
Int. J. Nonlinear Anal. Appl. 13 (2022) No. 1, 485–497
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2021.22707.2405

Investigating essential factors in the spread of lassa
fever dynamics through sensitivity analysis

T.S. Fanirana,∗, E.O. Ayoolab

aDepartment of Computer Science, Lead City University, Ibadan
bDepartment of Mathematics, University of Ibadan, Ibadan

(Communicated by Madjid Eshaghi Gordji))

Abstract

Lassa fever is a zoonotic acute viral illness caused by Lassa virus. Since there is no vaccine yet
to protect against contracting the virus, it continues to spread in West Africa. In this paper, a
mathematical model of lassa transmission that considers two classes of rats: house rat and bush
rat, is proposed. Theoretically, global stability of the model disease-free and endemic equilibria are
established by constructing a global Lyapunov function. Sensitivity indices of the basic reproduction
number are derived using the normalised forward approach to evaluate the effectiveness of control
measures. The disease-free equilibrium is globally asymptotically stable when the basic reproduction
number R0 < 1 and the unique endemic equilibrium is globally asymptotically stable when R0 >
1. Results from sensitivity analysis reveals that rat biting rate for infectious house rats RFH and
infectious bush rats RFB, transmission probability per contact with infectious house and bush rats
(RFH and RFB), human recruitment rate and transmission probability per contact with infectious
human hosts are highly significant in determining the severity of lassa infection. On the other hand,
natural death rate of rats, natural death rate of human hosts, recovery and hospitalization rates of
human hosts are critical for lassa transmission reduction. Plans that target the contact rate between
house and bush rats (i.e use of indoor residual spray, fumigation of environment with pesticide)
and those that target recovery rate of human hosts (i.e treatment of infectious human hosts) are
recommended to control the disease.
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1. Introduction

Lassa fever is an acute hemorrhagic fever caused by Lassa virus (LAV), a bisegmented ambisense
single-stranded RNA virus that belongs to the family old world Arenaviridisae spp [22]. It is prevalent
in the West African sub-region where about 3-5 million individuals are infected yearly [6]. The trans-
mission is through the droppings of the multimammate rat (mastomys natalensis spp) which serves
as the reservoir to the virus. For more ecological background, the reader is referred to ([22], [6], [24]).

In recent times, several mathematical models have been formulated and analysed in the literature
to study the transmission and spread of Lassa fever. Obabiyi et al., [16] analyzed the dynamics of
Lassa infection with variable human and reservoir population. They employed maximum principle
theorem to establish the positivity and boundedness of solutions. They also used Routh-Hurwitz
criterion to establish the local stability of the disease-free equilibrium solution. They further made
use of Maple software to show the graphical behaviour of the model compartmental classes. The re-
sults from their analysis show that the model is well posed and the disease-free equilibrium is locally
stable for R0 < 1. They therefore concluded that early diagnostic of infected humans, maintaining
hygienic environment, use of new needle when taking injection and interim control of the rodent
carrying the virus are the best strategy against the spread of the disease. In another development,
Abdulhamid et al.[1] examined the effects of quarantine on transmission dynamics of Lassa fever.
They employed next generation matrix operator method to calculate the basic reproduction number
R0. They also conducted numerical simulations using MATLAB. The results from their analysis
showed that disease-free equilibrium is locally stable when R0 < 1 and unstable when R0 > 1. They
concluded that the outlook of the effective control of Lassa virus is greatly enhanced if a control
strategy based on using quarantine of the infectious human is implemented. Davies et al., [8] pre-
sented a deterministic mathematical model to investigate the effects of routine and pulse vaccination
on Lassa dynamics between rodents and humans. They adopted a compartmental SEIR structure
for humans and an SEI structure for rodents. They solved the model numerically using MATLAB.
Their model showed that vaccination of 40-60 percent of infants reduces population incidence by
30-56 percent provided the vaccine has 70-90 percent effectiveness. They concluded that implemen-
tation of a vaccine in Lassa fever endemic areas could considerably reduce the disease incidence. For
more comprehensive mathematical analysis of Lassa fever, see ([18], [17], [9], [20], [5], [19], [17], [10],
[21]) and the references therein.

Motivated by Peter et al., [21], Okuongbe et al., [18] and Onuorah et al., [20], this paper presents
a new mathematical model of Lassa fever that takes into account two classes of rats: house rat
(i.e susceptible house rat, exposed house rat and infectious house rat) and bush rat (i.e susceptible
bush rat, exposed bush rat and infectious bush rat), which is missing in the above literature. It
is important to know that humans contact lassa fever disease from either house rat or bush rat.
The disease is contacted from house and bush rats through contact or consumption. Our aim is to
investigate essential factors that contribute to the spread of Lassa fever disease through sensitivity
analysis. Hence qualitative and sensitivity analyses of Lassa fever model are presented incorporating
the above compartments.

2. Model Formulation of Lassa Fever Disease

In this section, the transmission dynamics of Lassa fever is investigated. The total human hosts
population NH is sub-divided into five classes namely; the susceptible human hosts SH , the exposed
human hosts EH , the infectious human hosts KS, the hospitalized human host hosts KP and the
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recovered human hosts, RH . Also, house rats population NRH , is sub-divided into susceptible house
rats RSH , the exposed house rats REH and the infectious house rats RFH . The bush rats popula-
tion is sub-divided into susceptible bush rats RSB, the exposed bush rats REB and the infectious
bush rats RFB. Thus, the total population NH , NS and NB for human hosts, house rats and bush
rats population are given by NH = SH + EH + KS + KP + RH , NS = RSH + REH + RFH and
NB = RSB +REB +RFB. We consider human-to-rat contact because research has shown that lassa
fever transmission in most cases is as a result of contact between human and mastomys natalensis
(rodent) [23] and therefore, we assume there is no human-to human transmission. The recruitment
rates of human hosts, house rats and bush rats are respectively given by Λh,Λa and Λb. The pa-
rameter α is the biting rate of rat, the parameter φ is the transmission probability per contact with
infectious house and bush rats while the parameter φ is the transmission probability per contact
with infectious human hosts. The term αψSH(RFH + RFB) denotes the rate at which the human
hosts SH get infected by infectious house and bush rats while αφRSHKS refers to the rate at which
susceptible house rats RSH are infected by the infectious human hosts KS and the term αφRSBKS

denotes the rate at which the susceptible bush rats RSB are infected by the infectious human hosts
KS. It is assumed that there is human-to-rat transmission. Also, it is assumed that progression
rate for exposed house rats and exposed bush rats are not different and the transmission probability
per contact with infectious human hosts for both house and bush rats are assumed to be the same.
But the recruitment rate for human hosts, house rats and bush rats are assumed to be different.
Moreover, we assume that population in KS class can also recover without having to enter KP class
and all the human hosts in class KP are 100% protected and so they do not contribute to the disease
propagation.

Based on the assumptions, the following system of ordinary differential equations are obtained:

dSH
dt

= Λh − αψSH(RFH +RFB)− µhSH , (2.1)

dEH
dt

= αψSH(RFH +RFB)− (β + µh)EH , (2.2)

dKS

dt
= βEH − (δ1 + τ1 + ε+ µh)KS, (2.3)

dKP

dt
= εKS − (δ2 + τ2 + µh)KP , (2.4)

dRH

dt
= τ1KS + τ2KP − µhRH , (2.5)

dRSH

dt
= Λa − αφRSHKS − µrRSH , (2.6)

dREH

dt
= αφRSHKS − (ω + µr)REH , (2.7)

dRFH

dt
= ωREH − µrRFH , (2.8)

dRSB

dt
= Λb − αφRSBKS − µrRSB, (2.9)

dREB

dt
= αφRSBKS − (ω + µr)REB, (2.10)

dRFB

dt
= ωREB − µrRFB. (2.11)

With initial conditions
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Table 1: Summary of the parameters
Parameter Meaning Value Reference
µh Natural death rate of human hosts 0.02 [7]
Λh Recruitment rate of human hosts 0.0038 [7]
Λa Recruitment rate of susceptible house rats 0.00001 [21]
Λb Recruitment rate of susceptible bush rats 0.0001 Assumed
α Biting rate of RFH and RFB 0.083 [20]
ψ Transmission probability per contact with RFH and RFB 0.083 Assumed
β Progression rate from EH to KS 0.08 [20]
ω Progression rate of RSH and RSB 0.70 Estimate
τ1, τ2 Recovery rates of KS and KP 0.2 [21]
κ Hospitalization rate 0.2 Assumed
δ1 Disease-induced death rate of KS 0.001 [3]
δ2 Disease-induced death rate of KP 0.001 Assumed
φ Transmission probability per contact with KS 0.75 [20]
µr Natural mortality rate of rats 0.000167 [3]

(S(0) = So > 0, EH(0) = E0
H(0) > 0, KS(0) = IoS(0) > 0, KP (0) = Ko

P (0) > 0, RH(0) = Ro
H >

0, RSH(0) = Ro
SH > 0, REH(0) = Ro

EH > 0, RFH(0) = Ro
FH > 0, RSB(0) = Ro

EB > 0, REB(0) =
Ro
EB > 0, RFB(0) = Ro

FB > 0)

(2.1)-(2.3) are independent of the states KP and RH and after decoupling the equations for KP

and RH from the model, we have the remaining equations of the model (2.1)-(2.11) which becomes

dSH
dt

= Λh − αψSH(RFH +RFB)− µhSH , (2.12)

dEH
dt

= αψSH(RFH +RFB)− (β + µh)EH , (2.13)

dKS

dt
= βEH − (δ1 + τ1 + ε+ µh)KS, (2.14)

dRSH

dt
= Λa − αφRSHKS − µrRSH , (2.15)

dREH

dt
= αφRSHKS − (ω + µr)REH , (2.16)

dRFH

dt
= ωREH − µrRFH , (2.17)

dRSB

dt
= Λb − αφRSBKS − µrRSB, (2.18)

dREB

dt
= αφRSBKS − (ω + µr)REB, (2.19)

dRFB

dt
= ωREB − µrRFB. (2.20)

2.1. Condition for Disease Spread

The condition for disease spread which is the basic reproduction number R0, is computed below.
This is the difference between the rate of new infection in each infected compartment F and the rate
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of transfer between each infected compartment G. Hence, we have

dEH
dt
dKS

dt
dREH

dt
dRFH

dt
dREB

dt
dRFB

dt


= F −G =


αψSH(νRFH +RFB)

0
αφRSHKS

0
αφRSBKS

0

−


r1EH
−βEH + r2KS

(ω + µr)REH

−ωREH + µrRFH

(ω + µr)REB

−ωREB + µrRFB



The Jacobian matrices JF and JG of F and G are found about E0.

S = JFJ
−1
G =



0 0 0 0 0 0

0 0
αφΛa

µr(ω + µr)

αφΛaω

µ2
r(β3 + µr)

αφΛb

µr(ω + µr)

αφΛbω

µ2
r(ω + µr)

0 0 0 0 0 0
αψΛh

µhr1

αψΛhβ

µhr2r1

0 0 0 0

0 0 0 0 0 0
αψΛh

µhr1

αψΛhβ

µhr2r1

0 0 0 0


R0 is the maximum eigenvalue of S given as

R0 =

√
α2ψΛhφωβHT

r1r2µhµ2
r(ω + µr)

where

r1 = β + µh

r2 = δ1 + τ1 + µh + ε

HT = Λa + Λb

It is worthy to mention that initial lassa fever disease transmission is associated to the basic repro-
duction number R0.

3. Stability Analysis

We shall establish the global stability of lassa-free and prevalence equilibrium solution below.

3.1. Global Stability of the Lassa-Free Equilibrium Solution

In order to guarantee the elimination of lassa fever disease regardless of the initial sizes of the sub-
populations of the model (2.1)-(2.11), the establishment of a globally asymptotically stable disease-
free equilibrium becomes necessary, which is demonstrated in the following result.
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Theorem 3.1. The Lassa-free equilibrium E0 of the model is globally asymptotically stable in Γ if
R0 < 1 and unstable if R0 > 1.

Proof : Consider the Lyapunov function

L =
βHT

µhr1r2

EH +
HT

r2µh
KS +

µrR0HT

2αφΛaµh
REH +

µr(ω + µr)R0HT

2αφωΛaµh
RFH

+
µrR0HT

2αφΛbµh
REB +

µr(ω + µr)R0HT

2αφωΛbµh
RFB.

Its time derivative is

L̇ =
βHT

µhr1r2

(αψSH(RFH +RFB)− r1EH) +
HT

r2µh
(βEH − r2KS)

+
µrR0HT

2αφΛaµh
(αφRSHKS − (ω + µr)REH) +

µr(ω + µr)R0HT

2αφωΛaµh
(ωREH − µrRFH)

+
µrR0HT

2αφΛbµh
(αφRSBKS − (ω + µr)REB) +

µr(ω + µr)R0HT

2αφωΛbµh
(ωREB − µrRFB)

L̇ =
βHTαψSH(RFH +RFB)

r1r2µh
− HTKS

µh
+
µrR0HTRSHKS

2Λaµh
+
µrR0HTRSBKS

2Λbµh

− µr(ω + µr)R0HTµrRFH

αφωΛa

− µr(ω + µr)R0HTµrRFB

αφωΛb

L̇ =

[
βHTαψSH
r1r2µh

− µ2
r(ω + µr)R0HT

2αφωHTµh

]
(RFH +RFB) +

(
µrR0RSH

2Λa

+
µrR0RSB

2Λb

− 1

)
KSHT

µh

≤

√βψΛhµ
2
r(ω + µr)HT

r1r2φωµh
(R0 − 1)

 (RFH +RFB) + (R0 − 1)
KSHT

µh

≤

√βψΛhµ
2
r(ω + µr)HT

r1r2φωµh
.(RFH +RFB) +

KSHT

µh

 (R0 − 1)

Therefore, L̇ ≤ 0 for R0 ≤ 1 for L̇ = 0 if and only if R0 = 1 or KS = 0, RFH = 0 and RFB = 0. As
a result, the largest compact invariant set in {(SH , EH , KS, KP , RH , RSH , REH , RFH , RSB, REB, RFB) ∈
Γ : L̇ = 0} is the E0 and by Lyapunov-Lasalle’s invariance principle, the lassa-free equilibrium point
is globally asymptotically stable in Γ if R0 ≤ 1 and this completes the proof.�

The epidemiological implication of the above theorem is that lassa fever disease can be eradicated
irrespective of the initial sizes of the sub-population of the model. This means that the sub-population
that starts with lassa infection shrinks and never turns to epidemic for R0 < 1.
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3.2. Global Stability of Endemic Equilibrium Point

The endemic equilibrium solution at steady state is

E1 = (S∗H , E
∗
H , K

∗
S, R

∗
SH , R

∗
EH , R

∗
FH , R

∗
SB, R

∗
EB, R

∗
FB)

where

S∗H =
Λh

D∗h + µh

E∗H =
D∗hΛh

(D∗h + µh)(β + µh)

K∗S =
βΛhD

∗
h

r2(D∗h + µh)(β + µh)

R∗SH =
Λa

D∗r + µr

R∗EH =
D∗rΛa

(ω + µr)(D∗r + µr)

R∗FH =
ωD∗rΛa

µr(ω + µr)(D∗r + µr)

R∗SB =
Λb

D∗r + µr

R∗EB =
D∗rΛb

(ω + µr)(D∗r + µr)

R∗FB =
ωD∗rΛb

µr(ω + µr)(D∗r + µr)

where the forces of infection for human hosts and rats at equilibrium state are

D∗h = αψ(R∗FH +R∗FB)

and
D∗r = αφK∗S

Substituting E∗H , K∗S, R∗SH , R
∗
EH , R

∗
FH , R

∗
SB, R

∗
EB and the expression for D∗h and D∗r in forces of

infection for human hosts and rats gives the following linear equation:

AD∗h +B = 0 (3.1)

where
A = µr(ω + µr)(αφβΛh + µrr1r2µh)

and
B = µr(ω + µr)(µrr1r2µh)(1−R2

0)

From (3.1) D∗h =
−B
A
≤ 0 if B ≥ 0 at R0 ≤ 1, and no endemic equilibrium exists. On the other

hand, D∗h =
−B
A

> 0 if B < 0 at R0 > 1. Hence, an endemic equilibrium exists only at R0 > 1. The

theorem below summarizes the above result.
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Theorem 3.2. The model (2.12)-(2.20) has a unique endemic equilibrium whenever R0 > 1, and
no endemic equilibrium otherwise.

We establish the global stability of the endemic equilibrium solutions of the model (2.1)-(2.11)
below.

Theorem 3.3. The unique endemic equilibrium E1, is globally asymptotically stable
whenever R0 > 1.

Proof: We employ Goh-Volterra type Lyapunov function [11]

Given the following equations which are satisfied by the endemic equilibrium point E1:

Λh = αψS∗H(R∗FH +R∗FB) + µhS
∗
H , (3.2)

αψS∗H(R∗FH +R∗FB) = r1E∗H , (3.3)

βE∗H = r2K
∗
S, (3.4)

Λa = αφR∗SHK
∗
S + µrR

∗
SH , (3.5)

αφR∗SHK
∗
S = r3R

∗
EH , (3.6)

ωR∗EH = µrR
∗
FH , (3.7)

Λb = αφR∗SBK
∗
S + µrR

∗
SB, (3.8)

αφR∗SBK
∗
S = r3R

∗
EB, (3.9)

ωR∗EB = µrR
∗
FB. (3.10)

Consider the following Goh-Volterra Lyapunov function

V =

(
SH − S∗H − S∗H ln

SH
S∗H

)
+

(
EH − E∗H − E∗H ln

EH
E∗H

)
+ a

(
KS −K∗S −K∗S ln

KS

K∗S

)
+

(
RSH −R∗SH −R∗SH ln

RSH

R∗SH

)
+

(
REH −R∗EH −R∗EH ln

REH

R∗EH

)
+ b

(
RFH −R∗FH −R∗FH ln

RFH

R∗FH

)
+

(
RSB −R∗SB −R∗SB ln

RSB

R∗SB

)
+

(
REB −R∗EB −R∗EB ln

REB

R∗EB

)
+ c

(
RFB −R∗FB −R∗FB ln

RFB

R∗FB

)
where

a =
αφ(R∗SH +R∗SB)

r2

, b =
αψS∗H
µr

= c

with the Lyapunov time derivative obtained as

V̇ =

(
1− S∗H

SH

)
S ′H +

(
1− E∗H

EH

)
E ′H + a

(
1− K∗S

KS

)
K ′S +

(
1− R∗SH

RSH

)
R′SH +

(
1− R∗EH

REH

)
R′EH

+ b

(
1− R∗FH

RFH

)
R′FH +

(
1− R∗SB

RSB

)
R′SB +

(
1− R∗EB

REB

)
R′EB + c

(
1− R∗FB

RFB

)
R′FB
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V̇ =

(
1− S∗H

SH

)
(Λh − αψSH(RFH +RFB)− µhSH) +

(
1− E∗H

EH

)
(αψSH(RFH +RFB)− r1EH)

+ a

(
1− K∗S

KS

)
(βEH − r2KS) +

(
1− R∗SH

RSH

)
(Λa − αφRSHKS − µrRSH)

+

(
1− R∗EH

REH

)
(αφRSHKS − r3REH) + b

(
1− R∗FH

RFH

)
(ωREH − µrRFH)

+

(
1− R∗SB

RSB

)
(Λb − αφRSBKS − µrRSB) +

(
1− R∗EB

REB

)
(αφRSBKS − r3REB)

+ c

(
1− R∗FB

RFB

)
(ωREB − µrRFB)

Using (3.2), (3.5) and (3.8), we have

V̇ =

(
1− S∗H

SH

)
(αψS ∗H (R∗FH +R∗FB) + µhS

∗
H − αψSH(RFH +RFB)− µhSH)

+

(
1− E∗H

EH

)
(αψSH(RFH +RFB)− r1EH) + a

(
1− K∗S

KS

)
(βEH − r2KS)

+

(
1− R∗SH

RSH

)
(αφR∗SHK

∗
S + µrR

∗
SH − αφRSHKS − µrRSH) +

(
1− R∗EH

REH

)
(αφRSHKS − r3REH)

+ b

(
1− R∗FH

RFH

)
(ωREH − µrRFH) +

(
1− R∗SB

RSB

)
(αφR∗SBK

∗
S + µrR

∗
SB − αφRSBKS − µrRSB)

+

(
1− R∗EB

REB

)
(αφRSBKS − r3REB) + c

(
1− R∗FB

RFB

)
(ωREB − µrRFB)

Ignoring some terms and further simplification give

V̇ =αψS∗H(R∗FH +R∗FB) + (r1 + r3)R∗EH + r3R
∗
EB + ar2K

∗
S + bµrR

∗
FH − cµrR∗FB

− αψ(S∗H)2(R∗FH +R∗FB)

SH
− αψSHE

∗
H(RFH +RFB)

EH
− aβEHK

∗
S

KS

− αφ(R∗SH)2K∗S
RSH

− αφRSHKSR
∗
EH

REH

− bωREHR
∗
FH

RFH

− αφ(R∗SB)2K∗S
RSB

− αφRSBKSR
∗
EB

REH

− cωREBR
∗
FB

RFB

+ 2µhS
∗
H −

µh(S
∗
H)2

SH
− µhSH −

µr(R
∗
SH)2

RSH

− µr(R
∗
SB)2

RSB

− µrRSH

− µrRSB + 2µrR
∗
SH + 2µrR

∗
SB + αφR∗SHK

∗
S + αφR∗SBK

∗
S

Replacing a and b by their values and exploiting (3.2)-(3.7) give

aβ =
αφK∗S(R∗SH +R∗SB)

E∗H
(3.11)

bω =
αψS∗HR

∗
FH

R∗EH
(3.12)

cω =
αψS∗HR

∗
FB

R∗EB
(3.13)
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Using (3.2)-(3.10) and (3.11)-(3.13), we have

V̇ =µhS
∗
H

(
2− S∗H

SH
− SH
S∗H

)
+ 3(αψ(R∗FH +R∗FB))S∗H −

αψ(S∗H)2R∗FH +R∗FB
SH

− αψSHE
∗
H(RSH +RFB)

EH
− αφ(K∗S)2EH(R∗SH +R∗SB)

E∗HKS

+ µrR
∗
SH

(
2− R∗SH

RSH

− RSH

R∗SH

)
+ 3(αφK∗S)R∗SH −

αφ(R∗SH)2K∗S
RSH

− αφRSHKSR
∗
EH

REH

− αψS∗HREH(R∗FH)2

R∗EHRFH

+ µrR
∗
SB

(
2− R∗SB

RSB

− RSB

R∗SB

)
+ 3(αφK∗S)R∗SB −

αφ(R∗SB)2K∗S
RSB

− αφRSBKSR
∗
EB

REB

− αψS∗HREB(R∗FB)2

R∗EBRFB

V̇ =µhS
∗
H

(
2− S∗H

SH
− SH
S∗H

)
+ µrR

∗
SH

(
2− R∗SH

RSH

− RSH

R∗SH

)
+ µrR

∗
SB

(
2− R∗SB

RSB

− RSB

R∗SB

)
+ αψ(R∗FH +R∗FB)S∗H

(
3− S∗H

SH
− SHE

∗
H(RFH +RFB)

S∗H(R∗FH +R∗FB)EH
− φ(K∗S)2EH
ψS∗HE

∗
HKS

)
+ αφR∗SHK

∗
S

(
3− R∗SH

RSH

− RSHKSR
∗
EH

R∗SHK
∗
SREH

− ψ(R∗FH)2REHS
∗
H

φR∗SHK
∗
SR
∗
EHRFH

)
+ αφR∗SBK

∗
S

(
3− R∗SB

RSB

− RSBKSR
∗
EB

R∗SBK
∗
SREB

− ψ(R∗FB)2REBS
∗
H

φR∗SBK
∗
SR
∗
EBRFB

)
Using arithmetic-geometric means inequality, i.e., n − (a1 + a2 + ... + an) ≤ 0, where a1.a2...an = 1
and a1, a2, ..., an > 0, it follows that V̇ ≤ 0 with V = 0 if and only if SH = S∗H , EH = E∗H , KS = K∗S,
RSH = R∗SH , REH = R∗EH , RFH = R∗FH , RSB = R∗SB, REB = R∗EB, RFB = R∗FB

Hence, the largest compact invariant subset of the set where V̇ = 0 is

(SH , EH , KS, RSH , REH , RFH , RSB, REB, RFB) = (S∗H , E
∗
H , K

∗
S, R

∗
SH , R

∗
EH , R

∗
FH , R

∗
SB, R

∗
EB, R

∗
FB)

and by classical stability theorem of Lyapunov and LaSalle’s Invariance Principle, it follows that
every solution in Γ approaches E1 for R0 > 1 as t→∞.

The epidemiological implication of the above result is that lassa fever disease will establish itself
whenever R0 > 1, in the population.

4. Sensitivity Analysis and Conclusion

In order to discover the essential factors responsible for lassa fever transmission and prevalence,
a sensitivity analysis of the model (2.12)-(2.20) is carried out. Following the approach by [4], we
define sensitivity index of a variable to a parameter as the ratio of relative change in the variable
to the relative change in the parameter. Sensitivity analysis is a useful tool to identify how closely
input parameters are related to parameters and it also helps to determine level of change, necessary
for an input parameter to find the desired value of a predictor parameter.
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When the variable is a differentiable function of the parameter, the sensitivity index may be
alternatively defined using partial derivatives.

Definition 4.1. The normalized forward sensitivity index of a variable, u(p), that depends differ-
entiably on a parameter, p, is defined as:

Nu
p =

∂u

∂p
× p

u

for u 6= 0

Consequently, we derive analytical expression for the sensitivity index of R0 as

NR0
pi

=
∂R0

∂pi
× pi
R0

where pi, i ∈ N denotes each parameter involved in R0, R0 is defined as

R0 =

√
α2ψΛhφωβHT

r1r2µhµ2
r(ω + µr)

where

r1 = β + µh

r2 = δ1 + τ1 + µh + ε

HT = Λa + Λb

We have Table 2 which summarizes the sensitivity indices on R0 with respect to parameters i.e

NR0
α , NR0

ψ , NR0
Λh
, NR0

φ , NR0
Λb
, NR0

β , NR0
Λa
, NR0

ω , NR0
µr , N

R0
µh
, NR0

τ , NR0
ε , NR0

δ1

4.1. Interpretation of sensitivity Indices obtained in Table 2

It can be observed from the results for sensitivity analysis that R0 is most sensitive to biting rate
of infectious rats RFH and RFB α, in a positive sense and natural mortality rate of rats µr, in a
negative sense. Furthermore, we observe that transmission probability per contact with infectious
rats (RFH and RFB) ψ, human recruitment rate Λh, transmission probability per contact rate with
infectious human hosts φ, bush rat recruitment rate Λb, rate of progression for exposed human β,
house rat recruitment rate Λa and progression rate for both house and bush rats ω have a direct
effect on the severity of clinical lassa fever. Clinical lassa fever control should aim at eradicating or
reducing these parameters. On the other hand, natural death rate of human host µh, recovery rate of
infectious human host τ , rate of hospitalization ε and lassa-induced death rate for infectious human
host δ1 are shown to reduce R0 when their efficacy are improved. By rank, the parameters αψ,Λh, φ
are the most influential parameters in the model (2.12-2.20), followed by µr, µh, τ, ε. Consequently,
the sensitivity indices for the model are graphically shown above. As a result of the sensitivity anal-
ysis, the following suggestions are made:

(1) Reducing the number of contacts between human hosts and rats through a reduction in the
number of rats and a reduction in the number of bites that human hosts will tolerate, could be an
effective control measure against the growing of lassa fever disease because it reduces the value of α
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Table 2: Numerical values of sensitivity indices of Rc with respect to parameter involved .

Parameter symbol Sensitivity Index

α 1.00000
ψ +0.50000
Λh +0.50000
φ +0.50000
Λb +0.45454
β +0.10000
Λa +0.04545
ω +0.00011
µr -0.6952639
µh -0.3430359
τ -0.0517594
ε -0.0069012
δ1 -0.0457381

and ψ
(2) Adherence to prophylactic drugs after an exposure to infection could reduce the rate of progres-
sion of exposed human hosts β to infectious human hosts
(3) Hospitalizing after screening the infectious human hosts, could be an efficient control measure
because it reduces transmission probability per contact with infectious human hosts φ.
(4) Increasing the recovery rate τ of infectious human hosts, could control the number of infectious
human hosts. This needs not only patients cooperate with treatment actively but also relevant de-
partments should study new and effective medicine for the treatment of lassa fever. This can improve
recovery rate of infectious human hosts.

4.2. Conclusion

An eight-compartment model describing the transmission of lassa fever disease between three in-
teracting populations, namely, human hosts, house rats and bush rats, are presented. The formulated
model governed by systems of ordinary differential equations were qualitatively and quantitatively
analysed to gain more insight into the transmission and spread of lassa fever disease. The lassa-free
equilibrium and persistence were determined and their stability properties were investigated through
an explicit formula for a threshold parameter known as the basic reproduction number, R0. This
threshold was derived using next generation matrix method. For a threshold less than one, a globally
asymptotically stable lassa-free equilibrium was shown while the disease persistence was revealed to
be globally asymptotically stable for R0 greater than one. The formulated lassa fever model led to a
sensitivity analysis with a view to examining the factors most responsible for the transmission and
spread of the disease. We found that rat biting rate α, transmission probability per contact with RFH

and RFB ψ, human recruitment rate Λh and transmission probability per contact with Ks, among
other parameters with positive sensitivity index, contributes most significantly to the persistence of
lassa fever disease in the population.
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