
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,937 |
تعداد دریافت فایل اصل مقاله | 7,656,395 |
n-Jordan *-Derivations in Frechet locally C*-algebras | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 42، دوره 13، شماره 1، خرداد 2022، صفحه 555-562 اصل مقاله (386.37 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2020.19996.2116 | ||
نویسندگان | ||
Javad Jamalzadeh* ؛ Khatere Ghasemi؛ Shahram Ghaffary | ||
Department of Mathematics, Faculty of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran | ||
تاریخ دریافت: 19 خرداد 1400، تاریخ بازنگری: 26 خرداد 1400، تاریخ پذیرش: 07 مرداد 1400 | ||
چکیده | ||
Using the fixed point method, we prove the Hyers-Ulam stability and the superstability of $n$-Jordan $*$-derivations in Fr'echet locally $C^*$-algebras for the following generalized Jensen-type functional equation $$ f\left(\frac{ a+b}{2} \right) + f\left( \frac{a-b}{2} \right) =f(a).$$ | ||
کلیدواژهها | ||
n-Jordan *-derivation؛ Frechet locally C-algebra؛ Frechet algebra؛ fixed point method؛ Hyers-Ulam stability | ||
مراجع | ||
[1] R.P. Agarwal and B. Xu, W. Zhang, Stability of functional equations in single variable, J. Math. Anal. Appl. 288 (2003) 852–869. [2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950) 64–66. [3] L. C˘adariu and V. Radu, Fixed points and the stability of Jensen’s functional equation, J. Inequal. Pure Appl. Math. 4(1) (2003) 1–15. [4] L. C˘adariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer. Math. Ber. 346 (2004) 43–52. [5] J. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Am. Math. Soc. 74 (1968) 305–309. [6] S. Czerwik, Function Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, USA, 2002. [7] M. Eshaghi Gordji, On approximate n-ring homomorphisms and n-ring derivations, Nonlinear Funct. Anal. Appl. (2009) 1–8. [8] M. Eshaghi Gordji, Nearly Ring Homomorphisms and Nearly Ring Derivations on Non-Archimedean Banach Algebras, Abst. Appl. Anal. 2010 (2010) 1–12. [9] M. Eshaghi Gordji and Z. Alizadeh, Stability and superstability of ring homomorphisms on nonarchimedean banach algebras, Abst. Appl. Anal. 2011 (2011) 1–10. [10] M. Eshaghi Gordji, A. Bodaghi and I.A. Alias, On the stability of quadratic double centralizers and quadratic multipliers: a fixed point approach, J. Ineq. Appl. 2011 (2011) 1–12. [11] M. Eshaghi Gordji, M.B. Ghaemi, S. Kaboli Gharetapeh, S. Shams and A. Ebadian, On the stability of J∗-derivations, J. Geom. Phys. 60 (2010) 454–459. [12] M. Eshaghi Gordji, N. Ghobadipour and C. Park, Jordan ∗-homomorphisms on C∗*algebras, Oper. Mat. 5 (2011) 541–551. [13] A. Ebadian, Approximately n-Jordan derivations: a fixed point approach, preprint. [14] G.L. Forti, Hyers-Ulam Stability of functional equations in several variables, Aequationes Math. 50 (1995) 143–190. [15] P. Gavruta A generalization of the Hyers-Ulam Stability of approximately additive mapping, J. Math. Anal. Appl.184 (1994) 431–436. [16] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941) 222–224. [17] D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Progress in Nonlinear Differential Equations and Their Applications, Boston, MA, USA, 1998. [18] D.H. Hyers and Th.M. Rassias, Approximate homomorphisms Aequat. Math. 44 (1992) 125–153. [19] A. Inoue, Locally C*-algebra, Mem. Fac. Sci. Kyushu Univ. Ser. A. 25 (1971) 197–235. [20] G. Isac and Th.M. Rassias, On The Hyers-Ulam Stability of ψ-additive mapping, J. Approx. Theory 72 (1993) 131–137. [21] G. Isac and Th.M. Rassias, Stability of ψ-additive mapping, J. Math. Sci. 19 (1996) 219–228. [22] S. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Harmonic Press, Palm Harbor, FL, USA, 2001. [23] C. Park, Homomorphisms between Poisson JC*-algebras, Bull. Braz. Math. Soc. 36 (2005) 79–97. [24] C. Park, Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras, Bull. Sci. Math. 132 (2008) 87–96. [25] C. Park and J.M. Rassias, Stability of the Jensen-type functional equation in C*-algebras: a fixed point approach, Abst. Appl. Anal. 2009 (2009) 1–17. [26] N.C. Philips, Inverse limits of C*-algebras, J. Operator Theory 19 (1988) 159–195. [27] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297–300. [28] S.M. Ulam, Problems in Modern Mathematics, Chapter VI. Science ed. Wily, New York, 1940. [29] B. Xu and W. Zhang, Hyers-Ulam stability for a nonlinear iterative equation, Colloq. Math. 93 (2002) 1–9. | ||
آمار تعداد مشاهده مقاله: 15,972 تعداد دریافت فایل اصل مقاله: 407 |