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Abstract

In this paper, we have investigated a new spectral Quasi-Newton (QN) algorithm. New search
directions of the proposed algorithm increase its stability and increase the arrival to the optimum
solution with a lowest cost value and our numerical applications on the standard Firefly Algorithm
(FA)and the new proposed algorithm are powerful as in meta-heuristic field. Our new proposed
algorithm has quite common uses in several sciences and engineering problems. Finally, our numerical
results show that the proposed technique is the best and its accuracy higher than the accuracy of
the standard FA. These numerical results are compared using statistical analysis to evaluate the
efficiency and the robustness of new proposed algorithm.

Keywords: QN-method, self-scaling QN, conjugate gradient, unconstrained Optimization, Firefly
algorithm.

1. Introduction

Optimization techniques deal with finding the minimum or the maximum of any nonlinear com-
plicated test function. FA is considered as a new swarm intelligence planned algorithm. Optimization
techniques, in general, haven’t capable to solve this type of test problems.
However, the population-based techniques are considered as resolution optimization issues, with their
own hardiness rather than the normal standard optimization issues. Indeed, the FA is an optimization
technique impressed from flashing of sunshine from firefly. The flashing properties may be divided
to a few rules:
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Rule (1): Each one firefly is interested in alternative fireflies; as a result of their unisex firefly.
Rule (2): There was proportional amidst the attraction and their burnish. In order for the less
brighter of two flashing fireflies to migrate towards the brighter one. The attraction is proportional
to the burnish, and it decreases as the distance between them grows. It will move at random if no
one is brighter than a particular firefly.
Rule (3): The landscape influences or determines the firefly burnish.
Optimized objective function may be outlined as f (x) for x ∈ S ⊂ Rn and

”f (x∗) = minx∈Sf(x)” (1.1)

Iteratively, the firefly algorithmic rule can be utilized to solve an optimization problem. Let’s say
there’s a swarm of (n) fireflies, and (xi) returns a solution for each firefly at each iteration (i), where
f(xi) represents its value. In the beginning, all fireflies disarticulate in Sm(m = 1, . . ., k) (randomly
or by recruiting some deterministic approach). The current levels of interest Iteratively, the firefly
algorithmic rule can be utilized to solve an optimization problem. Let’s say there’s a swarm of
(n) fireflies, and (xi) returns a solution for each firefly at each iteration, where represents its value.
In the beginning, all fireflies disarticulate in Sm(m = 1, · · · , k) (randomly or by recruiting some
deterministic approach). The current levels of interest

2. The Formulation of Standard Firefly Algorithm (FA)

The FA will be divided into substantial situation as well as variance intensity of sunshine and
therefore the formula of the attraction. Displays the barriers of the best FA optimization during a
condition that, the distance amidst fireflies and their level of attractionω are proportional to each
other. Therefore, the burnish L of a firefly at a special position x can be chosen as L (x)αf(x). This
relies on the distance of fireflies rij from the earth and the fireflies’ variations jth.
Thus, ω mutations with capacity rate, which inversely relies on the square law as, explain by:

L (r) =
Ls
r2
. (2.1)

Where r, represents the space amidst every two fireflies;Lsis that the intensity at the supply and
L (r)represents the sunshine intensity varies with distance (r) monotonically and exponentially. i.e.:

L (r) = L0e
−ρr. (2.2)

In above equation L0 represents to the original light intensity. Thus, on avoid the singularity at
r = 0 within the expressionLs/r

2, the composition result of the inverse square law and talent will be
approximated mistreatment Gaussian formula form

L (r) = L0e
−ρr2 . (2.3)

Sometimes, we tend to may need a function that decreases monotonically at slower rate. During this
situation, we are able to use the subsequent equation:

L (r) =
L0

1 + ρr2
.

The relation amidst the level of firefly’s attraction ω and the space size r can be calculated by:

β (r) = ω0e
−ρr2 . (2.4)
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Because, the firefly’s attraction is proportional on to the sunshine intensity, it is accepted and rec-
ognizable amongst neighboring fireflies (adjacent firefly’s). Where, ρ represents to the constancy
of environmental, that regulates the average of sunshine intensity decrease, if the two fireflies are
located at identical point of search space S, then r=0, during this case the firefly’s attraction level
was described by

β (r) = ω0

In general,ω0ε [0, 1] should be employed, and there are two limiting scenarios to consider:
Situation 1: ω0 =0, that is only non-commune distributed random search is try to obtain.
Situation 2: ω0 =1, which is Valente t to the sketch the commune local search with the brightest
firefly powerfully confirm the firefly’s situations, primarily in its neighborhood.

The motion of the firefly i is attracted to another additional enticing (brighter) firefly (j) is illustrated
by:

xi = xi + ω0e
−ρr2ij (xj − xi) + τεi, (2.5)

The presentation of the middle part within the last equation due to the firefly’s attraction towards
the brighter firefly. At an equivalent time, randomization τ otherwise be appeared on the last half
in equation (2.5). This symbol denoted to the parameter of randomization with the transmitter
of stochastic variableεibeing drawn from aGaussian distribution and (τε [0, 1]) (Gope, et al., 2016 ;
Yang, 2008) .

3. Distance and Movement Of Two Flies In FA

The distance amidst any two fireflies may be calculated by exploitation Cartesian distance:

rij = ‖xi − xj‖ =

√√√√ K∑
k=1

(xik − xjk)2 (3.1)

Where rij is that the space amidst the fireflies i and j at xi and xj respectively and K is that the
dimensional size of given downside and xik is that the k-th element of the special coordinate xi of
i-th firefly (Babaeizadeh, et al., 2016 ).In 2D situation, we have:

rij =

√
(xi − xj)2 + (yi − yj)2 (3.2)

The move of a firefly(i) is attracted to another a lot of drawn to another brighter firefly ( j) is
outlined as:

xi = xi + ωe−ρr
2
ij (xj − xi) + τ

(
rand− 1

2

)
(3.3)

where the second term within the higher than equation is pointed to the attraction; whereas the
last term in equation (3.3) is randomization with ρ being the organization variable;rand could be a
random number generator uniformly distributed in interval [0, 1].For the most situations of imple-
mentation, ω0 = 1and ρε [0, 1]. The scalar ρ distinguish the variation of the attraction and its value
is substantial to work out the convergence speed and the way the FA behaves. Within the most
applications, it always varies from (0.01) to (100).
Finally, when utmost of the generation is close to finished, the fireflies square measure labeled relying
on their burnish and therefore the superior firefly cluster is discovered from every category. At the
ultimate, the fireflies begin moving towers to their items. The intensity of burnish of all fireflies is
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lately improved with the data as long as, in fitness function for every cluster. Moreover, once the
feasible square measure good on the teams, the firefly with the supreme level of burnish marks the best
quantity of fitness .this can be determined because the optimal solution to non-linear programming
(Gope et al., 2016 ; Babaeizadeh, et al., 2016).

4. Standard Quasi Newton Method

The Quasi-Newton (QN) strategies is that the one in all effectiveness strategies for finding the
solution of any non-linear programming problems, epically if we try to use the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method. Several modifications are done for finding similar updates used to
solve these types of problems see (Al-Bayati et al., 1994). Let us consider the following unconstrained
optimization problem:

” minx∈Rnf(x)” (4.1)

Where f : Rn → R is twice continuously differentiable, i.e. f ∈ C2. In this paper we foucs on
Quasi-Newton formula. This is an iterative formula, which is formulated by:

”xk+1 = xk + αkdk”. (4.2)

Wheredkrepresents to the search directions and αkis a positive parameter represents to the step-
length of the formula (4.2) see (Hamed et al.,2020), that is chosen to satisfy the inexact line search
conditions; using the well-known Weak Wolfe-Powell conditions (WWP):

”f (xk + αkdk) ≤ f (xk) + τ1 + αkg
T
k dk, (4.3)

g(xk + αkdk)
Tdk ≤ τgTk dk”. (4.4)

Where τ1 and τ2constants are satisfying 0 < τ1 < τ2 < 1 and τ1 <
1
2
.

BFGS technique is mostly contemplate as the most noted one as a result of it’s the foremost econom-
ical technique among alternative variable metric to resolve unconstrained optimization nonlinear
problems. Recently it’s derived from the Newton’s technique that is employed first and second
derivatives for finding the stationary point. The additional best-known update formula outlined by:

Bk+1 = Bk +

[
1 +

yTkBkyk
vTk yk

]
vkv

T
k

vTk yk
−
[
vky

T
kBk +Bkykv

T
k

vTk yk

]
. (4.5)

The misreckoning and rounding error need to add some sort of spectral scaling techniques to the
above sequence. This problem will sometime be taken away by sensible scaling.

5. Standard Conjugate Gradient Method

There are several varieties of numerical methods to deal with equation (4.1); for example, the
Steepest Descent (SD); Newton (N) and Quasi-Newton (QN) methods. The CG-method is one in
every of the alternatives for finding massive scaling algorithms, to ensure that it doesn’t need any
storage of matrices (Ahmed et al.,2019).
The search direction in the standard Conjugate Gradient (CG) are usually defined by:

”dk+1 =

{
−gk, if k = 0
−gk+1 + βkdk, if k ≥ 1

” . (5.1)
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Where gk+1 = ∇f (xk+1) and βk ∈ R is scalar parameter which characterize CG-methods.

Usually, several kinds of formulas for βk has been proposed. For example, the Fletcher-Reeves (FR),
Polak-Ribière-Polyak (PRP), Hestenes-Stiefel (HS) and Dai-Yuan (DY) formulas are well known and
they are defined by:

”βFRk = ‖gk+1‖2

‖gk‖2
, βPRk =

gTk+1yk

‖gk‖2

βHSk =
gTk+1yk

dTk yk
and βDYk = ‖gk+1‖2

dTk yk
”

 (5.2)

where yk = gk+1 − gk and ‖.‖ denote the Euclidean norm see (Al-Namat et al.,2020; Dai et al.,1999;
Huda et al., 2018).

In this work, we have a tendency to summarize another work of this subject, Ibrahim et al (Ibrahim
et al.,2017 ) planned another direction that outlined by:

dk+1 =

{
−B−1k+1gk+1, k = 0
−B−1k+1gk+1 + γ(gk+1 + βkdk), k ≥ 1

}
Where γ is positive scaler and βkis conjugacy coefficient defined in (5.2).

6. Derivation of a New Scaling Parameter

In this work, we try to investigate a generalization of a new scaling parameter for Ibrahim et al
(Ibrahim et al.,2017) CG-method; this parameter will deal with our new proposed QN-procedure.

QN-methods are one amongst several methods that projected for resolution problem (Huda et al.,
2018), they avoid expensive computations of Hessian matrices and perform well done in the apply,
several modifications are projected for resolution the BFGS problems, that is that the preferred
methods (Hamed et al., 2019).

In this section, we try to derive a new spectral scaling parameter, which deals with the standard
BFGS method. We consider the following spectral scaling QN search direction:

dk+1 = −ϑkB−1k+1gk+1 (6.1)

where Bk+1 is nonsingular, symmetric and positive definite in (4.5).

Ibrahim et al (4.2) search directions in their CG-algorithm defined by:

”dk+1 =

{
−B−1k+1gk+1, k = 0
−B−1k+1gk+1 + γ(gk+1 + βkdk), k ≥ 1

}
(6.2)

Now, multiplying both sides of (6.1) and (6.2) by(yk), to get:

−ϑkyTkB−1k+1gk+1 = −tsTk gk+1 + γyTk gk+1 + γβky
T
k dk.

Therefore

ϑk =
tsTk gk+1 − γyTk gk+1 − γβkyTk dk

yTkB
−1
k+1gk+1

” (6.3)
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7. Converge Analysis Property for Scaled QN-Method

To prove that the new propose technique satisfy the QN-condition, we tend to rewrite BFGS
formula as:

B+
new=B(a)+ϑkB

(b) (7.1)

Where

B(a) = Bk −
Bkykv

T
k

vTk yk

B(b) =

[
1 +

yTkBkyk
vTk yk

]
vkv

T
k

vTk yk
− vky

T
kBk

vTk yk
They have fulfilled the requirement of QN i.e.

B+
newyk = ϑkvk

If we tend to multiplies each side of the equation (7.1) by yk, we obtain(
B(a)+ϑkB

(b)
)
yk=

[
[Bk −

Bkykv
T
k

vTk yk
]+
tsTk gk+1 − γyTk gk+1 − γβkyTk dk

yTkB
−1
k+1gk+1

[(
1+

yTkBkyk
vTk yk

)
vkv

T
k

vTk yk

]
−vky

T
kBk

vTk yk

]
yk.

We can rewrite the equation above to get:

”
(
B(a)+ϑkB

(b)
)
yk =

[
[Bkyk −

Bkykv
T
k yk

vTk yk
] +

tsTk gk+1 − γyTk gk+1 − γβkyTk dk
yTkB

−1
k+1gk+1

[(
1 +

yTkBkyk
vTk yk

)
vkv

T
k yk

vTk yk

]
−
tsTk gk+1 − γyTk gk+1 − γβkyTk dk

yTkB
−1
k+1gk+1

(
vky

T
kBkyk
vTk yk

)]
After some mathematical calculations, yields(

rmB(a)+ϑkB
(b)
)
yk =

tsTk gk+1 − γyTk gk+1 − γβkyTk dk
yTkB

−1
k+1gk+1

vk”.

this means B+
newyk = ϑkvk is holds.

Theorem . The new formula B+
new=B(a)+ϑkB

(b), generates conjugate search directions.
Proof: Let f (x) = 1

2
xTGx+ bTx+ c is a quadratic function, we choose approximation matrix which

is symmetric and positive definite B1 = B. we must prove that if the exact line search used the
direction dk+1 satisfies

Bi+1gk+1=Bigk+1 , 0≤k < i ≤ n. (7.2)

By using the mathematical induction, let (i = 0) this yield

B1gk+1=B
+
newgk+1,

We suppose that this property is true at (i), i.e.

Bigk+1=B
+
newgk+1.

Now, we must prove that this property it’s true for (i+ 1)

Bi+1gk+1=
(
B(a)+ϑkB

(b)
)
gk+1

=Bigk+1 −
Biyiv

T
i gk+1

vTi yi
+ ϑk

viv
T
i gk+1

vTi yi
+ ϑk

yTi Biyiviv
T
i gk+1

vTi yi
− ϑk

viy
T
i Bigk+1

vTi yi
.

If an exact line search is used, then vTi gk+1 = 0 , and yTi Bigk+1 = 0 for i < k. Hence, we get that
(7.2) is true.
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8. Outline Of The New Proposed Algorithm

In this paragraph, we tend to establish our planned incorporate FA and the NEW algorithm.
to attain the optimal resolution by dominant to the conduct firefly and the new method with scaled
BFGS update so as to eliminate the truncation and misreckoning to get additional activity than
before.
Algorithm:
Step1: Start with initial point x0, put B1 = I, begin a population of fireflies xi (i = 1, 2, . . ., n), and
put i = 1.
Step2: Put di = −Bigi.
Step3: Compute xi+1 = xi + αidi, with αi by using Cubic interpolation line search.
Step4: While (t <Max Generation)
For i = 1 : n (all n fireflies)
For j = 1 : i
Light intensity Li at xi is computed by f(xi)
If (Li>Lj)
Movement of FA i towards j in all d

dimensions (used Eq. (2.5))
Else
Movement of FA i randomly
End if

Attraction varies with distance r via
(
e−ρr

2
)
.

Compute the new solutions and update light
Intensity

End for j
Step5: Compute scaling parameter ϑ by using eq. (6.3)
Step6: Update B−1i+1 by using BFGS and End for i
Degree the fireflies and find the current best
Step7: If n = I, then go to Step2, otherwise we get the solution.

9. Numerical Results

In order to demonstrate analytical results and to get the effectiveness of such proposed NEW algo-
rithm by specific value of the performance parameters (Fmin, max, min, mean, stdDev).
In Table (I)we ’ve compared the new proposed method (NEW) with the normal firefly algorithmic
(FA) algorithm.
Whereas Table (II) ensures that, the new algorithm (NEW) with BFGS update is superior to each
customary firefly algorithm.
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Table (I):Comparison (FA) Algorithm Against Modified Firefly Algorithm (NEW)

FA NEW

Fun. Fmin max min mean stdDev Fmin max Min mean StdDev

1 0.015 10.2783 0.0542 3.5826 5.7976 0.0131 8.9365 0.0540 3.1341 5.0282

2 5.000E+13 5.0249 0.2500 2.1237 2.0459 5.000E+13 9.9300 0.2500 2.9743 4.0078

3 3.8377E+17 3.2161 1.3000 2.1720 0.9696 3.8377E+17 7.6262 1.3000 3.6421 3.4681

4 1.0973E+16 9.2631 0.0500 3.5377 4.9976 1.0973E+16 9.7011 0.0500 3.6837 5.2486

5 5.9646E+15 6.7633 0.0500 2.7044 3.5702 5.9646E+15 5.5883 0.0500 2.3128 2.9047

6 1.4618E+05 9.8140 1.2228 4.2065 4.8596 6.5335E+03 7.4436 1.2767 3.4199 3.4871

7 2.0100E+15 2.000 0.0500 1.0166 0.9751 2.0100E+15 2.000 0.0500 1.0167 0.9751

8 8.5805E+14 12.9194 1.2864 5.1686 6.7124 8.5805E+14 8.8892 1.2865 3.8252 4.855

9 2.5459E+18 15.000 1.300 6.100 7.7156 2.5459E+18 15.000 1.300 6.100 7.7156

10 3.1597E+6 6.7255 0.7237 2.8881 3.3324 3.0536E+05 6.6114 0.9244 2.8687 3.2421

11 3.3498E+04 9.6969 0.7690 3.7622 5.1397 1.7161E+06 9.3523 0.5018 3.7005 4.7005

12 1.000E+15 4.6226 1.0508 2.5578 1.8501 1.000E+15 10.5489 1.300 4.6163 5.1497

13 1.4292E+15 9.8301 0.2500 3.9954 5.1204 1.4292E+15 8.1349 0.2500 3.4304 4.1575

14 2.5006E+04 9.9083 0.2401 3.7962 5.3168 4.1241E+04 7.9014 0.1518 3.0683 4.2153

15 1.000E+15 7.8073 0.2500 3.3524 3.9560 1.000E+15 8.0378 0.2500 3.4293 4.0859

Table (II):Comparison (FA) algorithm against Modified firefly algorithm (NEW)

FA NEW

Fun. Fmin Max min mean stdDev Fmin Max Min mean stdDev

1 0.015 10.2783 0.0542 3.5826 5.7976 0.0205 8. 0.0596 2.8959 4.4738

2 5.000E+13 5.0249 0.2500 2.1237 2.0459 5.000E+13 7.7339 0.2500 3.2196 3.9739

3 3.8377E+17 3.2161 1.3000 2.1720 0.9696 3.8377E+17 9.8624 1.300 4.3875 4.7543

4 1.0973E+16 9.2631 0.0500 3.5377 4.9976 1.0973E+16 6.6833 0.0500 2.6778 3.5247

5 5.9646E+15 6.7633 0.0500 2.7044 3.5702 5.9646E+15 13.0339 0.0500 4.7946 7.1627

6 1.4618E+05 9.8140 1.2228 4.2065 4.8596 2.4750E+06 8.2647 1.2811 3.6939 3.9605

7 2.0100E+15 2.000 0.0500 1.0166 0.9751 5.9646E+15 2.000 0.0500 1.0166 0.9751

8 8.5805E+14 12.9194 1.2864 5.1686 6.7124 8.5805E+14 8.6677 1.2865 3.7514 4.2577

9 2.5459E+18 15.000 1.300 6.100 7.7156 2.5459E+18 15.000 1.300 6.100 7.7156

10 3.1597E+6 6.7255 0.7237 2.8881 3.3324 1.6788E+05 10.2830 0.6928 4.06695 5.3877

11 3.3498E+04 9.6969 0.7690 3.7622 5.1397 9.6904E+04 5.9981 0.7297 2.5444 2.9923

12 1.000E+15 4.6226 1.0508 2.5578 1.8501 1.000E+15 11.2811 0.9745 4.7519 5.6777

13 1.4292E+15 9.8301 0.2500 3.9954 5.1204 1.4292E+15 11.7988 0.2500 4.6517 6.2447

14 2.5006E+04 9.9083 0.2401 3.7962 5.3168 1.0442E+03 6.8231 0.1269 2.6923 3.6122

15 1.000E+15 7.8073 0.2500 3.3524 3.9560 1.000E+15 8.4117 0.2500 3.5539 4.29
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