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Abstract

Today’s multi-core processors are built by all processor manufacturers for computers, cell phones,
and other embedded systems. For all computer engineers, designing and researching the hardware
architecture of multicore systems is critical. The type of cache coherence protocol employed on
a multi-core computer has a direct impact on execution time, latency, and power consumption.
Because it is a good example of a CPU, a 32-bit MIPS processor was chosen. With the addition of
our prior work, an advanced special circuit was created using VHDL coding and ISE Xilinx software
to implement it. One protocol was utilized in this design, the MOESI (Modify, Owned, Exclusive,
Shared, and Invalid) protocol. The result of the test was obtained using a test bench, and they
revealed that all of the protocols’ states were operational.
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1. Introduction

Today’s CPUs are multi-core processors, with each core having its own cache memory and all
being contained on a single chip. The cores share one main memory located outside the chip via a
local bus [6]. The architecture of a multi-core system with shared memory is shown in Figure 1. The
cache is an important part of the processor design of multi-core computers [28]. The CPU initially
looks for data in the cache, and if it isn’t found there, it will fetch it from main memory and store
it in the cache [24].
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The data could was in another core, and the core could be working in it with changing its value
(write operation). As a result, the data in the main memory is corrupted and must be replaced [19].
It is now required that a cache coherence protocol be applied to all caches for all cores [25]. As a
result, a spying protocol should use for guarantee the no core uses erroneous data [3].

The aim of this research is to implementation and design of a Cache Coherence controller based on
FPGA to achieve best performance by choosing the optimum cache parameters for current application
in use. The specific objectives are study the cache coherence mechanism in multi-core domain by
means of designing an easy cache and memory to employed as a platform to put into effect the cache
coherent protocols. Then focuses in write invalidate type of Snooping Protocols MOESI, with the
simulations got the modifications between states of each of the coherence protocols then to evaluate
the performance of the proposed new controller unit to managing the cache reconfigurations using
hardware description language and implemented on FPGA. Finally witness and analyze the data for
educational purpose and to further the development of the different protocols.

Figure 1: Shared memory multi-core system.

2. Method of research

2.1. Memory cache organization

For cache memory, three different organizing approaches are employed.
Direct Mapping: The Direct mapping function places the incoming block from main memory in

specific fixed cache line location. If a number of caches lines (blocks) is L, the incoming block number
is B, the cache block number (C) is defined by following equation:

C = B mod L (1)

For example, if a cache memory has 8-line size and the incoming memory block number is 22, so the
cache block number will equal to (22 mod 8 = 6), then the incoming memory block is placed in line
number 6 of the cache memory. Figure 2 explains the organization of some incoming blocks from the
main memory into the cache memory [20, 4].

The address issued by CPU was separated in three fields (Tag, Index, and Offset) using direct
mapping technique, as illustrated in Figure 2. lengths (in bits) of each field are as follows: If (W) is
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the block size in words and (B) is the word size in bytes, the offset field (F) is defined as follows: [5]

F = log2(w ∗B) (2)

If (L) is the size of the cache in lines, Index field (I) is defined by following equation:

I = log2L (3)

(M) is the number of blocks that make up the main memory’s size in bytes, (M ∗W ∗B) are the size
of main memory in Bytes. So, remaining the higher order bits of main memory address is assigned
to the Tag field as the following equation.

Tagfield = (log2(M ∗W ∗B)) − F − 1 (4)

When the cache memory lines are totally filled and the CPU request for a new memory block,
the cache memory line must be replaced by the incoming memory block is determined directly [18].

The direct mapped cache memory protocols started with using the index bits to find the cache
memory block that contains a word requested by processor.

The tag comparator looks for a match between the content of the related tag memory and the
tag field to be compare to indicate that the corresponding cache memory block which is determined
in specific index is currently holding the requested main memory word and cache hit occurs. Among
the several words contained with cache block, requested word could to select used an offset field. If
no match is found, a cache miss occurs, and a requested block have brought from main memory into
cache to make it available to the processor.

The key advantage of direct mapped is the ease with which the cache memory line may be
determined directly.

There is one tag comparison needed and that provides faster access time. It is also simple in
direct replacement technique.

The main disadvantage of the direct mapped occurs in terms of the possibility of using the same
cache memory line for multiple times and this requires frequent replacement of the same cache line
while the rest of cache memory lines is not used. For example, if the cache memory size is 32 lines.
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Table 1: The difference between cache coherence protocols

MSI protocol MESI protocol MOEST protocol
MSI is basis of three state
(Modified(M), shared(S), and
Invalid(I))

MSI is basis of four state
(Modified(M), Exclusive(E),
shared(S), and Invalid(I))

MOEST is basis of five state
(Modified(M), Owned(O), Ex-
clusive(E), shared(S), and In-
valid(I))

Multiple copies of the block
at the same time can do
and transition from shared to
Modify can be done without
reading data from the cache.

Exclusive (E) added to reduce
the number of bus messages
sent out for invalid to modi-
fied transition.

Owned (O) added to avoid the
need of copying back to maim
memory (write update).

Area utilization of MSI proto-
col is few by number of use
register and flip-flob.

Area utilization of MESI pro-
tocol is more as compared to
MSI protocol.

Area utilization of MOESI
protocol is more as compared
to MESI and MSI protocol.

2.2. FPGA

The FPGA (Field Programmable Gate Array) is a grid matrix integrated circuit that can
be programmed ”in the field” without the use of expensive equipment by the user [11]. As shown in
figure 2, an FPGA consists of a set of programmable logic gates and extensive interconnect resources
from which complex digital circuits can be implemented.

It consists of three main parts:

1. Logic functions are implemented using Configurable Logic Blocks.

2. Programmable Interconnects — these are the ones that do the routing.

3. Programmable I/O Blocks — which allow you to connect to external devices.

Figure 2: Internal component of FPGA
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2.3. Design and implementation of cache coherence protocols

Design and implementation dual-core MIPS type processor in which each processor contains its
cache memory and the two processors used the same main memory. Figure 3 shows a block diagram
for the estimated design of dual-core MIPS processor [22].

Figure 3: Architecture of dual microprocessor

Design and implementation a cache controller circuit and link it to the main processors and
memory in order to perform the process of controlling and monitoring the required addresses [23].

2.4. Snoopy based coherence protocol

Snoopy Consistency looks for the processor and the cache tag bus at the same time. There are
two possibilities for the simultaneous search for cache tags. When the bus receives a priority, the
processor snoop is restricted, and when the processor receives a higher priority, the snoop controller
cannot respond while the processor is accessing the cache. The solution to the above problem is
solved by implementing duplicate labels in the cache. Duplicate tags need to be synchronized here,
but tag updates are rare compared to simple searches, reducing precision overhead. Duplicate tags
shown in figure 4, [26, 27].

Snoopy is not suitable for large, scalable multi-core systems. In addition, the directory method
incurs directory storage overhead and increases the latency of transfers between caches. Therefore,
the evolution of cache coherency protocols has been used to achieve high performance, regardless of
design limitations. First Protocol MOESI (Modified (M), Owned (O), Exclusive (E), Shared (S) and
Invalid (I)). This protocol was developed to MESI exclusive (E), [7, 21].

3. Coherency coherence states

There are different states for each protocol a definition for these states will be given in this section,
Table 2 given a definition for each state [17, 2].
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Figure 4: Duplicate tags

Table 2: Definition of cache coherence states
State Definition

Modified (M) Only this cache has a valid copy of the line or block. the copy in the main
memory is state.

Owned(O) The block is valid in this cache and another cache but not valid in memory.
Exclusive (E) The block or line of cache is valid in this cache and main memory.

Shared(S) The block or line is valid in this cache and at least one more cache and main
memory.

Invalid(I) This state means that the bloch of data is not resident in this cache or it is not
useful.

4. MOESI protocol

The MOESI protocol [12] is a more advanced variant of the MESI protocol [10], with a fifth state
called Owned (O) that helps decrease memory accesses [9]. Figure 5 depicts the MOESI protocol’s
state diagram. On multiprocessor systems, there is only one valid data block status cache, and this
cache is valid data even if it is shared in main memory to reduce main memory access. You can
directly copy the block to another cache. As a result, the state of ownership encompasses both the
modified and shared states.

Because the data in the central memory is not updated, dirty values can be shared with other
caches, [13]. This signifies that the owner-owned state cache has an accurate data block, and other
caches in Memory may also have an accurate data block. Another benefit of this protocol is that it
is simple to implement. The transition between MOESI phases is depicted in Table 3.
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Table 3: The action of MOESI state
States Processor

Load
Processor
Store

Processor
Eviction

Incoming
Read Reg

Incoming
Write
Req

Modified Hit Hit Write-
back and
invalid

Send data
& Change
to Owned

Send
Data and
Invalid

Owned Hit Change
to modi-
fied

Write-
back and
invalid

Send
Data,
Write-
back and
Shared

Send
Data and
Invalid

Shared Hit Change
to modi-
fied

Silent
eviction
change to
invalid

None change to
invalid

Invalid Change
to Exclu-
sive or
shared

Change
to modi-
fied

None None None

Figure 5: State transition diagram for the MOESI protocol

• Advantage of MOESI Protocol:

1. Avoid extra CPU stalls when writing to main memory.

2. If only one cache can be owned (modified), other processors in the same block will be in shared
state.
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• Disadvantage of MOESI protocol:

In MOESI’s Snoopy implementation, when a read request arrives on the bus, every shared in
the block sends the requested data. Let the message appear on the bus.

5. Cache coherency controller design

As in our previous work [9], two multi-core MIPS1 and MPIS2 processors were designed, each
with its own cache and sharing the same main memory. Using FSM, a cache coherency controller is
created that consists of two parts: a coherency tag and a coherence controller (Finite State Machine).
The main memory is off chip, and all of these components are connected together on chips. Figure 6
shows a block diagram of the cache coherency controller when it is connected to the two processors
on the same chip. There are two caches in the design: cache A and cache B. The caches is a set
association that is directly mapped. Each cache has eight sets, with four 32-bit data, a 26-bit tag,
and a valid bit, update, dirty, and valid bit in each set. The write and read functions in the cache
are performed by two processor components, MIPS1 and MIPS2. The shared memory that was used
in the design has 32 entries. The bus controller is used to synchronize access to the shared bus by
multiple modules at the same time.

Figure 6: Block diagram for the cache coherency controller

Cache controller which decides this address exists in tag cache or not. If it exists then no memory
access is needed, cache controller provides this data to processor from cache memory; if it does not
exist then the cache controller fetches the data from main memory.

6. Cache coherence controller for MOESI protocol:

Two bits for M (Modify), one bit for O (Owned), two bits for E (Exclusive), one bit for S (Shared),
and two bits for I (Insert) were used to indicate different states for the third type of protocol (Invalid).
The coherency tag for MOESI states is shown in Figure 7 with 8-bits. MOESI states are displayed
in Table 4.

But a new state has been added called Owned state and the rest are the same as in the previous
protocols. When Owned (0 or 1); this means this copy has been modified, but there may be other
copies in shared state.

Table 5 shows the different sates of MOESI protocols. Only two states will be explained in this
section:
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1. For (St3) if (M=10, O=0, E=00, S=0, I=00) the OutMOESI1 will be Owned in MIPS1 Hit
read (Direct read).

2. For (St9) if (M=01, O=0, E=00, S=0, I=00) the OutMOESI2 will be Not Owned in MIPS2
Hit write (Direct write).

Table 4: MOESI states
M (Modify) O(Owned) E(Exclusive) S(Shared) I (Invalid)

Modify
00 Not modified
01 Modified field MP1
10 Modified field MP

Owned
0 Not owned
0 Owned

Exclusive
00 Not Exclusive
01 Exclusive field MP1
10 Exclusive field MP2

Shared
0 Not Shared
1 Shared

Valid
00 Valid both
01 Not Valid MP1 (Invalid1)
10 Not Valid MP2 (Invalid2)

Figure 7: Coherency tag with 8-bits for MOESI states
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Table 5: State for MOESI protocol

MP1 HTT Read (Direct Read)
State M (Modify) O(Owned) E(Exclusive) S(Shared) I (Invalid)
st0 00 0 00 0 00

OutMOESI1 00 0 01 0 00
st1 00 0 01 0 00

01 0 00 0 00
00 0 00 1 00

1 00 0 00
st2 00 0 10 0 00

OutMOESI1 00 0 00 1 00
st3 10 0 00 0 00

OutMOESI1 00 1 00 0 00
MP1 HTT Write (Direct Write)

State M (Modify) O(Owned) E(Exclusive) S(Shared) I (Invalid)
st8 00 0 00 0 00

00 0 01 0 00
00 0 10 0 00
00 0 00 1 00
01 0 00 0 00
10 0 00 0 00
00 1 00 0 00

OutMOESI1 01 0 00 0 00
MP1 MISS Read (Direct Read)

State M (Modify) O(Owned) E(Exclusive) S(Shared) I (Invalid)
st 10 00 0 01 0 00

MP1 MISS Write (Direct Write)
State M (Modify) O(Owned) E(Exclusive) S(Shared) I (Invalid)
st 11 01 0 00 0 00
st 12 00 0 10 0 00
st 13 10 0 00 0 00

MP2 HTT Read (Direct Read)
State M (Modify) O(Owned) E(Exclusive) S(Shared) I (Invalid)
st4 00 0 00 0 00

OutMOESI2 00 0 10 0 00
st5 00 0 10 0 00

10 0 00 0 00
00 0 00 1 00
00 1 00 0 00

st6 01 0 00 0 00
OutMOESI2 00 0 00 0 00

st7 00 0 00 0 00
OutMOESI2 00 0 00 1 00
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MP2 HTT Write (Direct Write)
State M (Modify) O(Owned) E(Exclusive) S(Shared) I (Invalid)
st9 00 0 00 0 00

00 0 01 0 00
00 0 10 0 00
00 0 00 1 00
10 0 00 0 00
01 0 00 0 00
00 1 00 0 00

OutMOESI2 10 0 00 0 00
MP2 MISS Write (Direct Write)

st400 Do NOTHING

7. Simulation results of the MOESI protocol

Two bits for M (Modify), one bit for O (Owned), two bits for E (Exclusive), one bit for S (Shared),
and two bits for I (Include) were used to denote distinct states for the third type of protocol (Invalid).

But a new state has been added called Owned state and the rest are the same as in the previous
protocols. When Owned (0 or 1); this means this copy has been modified, but there may be other
copies in shared state.

Only two states will be explained in this section:

1. For (St3) if (M=10, O=0, E=00, S=0, I=00) the OutMOESI1 will be Owned in MIPS1 Hit
read (Direct read). Figure 8 shows the test bench of MOESI protocol-MP1 Hit Read (Direct
Read).

Figure 8: Test bench of MOESI protocol-MP1 Hit Read (Direct Read)

2. For (St9) if (M=01, O=0, E=00, S=0, I=00) the OutMOESI2 will be Not Owned in MIPS2
Hit write (Direct write). Figure 9 shows the test bench of MOESI protocol-MP2 Hit Write
(Direct Write).
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Figure 9: Test bench of MOESI protocol-MP2 Hit Write (Direct Write)

8. FPGA Device utilization

After all designs are synthesized successfully, Xilinx ISE Design Suite 14.1 software provides
estimated values of the hardware amount that is needed to build each design. Table 4 shows the
hardware amount of MESI design using Xilinx virtex 7.

Table 6: State for MOESI protocol

Devise Utilization Summary (estimated values)
Logic Utilization Used Available Utilization

Number of slice Registers 1266 54576 2 %
Number of slice LUTS 16814 27288 61 %

Number of fully used LUTS-FF pairs 1233 16847 7 %
Number of bonded IOBS 68 296 22 %

Number of BUFG/BUFGCTRLs 8 16 50 %
Number of DSP48A1s 16 58 27 %

9. Conclusion

The Cache Coherency Controller was created in anticipation of our earlier work [9] for MOESI
protocols. A unique circuit is built using VHDL coding and implemented using ISE Xilinx software
in this work. The results of the tests were obtained utilizing a test bench, and they revealed that all
of the protocol’s states were operational.

Several suggestions could be stated, these suggestions could be considered as the basis for further
work. It is possible to improve compatibility protocols because each existing protocol has some limi-
tations. Lower bandwidth usage, less network traffic, require major training. Off-chip communication
must be reduced to reduce long latency for off-chip memory access. For future studies, the current
work can be expanded to include the internet of things, cloud computing, and possibly e-government.
Additionally, ZigBee technology has the potential to augment the current work [14]-[16].
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