
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,917 |
تعداد دریافت فایل اصل مقاله | 7,656,370 |
A numerical scheme for solving nonlinear parabolic partial differential equations with piecewise constant arguments | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 64، دوره 13، شماره 1، خرداد 2022، صفحه 783-789 اصل مقاله (2.28 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.23741.2608 | ||
نویسندگان | ||
Mojgan Esmailzadeh* 1؛ Javad Alavi2؛ Hashem Saberi Najafi2 | ||
1Department of Applied Mathematics, Bandar Anzali Branch, Islamic Azad University, Bandar Anzali , Iran | ||
2Department of Applied Mathematics and Computer Science, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran | ||
تاریخ دریافت: 04 تیر 1400، تاریخ بازنگری: 15 شهریور 1400، تاریخ پذیرش: 01 مهر 1400 | ||
چکیده | ||
This article deals with the nonlinear parabolic equation with piecewise continuous arguments (EPCA). This study, therefore, with the aid of the $\theta$ -methods, aims at presenting a numerical solution scheme for solving such types of equations which has applications in certain ecological studies. Moreover, the convergence and stability of our proposed numerical method are investigated. Finally, to support and confirm our theoretical results, some numerical examples are also presented. | ||
کلیدواژهها | ||
Partial differential equation with piecewise constant arguments (EPCA)؛ $theta$-methods؛ Convergence؛ Trust-region-dogleg method | ||
مراجع | ||
[1] D. Agirseven, Approximate Solutions of delay parabolic equations with the Dirichlet condition, Abstr. Appl. Anal., Article Number 682752, 2012 (2012), https://doi.org/10.1155/2012/682752. [2] J. Alavi, H. Aminikhah, Numerical Study of the Inverse Problem of Generalized Burgers–Fisher and Generalized Burgers–Huxley Equations, Adv. Math. Phys.,2021(2021), https://doi.org/10.1155/2021/6652108. [3] A. Ashyralyev, D. Agirseven, Stability of parabolic equations with unbounded operators acting on delay terms, Electron. J. Differential Equations, 2014(160) (2014) 1–13. [4] A. Ashyralyev, D. Agirseven, On source identification problem for a delay parabolic equation, Nonlinear Anal. Model. Control, 19 (3) (2014) 335–349. [5] A. Ashyralyev, D. Agirseven, Stability of delay parabolic difference equations, Filomat 28(5)(2014) 995–1006. [6] A. Ashyralyev, D. Agirseven, Well-posedness of delay parabolic equations with unbounded operators acting on delay terms, Bound. Value Probl., 2014(126) (2014), https://doi.org/10.1186/1687-2770-2014-126. [7] A. Ashyralyev, D. Agirseven, Well-posedness of delay parabolic difference equations, Adv. Difference Equ., 2014(18) (2014), https://doi.org/10.1186/1687-1847-2014-18. [8] A. Ashyralyev, D. Agirseven, On convergence of difference schemes for delay parabolic equations, Comput. Math. Appl., 66 (7) (2013), 1232–1244, https://doi.org/10.1016/j.camwa.2013.07.018. [9] A. Ashyralyev, P. E. Sobolevskii, On the stability of the linear delay differential and difference equations, Abstr. Appl. Anal., 6(5) (2001), 267–297. [10] A. Ashyralyev, D. Agirseven, Bounded solutions of nonlinear hyperbolic equations with time delay, Electron. J. Differential Equations, 2018(21) (2018) 1–15. [11] H. Bereketoglu, M. Lafci Behavior of the solutions of a partial differential equation with a piecewise constant argument, Filomat, 31(19) (2017) 5931–5943. [12] M. L. B¨uy¨ukkahraman, H. Bereketoglu, On a partial differential equation with piecewise constant mixed arguments, Iran J. Sci. Technol. Trans. Sci., 44 (2020), 1791–1801. [13] R. H. Byrds, R. B. Schnabel, G. A. Shultz, A trust region algorithm for nonlinearly constrained optimization, SIAM J. Numer. Anal., 24(5) (1987) 1152–1170. [14] M. Esmaeilzadeh, H. S. Najafi, H. Aminikhah, A numerical scheme for diffusion-convection equation with piecewise constant arguments, Comput. Methods Differ. Equ., 8(3) (2020) 573–584. [15] M. Esmaeilzadeh, H. S. Najafi, H. Aminikhah, A numerical method for solving hyperbolic partial differential equations with piecewise constant arguments and variable coefficients, J. Difference Equ. Appl., 27(2) (2021) 172–194. [16] N. A. Kudryashov, A.S. Zakharchenko, A note on solutions of the generalized Fisher equation, Appl. Math. Lett., 32 (2014) 53–56. [17] H. Poorkarimi, J. Wiener, Bounded solutions of nonlinear parabolic equations with time delay, 15th Annu. Conf. Appl. Math., Univ. of Central Oklahoma, Electron. J. Differential Equations, Conference 02 (1999) 87–91. [18] H. Poorkarimi, J. Wiener, Bounded solutions of non-linear hyperbolic equations with delay, Proceedings of the VII International Conference on Non-Linear Analysis, V. Lakshmikan-tham, Ed. 1 (1986) 471–478. [19] S. M. Shah, H. Poorkarimi, J. Wiener, Bounded solutions of retarded nonlinear hyperbolic equations, Bull. Allahabad Math. Soc., 1 (1986) 1–14. [20] H. Poorkarimi, J. Wiener, Almost periodic solutions of nonlinear hyperbolic equations with time delay, Conf. 07 (2001), 99–102. [21] S. M. Shah, J. Wiener, Advanced differential equations with piecewise constant argument deviations, Internat. J. Math. Sci. 6 (1983), 671–703. [22] M. H. Song, Z. W. Yang, M. Z. Liu, Stability of θ-methods for advanced differential equations with piecewise continuous arguments, Comput. Math. Appl. 49 (2005) 1295–1301. [23] T. Veloz, M. Pinto, Existence, Computability and stability for solutions of the diffusion equation with general piecewise constant argument, J. Math. Anal. Appl. 426 (2015) 330–339. [24] Q. Wang, Stability of numerical solution for partial differential equations with piecewise constant arguments, Adv. Diff. Eq. (2018), doi.org/10.1186/s13662-018-1514-1. [25] Q. Wang, J. Wen, Analytical and numerical stability of partial differential equations with piecewise constant arguments, Num. Meth. Partial Diff. Eq., 30 (2014) 1–16. [26] Q. Wang, Stability analysis of parabolic partial differential equations with piecewise continuous arguments, Inc. Numer Meth. Partial Differential Eq., 33 (2017) 531–545. [27] J. Wiener, Generalized Solutions of Functional Differential Equations, World Scientific, Singapore, 1993. | ||
آمار تعداد مشاهده مقاله: 15,849 تعداد دریافت فایل اصل مقاله: 683 |