, the proposed 
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method is described. In section 5, the experimental results are 

shown. Finally, section 6 concludes the work. 

II. RELATED WORKS 

HMM is an important class of face recognition methods 

which has been successfully used in recent years. Generally, 

in HMM-based face recognition methods, the face images are 

represented as a sequence of vectors using a feature extraction 

method and each face class is modeled by an HMM. The 

combination of the HMMs with a feature extraction method 

has been used in the recent studies. The first HMM based 

method for face recognition was proposed by F. Samaria and 

F. Fallside in 1993 [27]. They used a 1D HMM as a classifier 

and created the observation vectors by pixel intensity values 

of the face image. The face recognition method in [28] 

considers face region of hair, forehead, eyes, nose and mouth 

as HMM states and uses 2D-DCT for feature extraction. In 

[28], the face images were represented by 2D DWT 

coefficients and a left to right HMM is used for classification. 

In [29], a 2D-distributed HMM (2D-DHMM) was proposed 

which was improved by the EM (Expectation-Maximization) 

and Viterbi algorithms.  

In the proposed method, we use half of the face image to 

improve the speed of the HMM-SVD based system with less 

computation cost. 

III. BACKGROUND 

In this section, we introduce a brief review of HMM and 

singular value decomposition for face recognition. 

A. HMM 

HMM is a powerful statistical tool for characterizing a time 

series data [30] which has a wide range of applications in face 

recognition, signal processing and mechanical engineering 

field [31-34]. HMM is associated with hidden states and 

observable sequences, as introduced in the following. HMM 

includes some general elements as following: 

 S= {s1, s2,…, sN} is the set of all possible states in 

the model, where N denotes the number of states. 

The state at time, t is given by qt∊ S. 

 V= {v1, v2,…, vM } is the set of distinct observation 

symbols, where M denotes the number of symbols. 

The observation symbol at time t is given by ot∊ V. 

 A={aij } is the transition probability matrix, where :  

 

aij= P[qt+1 = sj ⃒qt = si ] 
 

                 (1) 

 
1≤ i , j ≤ N  ,  0 ≤ aij ≤ 1        

 

      ∑ aij = 1N
i=1   ,    1≤ i ≤ N                              (2) 

 

 B={bj(k)} is the observation symbol probability 

matrix, where: 
 

bj(k)= P[ot = vk ⃒qt = sj ] 
 

                    (3) 

 
1≤ i , j ≤ N  ,  0 ≤ aij ≤ 1 

 T={π1, π2,…, πN} is the initial state distribution, 

where :  

 
        πi= P[q1 = si]  ,  1≤ i ≤ N                                    (4) 

 

For convenience, HMM is indicated by compact notation λ = 

(A, B, 𝜋) [35].  

The Forward–Backward procedure, Viterbi algorithm and 

Baum–Welch algorithm are three basic algorithms in HMM, 

where the role of each one is introduced respectively, as 

follows [36-38]: 

 Forward–Backward procedure calculates the probability 

of the observed sequence when a model λ and a sequence 

of observation O = {o1, o2, … , oT} are given. 

 Viterbi algorithm obtains an optimal sequence of states 

Q= {q1, q2, … , q3}, when a model λ and a sequence of 

observation O = {o1, o2, … , oT} are given. 

 Baum–Welch algorithm adjusts model parameters λ = (A, 

B, 𝜋) to maximize the probability of the observation 

sequence.  

B. SVD 

SVD is one of the well-known techniques in the field of 

pattern recognition and signal processing. In this paper, we 

used SVD to extract face features. SVD of a m×n matrix A is: 

 

           An×p= Un×n Sn×p VP×P
T                           (5) 

 

Where, U and V are orthogonal matrix, and S is the diagonal 

matrix of singular values.  

IV. THE PROPOSED SYSTEM 

Fig. 1 shows the process of the proposed HMM-based face 

recognition method which includes three steps: image 

preprocessing, observation vector and HMM-based face 

recognition. 

A. Image preprocessing 

We use some image preprocessing methods to improve the 

face recognition of the images, where the details of them are 

given in the following. 

Fig. 1: Flowchart of the proposed model. 
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1) Halve the face image 

In our proposed method, the faces are recognized using the 

image of half of the face. For this work, due to the axis-

symmetrical property of faces [39], we separate the face 

image into the left and right half images by finding the middle 

of face objects (e.g., eyes, nose, mouth, …), as shown in Fig. 

2.  

 

2) Filtering  

Various lightening conditions can lead to illumination effects 

such as illumination variations, shadow regions and highlights 

on parts of the face, which can decrease the performance of 

the facial recognition system [40-43]. Hence, we apply a 

minimum order-statistic filter on both of train and test face 

images in order to eliminate the illumination variations effects 

and unnecessary details while preserving the basic visual 

elements [44], as shown in Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

 

3) Observation vector 

In the HMM-based face recognition system, the face images 

are represented as a sequence of observation vectors. In the 

proposed method, we generate the observation vector from 

three following steps, which includes: block extraction, 

feature extraction, and quantization. 

 

 Block extraction: As shown in Fig. 4, the observation 

vector is generated by dividing half of the face image 

from top to bottom into p sized overlapping L × W 

blocks. 

 

 Feature extraction: We use SVD to extract features of 

each block. Based on the discussion in [45], the first 

two coefficients of matrix S and first coefficient of 

matrix U ( S11, S22, U11) are selected as features of each 

block. The proposed system achieved the highest 

recognition rate using these selected features. Thus, 

each L × W block is represented by 3 values that 

significantly decrease computational complexity and 

sensitivity to illumination and rotation variation. 

 Quantization: SVD coefficients are continuous values. 

So, we quantize each coefficient that can be modeled by 

discrete HMM. In the proposed method, we quantize 

the first feature (S11) into 10, the second feature (S22) 

into 7 and the third one (U11) into 18 levels, which 

follows the experimental setting in [46].  

 

4) HMM-based classification 

This step of the proposed system is the classification based on 

one dimensional HMM. In our system, we divided half of the 

face image into seven distinct parts of hair, forehead, 

eyebrow, eye, nose, mouth and chin as shown in Fig. 5.  In 

our proposed method, each part is respectively assigned to a 

state in one dimensional HMM as shown in Fig. 6, while in 

other HMM based face recognition algorithms, the states 

represent the parts of the whole face image. A 7 states 1D 

HMM associated with each person in the dataset is trained 

using the Baum–Welch Algorithm [46-48]. For the 

identification, each input face image is represented by own 

observation vector; then the Forward–Backward Algorithm 

[46-48] is used to calculate the conditional probability of each 

HMM. Finally, the input image is recognized as a person who 

has the highest probability [48-50].  

 

V. EXPERIMENTAL RESULTS 

The performance of the proposed method is evaluated on two 

face datasets: Yale [15] and faces94 [51]. Also, we compared 

the proposed method with some face recognition methods. 

Fig.4: The right image is the result of applying order-

statistic on the left original image. 

Fig. 2: Dividing half of the face image to overlapping 

blocks. 
Fig. 3: Dividing the face image into two equal half 

images. 

Fig. 5: A one-dimensional HMM model with seven states for a face image. 
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A. Yale dataset 

The Yale face dataset contains 165 grayscale face images 

from 15 individuals. Eleven images for each one are captured 

under different illumination conditions such as center-light, 

left-light, and right-light and variant configuration and facial 

expression such as: with glasses, without glasses, normal, 

happy, sad, sleepy, surprised, and wink. The first row of Fig. 

7 shows images of the first individual. Five images are 

randomly selected for each subject as the training set, and the 

rest as test set. The recognition rates of the proposed method 

and various methods (which used the whole face image) are 

shown in Table 1. The proposed method achieves 98.88% 

recognition rate using the image of half of the face. It can be 

found that the proposed method achieves a higher recognition 

rate than some other face recognition methods on Yale 

dataset. While, time consumption and computational 

complexity of generating observation vectors in preprocessing 

phase are decreased highly. 

 
Table 1: The recognition rates on Yale dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

B. Faces94 dataset 

The proposed system is also evaluated on Faces94 face 

dataset. The Faces94 dataset contains twenty RGB frontal 

face images corresponding to 153 individuals (3060 images) 

with sizes of 200 × 180. The images were taken in a different 

expression, whilst the lighting conditions are relatively 

constant. Some examples of an individual are illustrated in the 

second row of Fig. 7. We used 10 images to train and 10 

images to test per individual. Table 2 shows the recognition 

rate of the proposed method and some of the various face 

recognition algorithms on the Faces94 dataset. The obtained 

result using the image of half of the face instead of the whole 

face image shows high recognition ability of the system. 

Therefore, we can recognize the face using half of the face 

image. The proposed method represents a good performance 

to increase the speed of the algorithm and reduce 

computational complexity and the needed memory to store 

images.  

 

 
Fig. 7: Some examples of one class: (a) Yale dataset, (b). Face94 

dataset. 

Table 2: The recognition rates on Faces94 dataset. 

Method REC (%) 

PC+LDA            [54] 

B2DPCACRC    [55] 

Proposed method 

99.29  

99.87  

99.93  

 

It can be found that using half of the face image instead of the 

whole image; reduces the computational complexity 

significantly to prepare observation vectors as input of the 

face recognition system, as shown in Fig. 8. Actually, our 

purpose is to propose a face recognition system using half of 

the face, in order to provide a practical study on the 

challenges of the relationship and impact of using half of the 

face in face recognition. Because of the satisfactory 

performance, speed and less needed memory, the proposed 

system can be used on intelligent devices; especially in some 

systems that face recognition using half of the face can 

improve the performance or solve some problems. 

VI. CONCLUSION 

A face recognition system based on 7-states HMM using SVD 

coefficient is presented. Due to the axis-symmetry of the face, 

Method REC (%) 

NN 

SVM   [50] 

CRC    [51] 

SRC    [52] 

CSDL-CRC    [53] 

CSDL-SRC    [53] 

Proposed method 

60.44 

78.22 

82.11 

81.33 

83.56 

84.56 

98.88 

Fig. 6: dividing half of the face image into seven distinct parts. 
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we used half of the face image to increase speed of processing 

and decrease computational complexity and the memory  

 

 
required to store face images. Evaluation results on two 

datasets, Yale and Faces94, show the accuracy improvement 

of the proposed model in face recognition. As a future work, 

we would like to use the impressive capabilities of Deep 

Learning, especially Convolutional Neural Networks (CNNs), 

in face recognition. 
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