
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,783 |
تعداد دریافت فایل اصل مقاله | 7,656,216 |
Solving binary semidefinite programming problems and binary linear programming problems via multi-objective programming | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 23، دوره 13، شماره 1، خرداد 2022، صفحه 297-304 اصل مقاله (423.58 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2019.13899.1724 | ||
نویسندگان | ||
Mohammadreza Safi* ؛ Seyyed Saeed Nabavi | ||
Faculty of Mathematics, Statistics and Computer Science, Semnan University, Semnan, Iran | ||
تاریخ دریافت: 13 بهمن 1396، تاریخ بازنگری: 30 تیر 1397، تاریخ پذیرش: 24 بهمن 1397 | ||
چکیده | ||
In recent years the binary quadratic program has grown in combinatorial optimization. Quadratic programming can be formulated as a semidefinite programming problem. In this paper, we consider the general form of binary semidefinite programming problems (BSDP). We show the optimal solutions of the BSDP belong to the efficient set of a semidefinite multiobjective programming problem (SDMOP). Although finding all efficient points for multiobjective is not an easy problem, but solving a continuous problem would be easier than a discrete variable problem. In this paper, we solve an SDMOP, as an auxiliary, instead of BSDP. We show the performance of our method by generating and solving random problems. | ||
کلیدواژهها | ||
Semidenite programming؛ Positive semidenite matrix؛ Multiobjective programming؛ Binary programming | ||
مراجع | ||
[1] B. Alidaee, A.G. Kochenberger and A. Ahmadian, 0-1 quadratic programming approach for optimum solutions of two scheduling problems, Int. J. Syst. Sci. 25.2 (1994) 401-408. [2] X. Bao, N.V. Sahinidis and M. Tawarmalani, Semidefinite relaxations for quadratically constrained quadratic programming: A review and comparisons, Math. Prog. 129(1) (2011) 129. [3] H.P. Benson, A finite, nonadjacent extreme-point search algorithm for optimization over the efficient set, J. Opt. Theory Appl. 73(1) (1992) 47–64. [4] H.P. Benson and E. Sun, New closedness results for efficient sets in multiple objective mathematical programming, Journal of mathematical analysis and applications, 238(1) (1999) 277–296. [5] S. Burer, D.M. Renato and Y. Zhang, Rank-two relaxation heuristics for max-cut and other binary quadratic programs, SIAM J. Opt. 12(2) (2002) 503–521. [6] F. Glover, B. Alidaee, C. Rego and G. Kochenberger, One-pass heuristics for large-scale unconstrained binary quadratic problems, European J. Oper. Res. 137(2) (2002) 272–287. [7] G.A. Kochenberger,F. Glover, B. Alidaee and C. Rego, A unified modeling and solution framework for combinatorial optimization problems, OR Spect. 26(2) (2004) 237–250. [8] D.G. Luenberger and Y. Yinyu, Linear and Nonlinear Programming, Springer, 2016. [9] J. Luo, K.R. Pattipati, P.K. Willett and F. Hasegawa, Near-optimal multiuser detection in synchronous CDMA using probabilistic data association IEEE Commun. Lett. 5(9) (2001) 361–363. [10] P. Merz and B. Freisleben, Genetic algorithms for binary quadratic programming, Proc. 1st Ann. Conf. Gen. Evolut. Comput. Volume 1. Morgan Kaufmann Publishers Inc., 1999. [11] O. Ozpeynirci and M. Koksalan, An exact algorithm for finding extreme supported nondominated points of multiobjective mixed integer programs, Manag. Sci. 56(12) (2010) 2302–2315. [12] P.M. Pardalos and G.R. Rodgers, A branch and bound algorithm for maximum clique problem Comput. Oper. Res. 19 (1992) 363—375. [13] A.T. Phillips and J.B. Rosen, A quadratic assignment formulation of the molecular conformation problem Journal of Global Optimization, 4.2 (1994) 229-241. [14] S. Poljak and H. Wolkowicz, Convex relaxations of (0, 1)-quadratic programming Mathematics of Operations Research, 20.3 (1995) 550-561. [15] H. Wolkowicz, and M.F. Anjos, Semidefinite programming for discrete optimization and matrix completion problems, Discrete Appl. Math. 123(1-3) (2002) 513–577. [16] H. Wolkowicz, R. Saigal and L. Vandenberghe, Handbook of semidefinite programming: theory, algorithms, and applications, Springer Science and Business Media, 2012. [17] Z. Xu, M. Hong and Z.Q. Luo, Semidefinite approximation for mixed binary quadratically constrained quadratic programs, SIAM J. Opt. 24(3) (2014) 1265–1293. | ||
آمار تعداد مشاهده مقاله: 15,833 تعداد دریافت فایل اصل مقاله: 611 |