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Abstract

In this paper, we apply the Chebyshev polynomials for the numerical solution of variable-order
fractional integro–differential equations with initial conditions. Moreover, a class of variable-order
fractional integro–differential equations with a fractional derivative of Caputo–Prabhakar sense is
considered. The main aim of the Chebyshev polynomials is to derive four kinds of operational
matrices of these polynomials. With such operational matrices, an equation is transformed into the
products of several dependent matrices, which can also be viewed as the system of linear equations
after dispersing the variables. Finally, numerical examples have been presented to demonstrate the
accuracy of the proposed method, and the results have been compared with the exact solution.
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1. Introduction

Fractional differential equations have profound physical background and rich theory and are par-
ticularly noticeable in recent years. They are equations containing fractional derivative or fractional
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integrals, which have received great interest across disciplines such as physics, biology, and chemistry.
More specifically, they are widely used in dynamical systems with chaotic dynamical behavior, quasi-
chaotic dynamical systems, the dynamics of complex material or porous media, and random walks
with memory [12]. In this paper, we investigate approximate solutions of the following fractional
integro–differential equation using a numerical method based on shifted Chebyshev polynomials:

CPDµ(t)

[
z(x, t).w(x, t)

]
+
∂z(x, t)

∂t
= r(x, t)−

∫ t

0

z(x, Y ).k(x, Y )dY −
∫ t

0

z(x, Y )dY, (1.1)

z(x, 0) = w(x), x ∈ [0, 1], z(0, t) = v(t), t ∈ [0, 1], (1.2)

where in above symbol CPDµ(t) is named Caputo-Prabhakar fractional derivative of order µ(t) ∈ (0, 1]
and µ(t) is a continuous function. The history of this type of derivative is considered in this article
goes back to the reference [30, 6] that it as an extension of Riemann-Liouville and Caputo derivatives
is expressed and this type of the CPDµ(t) on function f(t) for m = 1 is defined by:

CPDµ(t)f(t) = IPE−γ1−µ(t)

d

dt
f(t), (1.3)

where IPE−γm−µ(t) is the Prabhakar fractional integral of order 1− µ(t) and it is defined by:

IPE−γ1−µ(t)f(t) =

∫ t

0

(t− %)−µ(t)E−γρ,µ(t)(ω(t− %)ρ)f(%)d%, (1.4)

and in the relation (1.4), Eγ
ρ,µ(t)(ωt

ρ) is as a generalization of one-parameter Mittag-Leffler and two-
parameter Mittag-Leffler functions and it called Prabhakar generalized Mittag function which is given
by[6]:

Eγ
ρ,µ(t)(z) =

1

Γ(γ)

∞∑
n=0

Γ(γ + n)

n!Γ(ρn+ µ(t))
zn, µ(t), γ, ρ ∈ C, <(ρ) > 0. (1.5)

Also in equation (1.1), the functions z(x, t), r(x, t), w(x, t), k(x, t) according to time casual functions
are considered that r(x, t), w(x, t), k(x, t) are determined and z(x, t) is indeterminated. Due of the
abundant application of the Prabhakar generalized Mittag function in fractional calculus a reason was
to choose this kind of the Caputo-Prabhakar fractional derivative of order µ(t). Applications of the
three-parameter Mittag-Leffler function can be found in mathematical fields as physics and stochastic
processes, electromagnetic, viscosity, various materials, and different media[27, 16, 18, 15, 20, 31, 33].
Recently, the Prabhakar fractional derivative with three-parameter Mittag-Leffler function kernel has
attracted increasing attention in the real-world problems, with a growing number of applications in
sciences. For example, in Garra et al. [6], Kilbas et al. [17] and Prabhakar [30], authors developed
the fractional Riemann–Liouville (or Caputo) derivative and integral to the Prabhakar fractional
derivative and integral containing the three-parameter Mittag-Leffler function in their kernels. This
form of fractional integral and derivative can suitably explain anomalous relaxation of Havriliak-
Negami models in the scope of dielectric materials [11, 9, 19, 8, 28], the corresponding applications
in the time-evolution of polarization processes [6, 8, 13], the fractional Poisson process [6], the
fractional Maxwell model in linear viscoelasticity [10], the generalized reaction-diffusion equations
[1].

Getting approximate solutions to the equation (1.1) which is called fractional integro–differential
equation of variable order is not easy, so in this article, a numerical method for finding the numerical
solutions of this type of equation is presented. Some authors have been paid to solve integro–
differential equations involving fractional derivatives using numerical methods. For example, in [26]
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was studied a numerical algorithm base on the variational iteration, the numerical method base
on Adomian decomposition algoritm[5, 14], the generalized differential transform algorithm[24], the
wavelet algorithm[3], the finite difference algorithm[38], a numerical algorithm base on the collocation
method[39] and implicit RBF Meshless method for obtaining solutions of two-dimensional fractional
cable equation of variable order [23] and other methods [32, 20, 21, 22, 2, 25] must be used. In this
paper, we expressing a fractional integro–differential in terms of a generalized derivative of order µ(t)
and using a numerical method based on matrix operator that this operator is made of the shifted
Chebyshev polynomials to solve the equation.

For this aim, the following paper structure is composed as follows: in section 2 we introduce some
lemmas which are applied in the next section. In section 3, first, we introduce a Chebyshev polynomial
of degree n and then using the Chebyshev polynomials to make shifted Chebyshev polynomials and
in this section, we get the approximation function to find the solutions of the proposed equation. In
section 4, applied the approximate function in section 3 to obtain numerical solutions of the integro–
differential equation (1.1). In section 5, we show two examples for the performance and accuracy of
the proposed method in this paper.

2. Some properties of Caputo–Prabhakar fractional derivative

This section describes Lemmas which are used for the next section.

Lemma 2.1. [4]. Let ν(t) ∈ (0, 1) and k > 0. Then

Iν(t)
t tk =

tk+ν(t)Γ(k + 1)

Γ(k + 1 + ν(t))
, (2.1)

where Iν(t)
t is the Riemann–Liouville fractional integral of order ν(t) which is defined in [4].

Lemma 2.2. Let ρ, γ, µ(t), ς, ω ∈ C. Then for any <(ρ),<(µ(t)),<(ς) > 0 the following relation is
hold: ∫ t

0

(t− u)µ(t)−1Eγ
ρ,µ(t)(ω(t− u)ρ)uς−1du = Γ(ς)tµ(t)+ς−1Eγ

ρ,µ(t)+ς(ωt
ρ). (2.2)

Proof . The use of (1.5), we obtain:∫ t

0

(t− τ)µ(t)−1Eγ
ρ,µ(t)

(
ω(t− τ)ρ

)
τ ς−1dτ

=
1

Γ(γ)

∞∑
k=0

Γ(γ + k)ωk

k!Γ(ρk + µ(t))

∫ t

0

(t− τ)ρk+µ(t)−1τ ς−1dτ. (2.3)
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Now, employing
∫ t

0
(t− τ)ρk+µ(t)−1τ ς−1dτ = Γ(ρk + µ(t))

(
Iρk+µ(t)
t tς−1

)
, we have:∫ t

0

(t− τ)µ(t)−1Eγ
ρ,µ(t)

(
ω(t− τ)ρ

)
τ ς−1dτ

=
1

Γ(γ)

∞∑
k=0

Γ(γ + k)ωk

k!Γ(ρk + µ(t))

(
Γ(ρk + µ(t))

(
Iρk+µ(t)
t tς−1

))
=

Γ(ς)

Γ(γ)

∞∑
k=0

Γ(γ + k)ωk

k!Γ(ρk + µ(t) + ς)
tς+ρk+µ(t)−1

= Γ(ς)tς+µ(t)−1 1

Γ(γ)

∞∑
k=0

Γ(γ + k)ωktρk

k!Γ(ρk + µ(t) + ς)

= Γ(ς)tς+µ(t)−1Eγ
ρ,µ(t)+ς(ωt

ρ). (2.4)

This completes the proof. �

Lemma 2.3. For any <(ρ),<(µ(t)) > 0 the following relation is hold:

CPDµ(t)

(
xζ−1

)
(t) = Γ(ζ)tζ−µ(t)−1E−γρ,ζ−µ(t)(ωt

ρ), ζ > 1. (2.5)

Proof . Using (1.3) and (1.4), we get

CPDµ(t)

(
xζ−1

)
(t) = IPE−γ1−µ(t)

d

dt
(tζ−1)

= (ζ − 1)

∫ t

0

(t− %)−µ(t)E−γρ,µ(t)(ω(t− %)ρ)%ζ−2d%, (2.6)

with the help of Lemma 2.2, we obtain:

CPDµ(t)

(
xζ−1

)
(t) = (ζ − 1)

∫ t

0

(t− %)−µ(t)E−γρ,µ(t)(ω(t− %)ρ)%ζ−2d%

= Γ(ζ)tζ−µ(t)−1E−γρ,ζ−µ(t)(ωt
ρ). (2.7)

Therefore the proof is completed. �

3. Properties of Chebyshev orthogonal polynomial and shifted Chebyshev orthogonal
polynomial

A Chebyshev polynomials of degree n in the interval x ∈ [−1, 1] that with the symbol Tn(x) is
shown, in the form of a recursive sequence is defined as follows[34]:

Tn+1(x)+Tn−1(x) = 2xTn(x), n = 1, 2, 3, · · · ,
T0(x) = 1, T1(x) = x. (3.1)

The Chebyshev polynomial can be represented as a finite series as follows:

Tn(x) = n

[n
2

]∑
i=0

(−1)i2n−2i−1

(
n− i
i

)
(n− i)

xn−2i. (3.2)
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The orthogonal condition for this Chebyshev polynomial respect to a weight function Σ1(x) = 1√
1−x2

is given by:

∫ 1

−1

Ti(x)Tj(x)Σ1(x)dx =

∫ 1

−1

Ti(x)Tj(x)√
1− x2

dx =


π, i = j = 0,
π
2
, i = j 6= 0,

0 j 6= i,
(3.3)

Now we change the variable x ∈ [−1, 1] in the Chebyshev polynomial to x = 2t−1, t ∈ [0, 1] that the
Chebyshev polynomial of degree n, Tn(x) changes to the shifted Chebyshev polynomial of degree n
as Tn(2t− 1) = T ∗n(t). The recursive sequence of this shifted Chebyshev polynomial of degree can be
defined as follows:

T ∗n+1(t)+T ∗n−1(t) = 2(2t− 1)T ∗n(t), n = 1, 2, 3, . . . ,

T ∗0 (t) = 1, T ∗1 (t) = 2t− 1. (3.4)

Here, this polynomial is introduced in the relation(3.4) has a series representation as follows:

T ∗n(t) = n
n∑
k=0

(−1)n−k22k

(
n+ k

2k

)
(n+ k)

tk. (3.5)

The orthogonality condition for T ∗n(t) respect to a weight function Σ2(x) = 1√
1−x2 is given by:

∫ 1

0

T ∗i (x)T ∗j (x)Σ2(x)dx =

∫ 1

0

T ∗i (x)T ∗j (x)dx
√

1− x2
=


π, i = j = 0,
π
2
, i = j 6= 0,

0 j 6= i.
(3.6)

Here we introduce a vector function Υ(t) as follows:

Υ(t) =
[
T ∗0 (t), T ∗1 (t), . . . , T ∗n(t)

]T
, (3.7)

where T ∗i (t), 0 ≤ i ≤ n are the shifted Chebyshev polynomials of degree n and we can display the
Υ(t) as follows:

Υ(t) = ΠTn(t), (3.8)

where Π is defined by:

Π =
[(
ai,j

)]
=

{
0, j > i,

(i− 1)(−1)i−j 22(j−1)(i+j−3)!
(2(j−1))!(i−j)! j ≤ i,

(3.9)

where i = 1, . . . , n+ 1, j = 1, . . . , n+ 1 and Tn(t) is defined by:

TT
n (t) =

[
1, t, . . . , tn

]
. (3.10)

Since Π is invertible then we can rewrite the matric representation (3.8) as:

Tn(t) = Π−1Υ(t). (3.11)
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Using orthogonal conditions for T ∗n(t) respect to the weight function Σ2(x) which is stated in re-
lation(3.6), we can be expanded any arbitrary function z(x, t) in terms of the shifted Chebyshev
polynomials as follows:

z(x, t) =
∞∑
i=0

∞∑
j=0

zi,jT
∗
i (x)T ∗j (t), x ∈ L2[0, 1], t ∈ L2[0, 1], (3.12)

where the coefficient zi,j for i = 1, . . . , n + 1, j = 1, . . . , n + 1 can be calculated. For calculate zi,j,
we multiply the two sides of the relation (3.12) in Σ2(x)T ∗k1(x)Σ2(t)T ∗k2(t), k1 = 1, . . . , n + 1, k2 =
1, . . . , n+ 1, we have:

Σ2(x)T ∗k1(x)Σ2(t)T ∗k2(t)z(x, t) =
( ∞∑
i=0

∞∑
j=0

zi,jT
∗
i (x)T ∗j (t)

)
Σ2(x)T ∗k1(x)Σ2(t)T ∗k2(t), (3.13)

by integrating both sides of the equation (3.13), we obtain∫ 1

0

∫ 1

0

Σ2(x)T ∗i (x)Σ2(t)T ∗i (t)z(x, t)dxdt = zi,i〈T ∗i (t), T ∗i (t)〉Σ2(t) × 〈T ∗i (x), T ∗i (x)〉Σ2(x),

zi,i =

∫ 1

0

∫ 1

0
Σ2(x)T ∗i (x)Σ2(t)T ∗i (t)z(x, t)dxdt

〈T ∗i (t), T ∗i (t)〉Σ2(t) × 〈T ∗i (x), T ∗i (x)〉Σ2(x)

. (3.14)

Considering the first (n + 1) sentence of the infinite series (3.12), we can approximate the function
z(x, t) as:

z(x, t) ∼= zn(x, t) =
n∑
i=0

n∑
j=0

zi,jT
∗
i (x)T ∗j (t) = [1, x, . . . , xn]1×(n+1)︸ ︷︷ ︸

ΥT (x)

×


z0,0 z0,1 . . . z0,n

z1,0 z1,1 . . . z1,n
...

...
. . .

...
zn,0 zn,1 . . . zn,n


︸ ︷︷ ︸

Z

×


1
t
...
tn


(n+1)×1︸ ︷︷ ︸

Υ(t)

= (ΠTn(x))TZ(ΠTn(t)). (3.15)

Theorem 3.1. Let
∑∞

i=n+1

∑∞
j=n+1 |zi,j|2 <∞ and the following relations are hold:

L1 : CPDµ(t)

[
zn(x, t).w(x, t)

]
+
∂zn(x, t)

∂t

− r(x, t) +

∫ t

0

zn(x, Y ).k(x, Y )dY +

∫ t

0

zn(x, Y )dY,

L2 : CPDµ(t)

[
z(x, t).w(x, t)

]
+
∂z(x, t)

∂t

− r(x, t) +

∫ t

0

z(x, Y ).k(x, Y )dY +

∫ t

0

z(x, Y )dY, (3.16)

where z(x, t) is the exact solution of the equation (1.1) and zn(x, t) is the numerical solution of the
equation (1.1). Then we have:

|L1 − L2| →︸︷︷︸
n→∞

0. (3.17)
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Proof . We want to show that the following relation holds:

lim
n→∞

L1 = L2 ⇒ |L1 − L2| →︸︷︷︸
n→∞

0. (3.18)

From definitions L1,L2 we get:

L1 − L2 =CPDµ(t)

[
(zn(x, t)− z(x, t)).w(x, t)

]
+
∂

∂t
(zn(x, t)− z(x, t))

+

∫ t

0

(zn(x, Y )− z(x, Y )).k(x, Y )dY +

∫ t

0

(zn(x, Y )− z(x, Y ))dY, (3.19)

|L1 − L2| ≤|CPDµ(t)

[
(zn(x, t)− z(x, t)).w(x, t)

]
|+ | ∂

∂t
(zn(x, t)− z(x, t))|

+ |
∫ t

0

(zn(x, Y )− z(x, Y )).k(x, Y )dY |+ |
∫ t

0

(zn(x, Y )− z(x, Y ))dY |, . (3.20)

To proof Eq.(3.20), we show the following relation is hold:

|zn(x, t)− z(x, t)| → 0, asn→∞. (3.21)

For this aim, we have:

|zn(x, t)− z(x, t)| = |
∞∑
i=0

∞∑
j=0

zi,jT
∗
i (x)T ∗j (t)−

n∑
i=0

n∑
j=0

zi,jT
∗
i (x)T ∗j (t)|

= |
∞∑

i=n+1

∞∑
j=n+1

zi,jT
∗
i (x)T ∗j (t)|, (3.22)

using the Cauchy–Schwarz inequality for equation (3.22), we obtain

|zn(x, t)− z(x, t)| ≤
( ∞∑
i=0

∞∑
j=0

|zi,j|2
) 1

2 ×
( ∞∑
i=n+1

|T ∗i (x)|2
) 1

2 ×
( ∞∑
j=n+1

|T ∗j (t)|2
) 1

2

≤
( ∞∑
i=n+1

|T ∗i (x)|2
) 1

2 ×
( ∞∑
j=n+1

|T ∗j (t)|2
) 1

2
, since

∞∑
i=n+1

∞∑
j=n+1

|zi,j|2 <∞.

Then we have
|zn(x, t)− z(x, t)| → 0︸ ︷︷ ︸

n→∞

, (3.23)

since
( ∞∑
j=n+1

|T ∗j (t)|2
) 1

2 → 0︸ ︷︷ ︸
n→∞, t∈(0,1)

and
( ∞∑
j=n+1

|T ∗i (x)|2
) 1

2 → 0︸ ︷︷ ︸
n→∞, x∈(0,1)

.

So from the equation (3.23), for the equation (3.20) is used and we conclude

L1 − L2 → 0, asn→∞. (3.24)

The proof is completed. �
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4. Numerical approximation by the operational matrix

In this section we obtain the numerical solutions of the proposed equation presented in Eqs. (1.1)
and (1.2).

4.1. Calculation of operators
∫ t

0
z(x, Y ).k(x, Y )dY,

∫ t
0
z(x, Y )dY

Assume the function k(x, t) as the function z(x, t) can be approximated as follows:

k(x, t) =
∞∑
i=0

∞∑
j=0

ki,jT
∗
i (x)T ∗j (t) = (ΠTn(t))TK(ΠTn(x))

= ΥT (t)KΥ(x), x ∈ L2[0, 1], t ∈ L2[0, 1], (4.1)

where K = [ki,j]. So, using Eqs. (3.15),(4.1), we obtain∫ t

0

z(x, Y ).k(x, Y )dY =

∫ t

0

(
ΥT (x)ZΥ(Y ))

)(
ΥT (Y )KΥ(x))

)
dY

= ΥT (x)Z
(∫ t

0

Υ(Y )ΥT (Y )dY
)
KΥ(x)

= ΥT (x)Z
(∫ t

0


1 Y Y 2 . . . Y n

Y Y 2 . . . . . . Y n+1

Y 2 Y 3 . . . . . .
...

...
... . . . . . .

...
Y n Y n+1 . . . Y 2n−1 Y 2n

 dY
)
KΥ(x)

= ΥT (x)Z



∫ t
0

1dY
∫ t

0
Y dY

∫ t
0
Y 2dY . . .

∫ t
0
Y ndY∫ t

0
Y dY

∫ t
0
Y 2dY

. . . . . .
∫ t

0
Y n+1dY∫ t

0
Y 2dY

∫ t
0
Y 3dY

. . . . . .
...

...
... . . . . . .

...∫ t
0
Y ndY

∫ t
0
Y n+1dY . . .

∫ t
0
Y 2n−1dY

∫ t
0
Y 2ndY


︸ ︷︷ ︸

H

KΥ(x). (4.2)

Also, with a similar process for
∫ t

0
z(x, Y )dY , we have∫ t

0

z(x, Y )dY =

∫ t

0

ΥT (x)ZΥ(Y )dY = ΥT (x)Z
∫ t

0

Υ(Y )dY

= (ΠTn(x))TZΠ



∫ t
0

1dY∫ t
0
Y dY∫ t

0
Y 2dY

...∫ t
0
Y ndY

 . (4.3)

4.2. Calculation of operators CPDµ(t)

[
z(x, t).w(x, t)

]
, ∂z(x,t)

∂t

Operator calculation CPDµ(t)

[
z(x, t).w(x, t)

]
in the form of a theorem is stated as follows:
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Theorem 4.1. Let 0 < µ(t) ≤ 1 and z(x, t), w(x, t) ∈ L2[0, 1]. Then the operational matrix
of Caputo-Prabhakar fractional derivative of variable order µ(t) for multiplication the functions
z(x, t).w(x, t) can be expressed in the following from:

CPDµ(t)

[
z(x, t).w(x, t)

]
= Υ(x)ZΠMΠTWΦ(x), (4.4)

that M has a matric representation as follows:

M =


0 Γ(2)t1−µ(t)E−γρ,2−µ(ωtρ) . . .

Γ(2)t1−µ(t)E−γρ,2−µ(ωtρ) Γ(3)t2−µ(t)E−γρ,3−µ(ωtρ) . . .
...

...
. . .

Γ(n+ 1)tn−µ(t)E−γρ,n+1−µ(ωtρ) Γ(n+ 2)tn+1−µ(t)E−γρ,n+2−µ(ωtρ) . . .

Γ(n+ 1)tn−µ(t)E−γρ,n−µ+1(ωtρ)

Γ(n+ 22)tn+1−µ(t)E−γρ,n+2−µ(ωtρ)
...

Γ(2n+ 1)t2n−µ(t)E−γρ,2n+1−µ(ωtρ)

 (4.5)

where, the function Z is unknown and the function W is known.

Proof . Let w(x, t) = ΥT (t)WΥ(x) be as an approximation of the function w(x, t). Then we have:

CPDµ(t)

[
z(x, t).w(x, t)

]
= CPDµ(t)

[
ΥT (x)ZΦ(t).ΥT (t)WΥ(x)

]
= ΥT (x)ZCPDµ(t)

[
Υ(t)ΥT (t)

]
WΥ(x) = ΥT (x)ZCPDµ(t)

[
ΠT∗n(t)

(
ΠT∗n(t)

)T]
× ΠTWΥ(x) = ΥT (x)ZΠCPDµ(t)

[
T∗n(t)

(
T∗n(t)

)T]
ΠTWΥ(x)

= ΥT (x)ZΠCPDµ(t)

(
1
t
...
tn

 . ( 1 t . . . tn
) )

ΠTWΥ(x)

= ΥT (x)ZΠCPDµ(t)

(
1 t . . . tn

t t2 . . . tn+1

...
...

. . .
...

tn t2n . . . t2n

)ΥTWΥ(x). (4.6)

Using the Lemma 2.3, we obtain

CPDµ(t)

[
z(x, t).w(x, t)

]
=ΥT (x)ZΠ

×


0 Γ(2)t1−µ(t)E−γρ,2−µ(ωtρ) . . .

Γ(2)t1−µ(t)E−γρ,2−µ(ωtρ) Γ(3)t2−µ(t)E−γρ,3−µ(ωtρ) . . .
...

...
. . .

Γ(n+ 1)tn−µ(t)E−γρ,n+1−µ(ωtρ) Γ(n+ 2)tn+1−µ(t)E−γρ,n+2−µ(ωtρ) . . .

Γ(n+ 1)tn−µ(t)E−γρ,n−µ+1(ωtρ)

Γ(n+ 22)tn+1−µ(t)E−γρ,n+2−µ(ωtρ)
...

Γ(2n+ 1)t2n−µ(t)E−γρ,2n+1−µ(ωtρ)

× ΠTWΥ(x)

= ΥT (x)ZΠMΠTWΥ(x). (4.7)
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The relation (4.5) is obtained. � To calculation the operator ∂z(x,t)
∂t

we have:

∂z(x, t)

∂t
=
∂(ΠTn(x))TZ(ΠTn(t))

∂t

= (ΠTn(x))TZ(ΠT′n(t)) = (ΠTn(x))TZΠ


0
1
...

ntn−1

 . (4.8)

To obtain the numerical solution of the equations (1.1) and (1.2), we Substitute Eqs. (4.2), (4.3),
(4.7) and (4.8) into the equation (1.1) and the result is obtained.

5. Numerical Examples

In the following section, three numerical examples are showed that their demonstrate the perfor-
mance and accuracy of the proposed method.

Example 5.1. We consider the equations (1.1) and (1.2) with k(x, t) = (x + t), w(x, t) = (x + t +
1), z(0, t) = t2, z(x, 0) = x2 and

µ(t) =
t

3
,

r(x, t) =2t+
t3

3
+
t4

4
+
t3x

3
+ tx2 +

t2x2

3
+ tx3

−
3t1−

t
3

[
6t(9 + 8t)− 6(−9 + t)tx

]
(−9 + t)(−6 + t)(−3 + t)Γ1− t

3

, (5.1)

where for this example analytical solution is z(x, t) = x2 + t2. Let the maximum error in this paper as
‖ E ‖= max1≤i≤n |un(Mi)− u(Mi)| is defined. Applying the proposed method on this example, taking

n = 2, dispersing xi = ki
3
− 1

6
, xj =

kj
3
− 1

6
, (ki, kj = 1, 2, 3). For other values n, xi, xj are defined

as:

xi =
ki

n+ 1
− 1

2n+ 2
, xj =

kj
n+ 1

− 1

2n+ 2
, (ki, kj = 1, 2, 3, . . . , n+ 1). (5.2)

The numerical solution and the exact solution with n = 2 for Example 5.1 are showed in Figure 1
also, plots of approximate solution and its absolute error for n = 2, 3 are shown in Figs. 2,3, 4.
The absolute error between the exact solution and the numerical solution is showed in Table1 also,
the absolute error between the exact solution and the numerical solution when n = 3 is displayed in
Table 2.

Example 5.2. For this example, we study the fractional integro-differential equation of variable
order µ(t) = sin( t

3
) with k(x, t) = (x+ t), w(x, t) = xt, z(0, t) = (1 + t)2, z(x, 0) = (1 + x)2 and

r(x, t) =2(1 + x+ t) + t+
3t2

2
+ t3 +

t4

4
+ 3tx+ tx2 + 3t2x+ t3x+

3t2x2

2
+ tx3

−
3t1−sin( t

3
)x
[
6(1 + x+ t)2 + (1 + x) sin t(−3(5 + 4t+ 5x) + (1 + x) sin t)

]
(−9 + sin t)(−6 + sin t)(−3 + sin t)Γ1− sin( t

3
)

. (5.3)
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Figure 1: The numerical solution and the exact solution with n = 2, 3, 4, µ(t) = t
3 for Example 5.1 at t = 0.25 and

ρ = ω = γ = 1.

Figure 2: The graph of the approximate solution when n = 2, µ(t) = t
3 .
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Figure 3: The graph of the approximate solution when n = 3, µ(t) = t
3 .

Figure 4: The graph of the approximate solution when n = 4, µ(t) = t
3 .
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Table 1: The absolute error the numerical solution and the exact solution when n = 2, µ(t) = t
3

t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.9
x = 0.0 0 0 0 0 0
x = 0.1 1.5421e− 004 3.3854e− 004 4.1031e− 004 1.8787e− 004 1.3624e− 004
x = 0.2 2.1482e− 004 6.3007e− 004 8.4527e− 004 5.9813e− 004 2.1503e− 004
x = 0.3 3.0023e− 004 1.1501e− 004 1.0426e− 004 7.8044e− 004 3.2674e− 004
x = 0.4 4.6589e− 004 1.6078e− 004 1.0934e− 004 7.2928e− 004 4.2013e− 004
x = 0.5 5.2218e− 004 1.3728e− 004 1.6714e− 004 8.5494e− 004 4.2354e− 004
x = 0.6 5.1048e− 004 1.2018e− 004 1.2223e− 004 7.1452e− 004 3.2264e− 004
x = 0.7 4.0076e− 004 1.2054e− 004 1.2032e− 004 6.2901e− 004 2.2054e− 004
x = 0.8 3.0602e− 004 1.2140e− 004 1.2454e− 004 6.0143e− 004 1.1043e− 004
x = 0.9 2.1009e− 004 5.2237e− 004 7.2118e− 004 4.2063e− 004 1.0178e− 004
x = 1 1.5308e− 004 2.2549e− 004 4.2054e− 004 2.0183e− 004 1.2078e− 004

Table 2: The absolute error the numerical solution and the exact solution when n = 3, µ(t) = t
3

t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.9
x = 0.0 0 0 0 0 0
x = 0.1 2.0787e− 004 3.2546e− 004 5.2691e− 004 5.8754e− 004 5.2162e− 004
x = 0.2 2.2662e− 004 3.3782e− 004 6.2004e− 004 7.8834e− 004 3.5003e− 004
x = 0.3 2.2055e− 004 4.1003e− 004 6.2615e− 004 9.8654e− 004 8.2054e− 004
x = 0.4 4.1152e− 004 3.6376e− 004 3.2040e− 004 9.2953e− 004 8.2006e− 004
x = 0.5 4.0272e− 004 4.6331e− 004 3.26782e− 004 9.1534e− 004 6.1014e− 004
x = 0.6 5.2232e− 004 2.2004e− 004 4.0706e− 004 8.1041e− 004 6.2432e− 004
x = 0.7 5.2139e− 004 3.2104e− 004 4.2504e− 004 7.2901e− 004 3.1084e− 004
x = 0.8 6.0642e− 004 2.1704e− 004 2.2014e− 004 7.0083e− 004 3.0413e− 004
x = 0.9 6.1008e− 004 7.2013e− 004 2.2623e− 004 5.2003e− 004 4.01370e− 004
x = 1 7.7001e− 004 3.2022e− 004 4.2294e− 004 3.0014e− 004 4.2089e− 004

where analytical solution is given by z(x, t) = (1 +x+ t)2. We consider a similar process as Example
5.1 for this example and it is solve that here we obtain the matrix Z as follows:

Z =

 1 5
2

8
3

5
2

4.00765 5.08665
8
3

7.003462 8.006243

 . (5.4)

The numerical solution and the exact solution with n = 2 for example 5.2 are displayed in Fig. 5.
Also, the approximate solution and its absolute error for n = 2, 3 are shown in Figs.6,7, 8. The
absolute error between the exact solution and the numerical solution is displayed in Table 3 also,
the absolute error between the exact solution and the numerical solution when n = 3 is displayed in
Table4.

6. Conclusion

In this paper, we presented a numerical method based on shifted Chebyshev polynomials for
finding the solution of the fractional integro–differential equation of variable order with Caputo-
Prabhakar fractional derivative of order µ(t). We are used the proposed method to reduces the
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Figure 5: The numerical solution and the exact solution with n = 2, 3, 4, µ(t) = sin( t
3 ) for Example 5.2 at t = 0.25

and ρ = ω = γ = 1.

Figure 6: The graph of the approximate solution when n = 2, µ(t) = sin( t
3 ).
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Figure 7: The graph of the approximate solution when n = 3, µ(t) = sin( t
3 ).

Figure 8: The graph of the approximate solution when n = 4, µ(t) = sin( t
3 ).
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Table 3: The absolute error the numerical solution and the exact solution when n = 2, µ(t) = sin( t
3 )

t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.9
x = 0.0 0 0 0 0 0
x = 0.1 2.2634e− 004 4.2634e− 004 5.2034e− 004 2.8754e− 004 1.2634e− 004
x = 0.2 3.2726e− 004 7.3408e− 004 9.2334e− 004 6.9834e− 004 2.5603e− 004
x = 0.3 4.2879e− 004 2.1523e− 004 2.2131e− 004 8.8754e− 004 3.2614e− 004
x = 0.4 5.1572e− 004 2.6542e− 004 2.2634e− 004 8.2953e− 004 4.2004e− 004
x = 0.5 6.3392e− 004 2.6531e− 004 2.2634e− 004 9.2634e− 004 4.2014e− 004
x = 0.6 6.5432e− 004 2.2034e− 004 2.2234e− 004 8.1732e− 004 3.2264e− 004
x = 0.7 5.2609e− 004 2.2364e− 004 2.2034e− 004 7.2981e− 004 2.2084e− 004
x = 0.8 4.0652e− 004 2.2764e− 004 2.2214e− 004 7.0043e− 004 1.0043e− 004
x = 0.9 3.1078e− 004 7.2214e− 004 8.2278e− 004 5.2903e− 004 1.0078e− 004
x = 1 2.7043e− 004 3.2541e− 004 5.2064e− 004 3.0023e− 004 1.2089e− 004

Table 4: The absolute error the numerical solution and the exact solution when n = 3, µ(t) = sin( t
3 )

t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.9
x = 0.0 0 0 0 0 0
x = 0.1 1.0437e− 004 2.2634e− 004 4.2634e− 004 4.8754e− 004 4.2634e− 004
x = 0.2 1.2701e− 004 2.3128e− 004 5.2634e− 004 6.8834e− 004 2.5603e− 004
x = 0.3 1.2049e− 004 3.1343e− 004 5.2634e− 004 8.8654e− 004 7.2614e− 004
x = 0.4 3.1322e− 004 2.6562e− 004 2.2044e− 004 8.2953e− 004 7.2036e− 004
x = 0.5 3.0292e− 004 3.6781e− 004 2.26364e− 004 8.1534e− 004 5.2014e− 004
x = 0.6 4.2332e− 004 1.2024e− 004 3.0756e− 004 7.1721e− 004 5.2674e− 004
x = 0.7 4.2039e− 004 2.2304e− 004 3.2634e− 004 6.2981e− 004 2.2084e− 004
x = 0.8 5.0612e− 004 1.2704e− 004 1.2024e− 004 6.0783e− 004 2.0453e− 004
x = 0.9 5.1018e− 004 6.2014e− 004 1.2653e− 004 4.2903e− 004 3.02370e− 004
x = 1 6.7041e− 004 2.2021e− 004 3.2294e− 004 2.0015e− 004 3.2019e− 004

equation to a set of algebraic relations. The numerical results and absolute errors are presented. It
has been shown that the obtained results are in excellent agreement with the exact solution.
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