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Abstract

In this study, we present a proposal aimed at estimating the finite population’s mean of the main
variable by stratification rank set sample StRSS through the modification made to generalized ratio-
cum-product type exponential estimator. The relative bias PRB, Mean Squared Error Mse and
percentage relative efficiencies PRE of the proposed modified estimator is obtained to the first degree
of approximation. Conditions under which the proposed estimator is more efficient than the usual
unbiased estimator, ratio, product type estimators, and some other estimators are obtained. Finally,
the estimators’ abilities are evaluated through the use of simulations, as showed that the proposed
modified estimator is more efficient as compared to several other estimators.

Keywords: Relative Bias, Mean square error, Percentage Relative Efficiency, Stratified ranked set
sampling, ratio-cum-product type exponential estimator.

1. Introduction

Researchers and professionals in survey sampling are continually on the lookout for effective es-
timators of unknown population characteristics. By combining the auxiliary variable(s) with the
study variable, the process of developing efficient estimators can be completed. And it is a well-
known fact that the appropriate use of auxiliary information improves the estimator’s efficiency.
Because of the association between the study variable and the auxiliary variable(s), the objective of
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using auxiliary information is to provide information about the study variable. Ratio, product, and
regression estimators are suitable examples in this context. In some cases, the study variable cannot
be easily measured or is too expensive, yet it can be easily ranked for no cost or at a bit of cost.
The writings on ranked set sampling discuss a wide range of strategies for obtaining more efficient
estimators for the study variable by including auxiliary information. Ranked set sampling RSS is a
logical approach to data collection that improves estimation. The method of ranking units is based
on the values of one of the auxiliary variable (s) correlated to the variable of the study. Also, using
complementary or auxiliary information on population units, the population is frequently divided
into disconnected subpopulations (stratums) in survey sampling research. If the mean and variance
of these subpopulations differ, a stratified sample will be used to create highly accurate population
estimators. Stratified ranked set sample StRSS is a two-stage procedure that reduces sample vari-
ation. The first stage separates the population into fragmented groups (stratums), with ranked set
samples RSS selected from every stratum. It divides the sample’s total variation in this case into
between- and within-stratum variations. The second stage divides the within-stratum variance into
between- and within-ranking variations from each stratum. [11] was the first to suggest RSS as a
technique for increasing the efficiency of the population mean estimator. [19] established that the
sample mean using RSS is an unbiased and more efficient estimate of the mean population than
using a simple random sampleSRS scheme. As [3] discovered, the estimate of the sample mean in
RSS utilized in their study is a more accurate and efficient way of estimating the population’s mean,
even when ranking flaws occur. The ranking may not have been perfect in some circumstances. [18]
explored the situation in which the ranking is based on a concomitant (auxiliary) variable rather
than judgment.
The topic of calculating the population ratio of the two variables by using the RSS approach was ex-
amined by [16]. [14] proposed stratified ranked set sampling StRSS to create a more efficient estimate
for a population mean. [15] calculated the results of the combined and separate ratio estimates using
StRSS. Stratified ranked set sampling has been employed by [10] to develop accurate kind of ratio
estimators. In the context of StRSS , [17] suggested dual to ratio and dual to product type efficient
estimators for population mean. [8] studied the efficacy of stratified bivariate ranked set sampling
SBVRSS and stratified simple random sampling StRSS in calculating the population mean using
regression methods. Hartely–Ross types estimators were suggested by [4] in RSS and StRSS . Based
on StRSS, [7] suggested a type separate ratio estimator of the finite population mean. In Stratified
Ranked Set Sampling, [12] propose an enhanced estimator based on the Prasad (1989) estimator.
[6] developed calibration estimators for the population’s mean by the stratified ranked set sample
technique; a simulation workout was conducted to see how well the proposed estimators performed.
[13] investigated the feasibility of employing auxiliary information to propose ratio estimators for the
average population in Stratified random sampling SRS and Stratified ranked set sampling StRSS.
[2] utilized a simulation analysis using an actual data set to examine the suggested performance of
ratio type estimators in many stratified ranked set sampling methods.

In this paper, we look at the StRSS schemes and propose a highly generalized approach for
estimating the population mean using two auxiliary variables. It is demonstrated that numerous
Previous estimators belong to the proposed class of estimators and that the proposed estimators are
more efficient than the corresponding Previous estimators in stratified ranked set sampling StRSS to
estimate the mean population.
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2. Procedure for sampling

2.1. Techniques for RSS

The procedure of RSS we generator picks m independent simple random samples SRS from the
population of interest initially. Each sample is m in size and drawn without being replaced. As a
result, the total sample size at the start is m2. Each SRS is referred to as a set. The sampled items
are ranked inside each of the m sets based on the researcher’s estimation of their relative sizes. This
ranking is done before the variable of interest is measured. Visual inspection of the items or the
value of an auxiliary variable connected with the variable of interest could be used by the scholar to
generate rankings. A subsample is drawn for measurement after ranked the m items in each of the m
sets. This subsample comprises the first set’s smallest ranked unit, the second set’s second-smallest
ranked unit, and so on until the subsample consists of m elements, each reflecting a distinct rank
from the sets. Then taken the subsample is measured for the study variables. The approach outlined
above is one cycle of the RSS technique. After that, the entire process includes r separate cycles,
yielding a total sample size of n = mr observations on the study variables. Now let Y stand for the
study variable, while X and Z stand for the two accompanying variables. Then from the population,
randomly select m2 trivariate sample items and divide them into m sets, each of size m. Each sample
is ranked using the accompanying variables X or Z, where we will depend on the variable X to rank
these items. The item with the smallest rank of X, as well as elements Y and Z linked with the
smallest rank of X, are then given an actual measurement from the first sample. The elements Y
and Z correlated with the second smallest rank of X are measured using a second sample of size
m. This technique is repeated until the Y and Z elements corresponding with the top rank of X
from the mth sample are determined. This brings the sampling on the first cycle to a finish. For the
obtaining of a sample of size n = mr, the technique is repeated r from the cycles.
The following is a summary of the procedure:

I. Choose m2 trivariate sample units at random from the population.

II. Divide the m2 objects into m sets, each with a size of m.

III. Every set is ranked using the auxiliary variable X as a criterion.

IV. For the final size, choose the ith ranked element in the ith i = 1, 2, ..., m set

V. Follow Steps (I–IV ) for r cycles until you get the appropriate sample size, n = mr.

Based on the above steps, we discuss a scenario in which the items when ranked using the auxiliary
variableX. Consider the set of three variables{

(
y[i]j, x(i)j, z[i]j

)
}, where ith judgment ranking in the

ith set for the study variable Y and auxiliary variableZ , when at cyclejth, depending on the ranking
of a ithset of the auxiliary variableX, where i = 1, 2, . . .m and j = 1, 2, . . . r.
As a result, RSS has been used to define the sample mean estimators yrss , xrss and zrss of the
population mean Y , X and Z respectively, are given by.

yrss =
1

mr

r∑
j=1

m∑
i=1

y[i]j, xrss =
1

mr

r∑
j=1

m∑
i=1

x(i)j and zrss =
1

mr

r∑
j=1

m∑
i=1

z[i]j

The variance of yrss , xrss and zrss . Under the RSS scheme, respectively.

V (yrss ) =

[
mσ2

y −
∑m

i=1 T
2
y[i]

]
r m2

, V (xrss ) =

[
mσ2

x −
∑m

i=1 T
2
x(i)

]
r m2

and V (zrss ) =

[
mσ2

z −
∑m

i=1 T
2
z[i]

]
r m2
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where σ2
y , σ2

x and σ2
z are the population variance of study variable Y and two auxiliary variables

X and Z respectively, and Ty[i] =
(
y[i] − Y

)
, Tx(i) =

(
x(i) −X

)
, Tz[i] =

(
z[i] − Z

)
, y[i] = E

(
y[i]
)

x(i) = E
(
x(i)

)
, z[i] = E

(
z[i]
)
, see for further information [3] and [1].

2.2. Techniques for StRSS

A set of stratification ranked sample schemes StRSS is a sampling approach that divides a pop-
ulation into L independently exclusive and comprehensive strata, since N = N1 + N2 + . . . + NL,
where N denoted the population size and Nh;h = 1, 2, . . . L denoted the population size for each
stratum, by using a ranking set sampling technique RSS from mh items quantitative in each layer,
h = 1, 2, ..., L. The strata are sampled independently of one another. As a result, an StRSS scheme
may be considered a collection of L independentlyRSS. The StRSS technique begins by selecting mh

independent random samples from the population’s hth stratum, each of size mh h = 1, 2, . . . L. To
get m =

∑L
h=1 mh observations, rank the observations in each sample and apply the RSS technique

to generate L independent RSS samples, each of size mh. This completes one StRSS cycle. The
same process is repeated r times to obtain the appropriate sample size n = mr, the following is a
synopsis of the StRSS procedure:

I. Choose m2 trivariate sample units at random from the population.

II. Divide the m2 objects into m sets, each with a size of m.

III. The ranked set sampling RSS process is then used on each set to generate mh sets of ranked
set samples, each with a size of mh. The auxiliary variable Xh is to be used to rank the items.
These ranked set samples are combined to create mh sets, each with a size of mhunits.

IV. To acquire the necessary sample sizenh = mhr, repeat steps (I–IV) r times for each stratum.

The elements of (StRSS) for the main variable Y and two auxiliary variable X and Z from r cycles
and stratum h can be described as follows:

cycle hthstrat of yh hthstrat of xh hthstrat of zh
1 yh[1]1, yh[2]1, . . . , yh[mh]1 xh(1)1, xh(2)1, . . . , xh(mh)1 zh[1]1, zh[2]1, . . . , zh[mh]1

2 yh[1]2, yh[2]2, . . . , yh[mh]2 xh(1)2, xh(2)2, . . . , xh(mh)2 zh[1]2, zh[2]2, . . . , zh[mh]2
...

...
...

...
j yh[1]j, yh[2]j, . . . , yh[mh]j xh(1)j, xh(2)j, . . . , xh(mh)j zh[1]j, zh[2]j, . . . , zh[mh]j
...

...
...

...
r yh[1]r, yh[2]r, . . . , yh[mh]r xh(1)r, xh(2)r, . . . , xh(mh)r zh[1]r, zh[2]r, . . . , zh[mh]r

In StRSS is indicated for the jth cycle and the hth stratum from the trivariate sample yh , xh, and zh
using the notation {

(
yh[i]j, xh(i)j, zh[i]j

)
}, be a set of three variables, where ith judgment ordering in

the ith set for the study variable Yh and auxiliary variable Zh based on the ith ranking of the ith

set of the auxiliary variable Xh at the jth cycle of the hth stratum, where i = 1, 2, . . .mh , j =
1, 2, . . . r and h = 1, 2, . . . , L. So under the StRSS scheme, for the main variable Y and the two
auxiliary variables X and Z, the unbiased estimate of the overall population average is established,
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respectively.

ystrss =
L∑

h=1

Wh yhrss , xstrss =
L∑

h=1

Whxhrss and zstrss =
L∑

h=1

Wh zhrss ; Wh = Nh/N

yhrss =
1

mhr

r∑
j=1

mh∑
i=1

y[i]j, xhrss =
1

mhr

r∑
j=1

mh∑
i=1

x(i)j, zrss =
1

mhr

r∑
j=1

mh∑
i=1

z[i]j

And the following formulas determined the variance and covariance between of ystrss , xstrss , and
zstrss , respectively.

V
(
ystrss

)
=

L∑
h=1

W 2
h

nh

[
σ2
hy −

1

mh

mh∑
i=1

T 2
yh[i]

]
= V0

V (xstrss ) =
L∑

h=1

W 2
h

nh

[
σ2
hx −

1

mh

mh∑
i=1

T 2
xh(i)

]
= V1

V (zstrss ) =
L∑

h=1

W 2
h

nh

[
σ2
hz −

1

mh

mh∑
i=1

T 2
zh[i]

]
= V2

Cov
(
ystrss , xstrss

)
=

L∑
h=1

W 2
h

nh

[
σhyx −

1

mh

mh∑
i=1

T 2
yxh[i]

]
= V01

Cov
(
ystrss , zstrss

)
=

L∑
h=1

W 2
h

nh

[
σhyz −

1

mh

mh∑
i=1

T 2
yzh[i]

]
= V02

Cov (xstrss , zstrss ) =
L∑

h=1

W 2
h

nh

[
σhxz −

1

mh

mh∑
i=1

T 2
xzh[i]

]
= V12



(2.1)

where Tyh[i] =
(
yh[i] − Y h

)
, Txh(i) =

(
xh(i) −Xh

)
, Tzh[i] =

(
zh[i] − Zh

)
, yh[i] = E

(
yh[i]
)
,

xh(i) = E
(
xh(i)

)
, zh[i] = E

(
zh[i]
)
, Y h , Xh , Zh , σ2

yh , σ2
xh , σ2

zh , σyxh , σyzh and σxzh are
the population means , variance and covariance of study variable Yh and two auxiliary variables
Xh and Zh ,respectively, see for further information [14] and [15].

3. Proposed generalized modified exponential-type estimator

We provide a generalized modified ratio-cum-product type exponential estimator in stratified
ranked set sampling, along the lines of [5] and [9], as follows:

yRP (g) = ystrss (
X

xstrss

)α(
zstrss

Z
)β
[
exp

(
X − xstrss

X + xstrss

)](1−α) [
exp

(
zstrss − Z

zstrss + Z

)](1−β)

(3.1)

where α and β are suitably chosen constants to give the estimator yRP (g) is minimum variance. We
describe the following fundamental error terms to study the properties of the estimator yRP (g).

Let ε0 =
ystrss −Y

Y
, ε1 =

xstrss −X

X
, ε2 =

zstrss −Z

Z
.

As a result as E (ε0) = E (ε1) = E (ε2) = 0, E (ε20) =
V0

Y
2 , E (ε21) =

V1

X
2 , E (ε22) =

V2

Z
2 and

E (ε0ε1) =
V01

Y X
, E (ε0ε2) =

V02

Y Z
, E (ε1ε2) =

V12

X Z
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The estimator yRP (g)in equation (3.1) can be expressed in terms of ε0ε1and ε2 up to the first approx-
imation order.

yRP (g) = Y

{
1 + ε0 −

(
α +

(1− α)

2

)
ε1 +

(
β +

(1− β)

2

)
ε2 −

(
α +

(1− α)

2

)
ε0ε1

+

(
β +

(1− β)

2

)
ε0ε2 −

(
αβ +

α (1− β)

2
+

β (1− α)

2
+

(1− α) (1− β)

4

)
ε1ε2+(

α (α + 1)

2
+

(1− α)

4
+

α (1− α)

2
+

(1− α)2

8

)
ε21+(

β (β + 1)

2
+

(1− β)

4
+

β (1− β)

2
+

(1− β)2

8

)
ε22

}
(3.2)

When we subtract Y from both sides of the above equation, then we get follows

yRP (g) − Y = Y

{
ε0 −

(
α +

(1− α)

2

)
ε1 +

(
β +

(1− β)

2

)
ε2 −

(
α +

(1− α)

2

)
ε0ε1+(

β +
(1− β)

2

)
ε0ε2 −

(
αβ +

α (1− β)

2
+

β (1− α)

2
+

(1− α) (1− β)

4

)
ε1ε2+(

α (α + 1)

2
+

(1− α)

4
+

α (1− α)

2
+

(1− α)2

8

)
ε21+(

β (β + 1)

2
+

(1− β)

4
+

β (1− β)

2
+

(1− β)2

8

)
ε22

}
(3.3)

Then we obtain bias of the estimator yRP (g), of the first degree of approximation, by finding the
expectation of both sides of Equation (3.3).

Bias
(
yRP (g)

)
= Y

{
−
(
α +

(1− α)

2

)
V01

Y X
+

(
β +

(1− β)

2

)
V02

Y Z
−
(
αβ +

α (1− β)

2
+

β (1− α)

2

+
(1− α) (1− β)

4

)
V12

X Z
+

(
α (α + 1)

2
+

(1− α)

4
+

α (1− α)

2
+

(1− α)2

8

)
V1

X
2+(

β (β + 1)

2
+

(1− β)

4
+

β (1− β)

2
+

(1− β)2

8

)
V2

Z
2

}
(3.4)

To obtain the MSe(yRP (g)), and from the first degree from approximation, done by equation(3.3)
by squaring two sides and disregarding terms of upper order ε’s and then calculate the expectation
formula.

MSe
(
yRP (g)

)
= E(yRP (g) − Y )2

= V0 +
(α + 1)2

4
R2

1V1 +
(β + 1)2

4
R2

2V2 − (α + 1) R1V01 + (β + 1)R2V02

− (α + 1) (β + 1)

2
R1R2V 12

(3.5)
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where R1 =
Y
X

, R2 =
Y
Z
are the population ratio.

The optimal values for α and β that minimize the mean square error of yRP up to first degree from
approximate can be an easily proven as

αopt =
2(V2V01 − V02V12)

R1(V1V2 − V 2
12)

+ 1, βopt =
2(V01V12 − V02V1)

R2(V1V2 − V 2
12)

+ 1 (3.6)

Substituting Eq. (3.6) in Eq. (3.5), we get the optimum value of the mean square error of yRP (g),
which is determined as follows

MSeopt
(
yRP (g)

)
= V0 −

(
V1V

2
02 − 2V01 V02 V12 + V2V

2
01

(V1V2 − V 2
12)

)
(3.7)

4. Some special cases from yRP(g)

We obtain several exponential and non-exponential types for ratio, product, and ratio-cum-
product estimators from yRP (g). By replacing α and β in Eq (3.1) with specific values. We will
denote each estimator by the value of the case number corresponding to it and enter this value in
the letter i in yRP (i); below are some of them.

1. If α = β = 0 and assuming (1− α) = (1− β) = 0, then we obtain

yRP (1) = ystrss (4.1)

Here yRP (i) is replaced by yRP (1), which represents the traditional unbiased estimator of the

population mean Y under the StRSS, as suggested by [14] and has variance equal to V0 in (2.1).

2. If α = 1 , β = 0 and assuming (1− β) = 0, then we obtain

yRP (2) = ystrss

(
X

xstrss

)
(4.2)

Where yRP (2) is called the ratio estimator under the StRSS, was suggested by [15], the following

formulas show that the resultants from 1
n
degrees of approximation to the values of Bias and

MSe forStRSS, respectively, are.

Bias
(
yRP(2)

)
= Y

[
V1

X
2 − V01

Y X

]
(4.3)

MSe
(
yRP(2)

)
= V0 +R2

1 V1 − 2R1V01 (4.4)

3. If α = 0 , β = 1 and assuming (1− α) = 0, then we obtain

yRP (3) = ystrss

(
zstrss

Z

)
(4.5)

Where yRP (3) is called the product estimator under the StRSS, represents the inverse of the

estimator defined in the equation(4.2), the following formulas show that the resultants from 1
n

degrees of approximation to the values of Bias and MSe forStRSS, respectively, are.

Bias
(
yRP(3)

)
= Y

[
V2

Z
2 +

V02

Y Z

]
(4.6)

MSe
(
yRP(3)

)
= V0 +R2

2 V2 + 2R2V02 (4.7)
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4. If α = 0 and β = 0, then we obtain

yRP (4) = ystrss

[
exp

(
X − xstrss

X + xstrss

)] [
exp

(
zstrss − Z

zstrss + Z

)]
(4.8)

Where yRP (4) is called the ratio-cum-product type exponential estimator under the StRSS, was

suggested by [5], the following formulas show that the resultants from 1
n
degrees of approxima-

tion to the values of Bias and MSe forStRSS, respectively, are.

Bias
(
yRP(4)

)
= Y

[
V02

2Y Z
− V01

2Y X
− V12

4XZ
+

3V1

8X
2 − V2

8Z
2

]
(4.9)

Mes
(
yRP(4)

)
= V0 +

1

4
R

2

1
V1 +

1

4
R2

2 V2 −R1V01 +R2V02 −
1

2
R1R2V12 (4.10)

5. If α = 1 and β = 1, then we obtain

yRP (5) = ystrss

(
X

xstrss

)(
Z

zstrss

)
(4.11)

Where yRP (5) is called the ratio-cum-product estimator under theStRSS, the following formulas

show that the resultants from 1
n

degrees of approximation to the values of Bias and MSe
forStRSS, respectively, are.

Bias
(
yRP(5)

)
= Y

[
V02

Y Z
− V01

Y X
− V12

XZ
+

V1

X
2 +

V2

Z
2

]
(4.12)

MSe
(
yRP(5)

)
= V0 +R2

1 V1 +R2
2 V2 − 2R1V01 + 2R2V02 − 2 R1R2V12 (4.13)

6. If α = 0 , β = 0 and assuming (1− β) = 0, then we obtain

yRP (6) = ystrss

[
exp

(
X − xstrss

X + xstrss

)]
(4.14)

Where yRP (6) is called the ratio type exponential estimator under the StRSS, the following

formulas show that the resultants from 1
n
degrees of approximation to the values of Bias and

MSe forStRSS, respectively, are.

Bias
(
yRP(6)

)
= Y

[
V01

2Y X
+

3V1

8X
2

]
(4.15)

MSe
(
yRP(6)

)
= V0 +

1

4
R

2

1
V1 −R1V01 (4.16)

7. If α = 0 , β = 0 and assuming (1− α) = 0, then we obtain

yRP (7) = ystrss

[
exp

(
zstrss − Z

zstrss + Z

)]
(4.17)

Where yRP (7) is called the product type exponential estimator under the StRSS, the following

formulas show that the resultants from 1
n
degrees of approximation to the values of Bias and

MSe for StRSS, respectively, are.

Bias
(
yRP(7)

)
= Y

[
V02

2Y Z
− V2

8Z
2

]
(4.18)

MSe
(
yRP(7)

)
= V0 +

1

4
R2

2 V2 +R2V02 (4.19)
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8. If α = 1 , β = 0, then we obtain

yRP (8) = ystrss

(
X

xstrss

) [
exp

(
zstrss − Z

zstrss + Z

)]
(4.20)

Where yRP (8) is called the ratio-cum exponential product type estimator under the StRSS, and
that the amount bias and MSe of StRSS the following formulas show that the resultants from
1
n
degrees of approximation to the values of Bias and MSe forStRSS, respectively, are.

Bias
(
yRP(8)

)
= Y

[
V02

2Y Z
− V01

Y X
− V12

2XZ
+

V1

X
2 − V2

8Z
2

]
(4.21)

MSe
(
yRP(8)

)
= V0 +R2

1 V1 +
1

4
R2

2 V2 − 2R1V01 +R2V02 − R1R2V12 (4.22)

9. If α = 0 , β = 1, then we obtain

yRP (9) = ystrss

(
Z

zstrss

)[
exp

(
X − xstrss

X + xstrss

)]
(4.23)

Where yRP (9) is called the product-cum exponential ratio type estimator under the StRSS, the

following formulas show that the resultants from 1
n
degrees of approximation to the values of

Bias and MSe forStRSS, respectively, are.

Bias
(
yRP(9)

)
= Y

[
V02

Y Z
− V01

2Y X
− V12

2XZ
+

3V1

8X
2 +

V2

8Z
2

]
(4.24)

MSe
(
yRP(9)

)
= V0 +

1

4
R

2

1
V1 +R2

2 V2 −R1V01 + 2R2V02 − R1R2V12 (4.25)

5. Efficiency comparison of estimators

Through the equations (3.7), (2.1), (4.4), (4.7), (4.10), (4.13), (4.16), (4.19), (4.22) and (4.25). In
this part, we can determine the constraints which the proposed generalized ratio-cum-product type
exponential estimator is more efficient than others, under the StRSS.

1. Comparison with the usual unbiased estimator of population meanystrss . Between (3.7) against
(2.1),

MSeopt
(
yRP (g)

)
< V

(
ystrss

)
if

2V01 V02 V12

V1 V 2
02 + V2 V01

< 1 (5.1)

2. Comparison with the ratio estimator under theStRSS. Between (3.7) against (4.4),

MSeopt
(
yRP (g)

)
< MSe

(
yRP(2)

)
if.

V01 [2 V02V12 +R1 (V1V2 + V 2
12)− V2V01]

V1

[
V2

02 +R2
1 (V1V2 + V 2

12)
] < 1 (5.2)

3. Comparison with the product estimator under theStRSS. Between (3.7) against (4.7),

MSeopt
(
yRP (g)

)
< MSe

(
yRP(3)

)
if.

V02 [2 V01V12 +R2 (V1V2 + V 2
12) + V1V02]

V2

[
V2

01 +R2
2 (V1V2 + V 2

12)
] < 1 (5.3)
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4. Comparison with the ratio-cum-product type exponential estimator under theStRSS. Between
(3.7) against (4.10),

MSeopt
(
yRP (g)

)
< MSe

(
yRP(4)

)
if.

V12 [2 V01V02 + 0.5R1R2 (V1V2 + V 2
12)] + (V1V2 + V 2

12) [ V01R1 − V02R2]

V1 [V 2
02 + 0.25R2

1 (V1V2 + V 2
12)] + V2 [V 2

01 + 0.25R2
2 (V1V2 + V 2

12)]
< 1

(5.4)

5. Comparison with the ratio-cum-product estimator under theStRSS. Between (3.7) against
(4.13),

MSeopt
(
yRP (g)

)
< MSe

(
yRP(5)

)
if.

2V 12 [ V01V02 +R1R2 (V1V2 + V 2
12)] + 2 (V1V2 + V 2

12) [ V01R1 − V02R2]

V1

[
V2

02 +R2
1 (V1V2 + V 2

12)
]
+ V2

[
V2

01 +R2
2 (V1V2 + V 2

12)
] < 1

(5.5)

6. Comparison with the ratio type exponential estimator under theStRSS. Between (3.7) against
(4.16),

MSeopt
(
yRP (g)

)
< MSe

(
yRP(6)

)
if.

V01 [2 V02V12 +R1 (V1V2 + V 2
12)− V2V01]

V1

[
V2

02 + 0.25R2
1 (V1V2 + V 2

12)
] < 1

(5.6)

7. Comparison with the product type exponential estimator under theStRSS. Between (3.7)
against (4.19),

MSeopt
(
yRP (g)

)
< MSe

(
yRP(7)

)
if.

V02 [2 V01V12 +R2 (V1V2 + V 2
12) + V1V02]

V2

[
V2

01 + 0.25R2
2 (V1V2 + V 2

12)
] < 1

(5.7)

8. Comparison with the ratio-cum exponential product type estimator under theStRSS. Between
(3.7) against (4.22),

MSeopt
(
yRP (g)

)
< MSe

(
yRP(8)

)
if.

V12 [2 V01V02 +R1R2 (V1V2 + V 2
12)] + (V1V2 + V 2

12) [ 2V 01R1 − V02R2]

V1

[
V2

02 +R2
1 (V1V2 + V 2

12)
]
+ V2

[
V2

01 + 0.25R2
2 (V1V2 + V 2

12)
] < 1

(5.8)

9. Comparison with the product-cum exponential ratio type estimator under theStRSS. Between
(3.7) against (4.25),

MSeopt
(
yRP (g)

)
< MSe

(
yRP(9)

)
if.

V12 [2 V01V02 +R1R2 (V1V2 + V 2
12)] + (V1V2 + V 2

12) [ V01R1 − 2V 02R2]

V1

[
V2

02 + 0.25R2
1 (V1V2 + V 2

12)
]
+ V2

[
V2

01 +R2
2 (V1V2 + V 2

12)
] < 1

(5.9)



Sparse minimum average variance ... 1147

6. Simulation working study

An actual data set is used to illuminate the comparability of the proposed estimators. The data
set consists of 252 men’s body fat percentages as assessed by underwater weighing and various body
circumference measures. More information on these data can be found at http://lib.stat.cmu.
edu/datasets/bodyfat. We select the main variable Y is body fat percentage, the first auxiliary
variable X is belly circumference, and the second auxiliary variable Z is thigh circumference. Where
the community’s characteristics are as follows: Y = 19.150, X = 92.556, Z = 95.406, σ2

y =
70.036, σ2

x = 116.275, σ2
z = 275.562, ρyx = .813, ρyz = 0.56 and ρxz = 0.767. Estimators are

compared by a simulation study, conduct under a stratified ranked sampling scheme as described in
part 2-2. According to the weight variable, the population was divided into three strata: the first
stratum represented people who weighed less than 160 kg, the second stratum represented people
who weighed between 160 and 181 kg, and the third stratum represented people who weighed more
than 181 kg. The auxiliary variable X will be used to perform the Ranking operation, Using 25,000
simulations, to certain empirical metrics’ estimates such as the percentage relative bias PRB (.)
and percentage relative efficiencies PRE(.), where the values of PRB (.) help to assess the different
estimators’ empirical bias, whilst the PRE(.), show the most efficient estimator from an empirical
standpoint. Table (1-3) displays the simulation results, and to get the PRB (.) and PRE(.), we use
the expressions below.

PRB
(
yRP (g)

)
=

1

Y

[
1

25000

25000∑
k=1

(yRP (g)k − Y )

]
× 100; i = g, 1, 2, . . . 9 (6.1)

Mse
(
yRP (g)

)
=

1

25000

25000∑
k=1

(yRP (g)k − Y )2; i = g, 1, 2, . . . 9 (6.2)

PRE
(
yRP (g)

)
=

V
(
ystrss

)
Mse

(
yRP (g)k

) × 100; i = g, 1, 2, . . . 9 (6.3)

Table 1: Mse of proposed estimators as determined during simulation. L = 3 , mh = (3 , 4 , 5 )
and Wh = ( 0.26 , 0.32 , 0.42)

r nh ystrss yRP(2) yRP(3) yRP(4) yRP(5) yRP(6) yRP(7) yRP(8) yRP(9) yRP (g)

3 9, 12, 15 1.34573 1.03764 1.58684 1.2557 1.18584 1.17429 1.45032 1.09564 1.75544 0.913657

4 12, 16, 20 1.01022 0.773824 1.19545 0.942224 0.889331 0.878945 1.09088 0.819492 1.32403 0.604881

5 15, 12, 25 0.812984 0.623053 0.959267 0.757043 0.713256 0.707529 0.876479 0.658382 1.06139 0.530421

6 18, 24, 30 0.674249 0.517692 0.797125 0.629134 0.594032 0.587253 0.727728 0.547787 0.882474 0.404587

7 21, 28, 35 0.574388 0.441001 0.678621 0.535194 0.504589 0.500162 0.619551 0.465733 0.751622 0.317814

10 30, 40, 50 0.396412 0.302792 0.46953 0.369019 0.347623 0.344332 0.428148 0.320301 0.520568 0.221512

Table 2: PRE of proposed estimators as determined during simulation. L = 3 , mh = (3 , 4 , 5 )
and Wh = ( 0.26 , 0.32 , 0.42)

r nh ystrss yRP(2) yRP(3) yRP(4) yRP(5) yRP(6) yRP(7) yRP(8) yRP(9) yRP (g)

3 9, 12, 15 100 129.6914 84.80565 107.1697 113.4833 114.5995 92.78849 122.8259 76.66055 147.2905

4 12, 16, 20 100 130.5491 84.50542 107.2165 113.5933 114.9355 92.60597 123.2739 76.29888 167.0114

5 15, 12, 25 100 130.4839 84.75054 107.3894 113.9821 114.9047 92.75567 123.4821 76.59616 153.2715

6 18, 24, 30 100 130.2413 84.5851 107.171 113.5038 114.8141 92.65124 123.086 76.4044 166.6512

7 21, 28, 35 100 130.2464 84.64047 107.3233 113.8328 114.8404 92.71037 123.3299 76.4198 180.7309

10 30, 40, 50 100 130.9189 84.42741 107.4232 114.035 115.1249 92.58761 123.7623 76.1499 178.9573
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Table 3: PRB of proposed estimators as determined during simulation. L = 3 , mh = (3 , 4 , 5 )
and Wh = ( 0.26 , 0.32 , 0.42 )

r nh ystrss yRP(2) yRP(3) yRP(4) yRP(5) yRP(6) yRP(7) yRP(8) yRP(9) yRP (g)

3 9, 12, 15 1.027 1.924 0.513 1.032 0.509 0.724345 1.027 0.359 0.2422

4 12, 16, 20 1.031 -1.245 0.5071 1.0193 0.512261 -2.4075 1.023 0.3485 0.23033

5 15, 12, 25 1.044 -1.243 0.5095 1.023 0.519 -7.646 1.0328 -1.4266 0.27645

6 18, 24, 30 0.50438 -0.1453 0.5087 1.02877 0.7852 -8.9942 1.9264 -0.8293 0.03425

7 21, 28, 35 0.33254 -0.63004 0.8475 4.245 0.6356 -7.78 2.545 -6.2354 0.01845

10 30, 40, 50 0.5646 -0.1382 0.06325 1.478 0.5264 -6.898 3.524 -1.828 0.00891

From the tables above. The use of auxiliary variables improves the estimation process, and that
the relationship between the auxiliary variables and the main variable affects this improvement. which
is used to choose the type of estimator to be employed. The effect of this on the estimators yRP (g) ; i =
2, 3, . . . , 9 was obvious because the correlation coefficient in the real data was correspondingly ρyx =
0.81 and ρyz = 0.56, which are positive quantities. Using the type of ratio estimator, the estimators
yRP (g) ; i = 2, 4, 5, 6, and 8 exhibited high efficiency in estimating the population mean. While the
estimators yRP (g) ; i = 3, 7, and 9 were inefficient in the estimate process because they relied on
the product estimator, which isn’t appropriate in this case due to the positive relationship between
the main variable y and the auxiliary variable z. Unlike other estimators (yRP (g) ; i = 2, 3, . . . , 9),
the suggested estimator yRP (g) is unaffected by the type of correlation between the main variable
and auxiliary variables, as seen by its extremely high estimate efficiency, as shown in the last column
of Table (2). The sample size n =

∑L
h=1 nh has an inverse relationship with the calculated mean

squared error MSe, as shown in Table (1), where the larger the sample size, the lower the value of
MSe for all estimators, notably the estimator yRP (g), as seen in the last column of this table. Table
(2) shows that as the sample size increases, the percentage relative efficiencies PRE of the estimators
increases as well, with the estimator yRP (g) achieving the highest efficiency at sizes n = 48 and n = 120
respectively. Table (3) shows that all estimators are biased, but in very low proportions, as evidenced
by the calculated percentage relative bias PRB. Except for estimators yRP (g) ; i = 3, 7, and 9, which
have large bias ratios. The estimator yRP (g) attained the lowest bias value among all other estimators,
with a decrease in the bias value if increasing the sample size.

7. Conclusion

We find that the estimator yRP (g) achieves the highest percentage relative efficiencies PRE when
compared to ystrss under the StRSS technique, based on simulation and theoretical comparison. Not-
ing that as the sample size increases, its MSe

(
ystrss

)
value decreases, the estimator stays highly

efficient, is unaffected by the type of correlation between variables, and has the lowest admissible
bias. The bias value reduces as increases the sample size. So the estimator yRP (g)is superior to all
other estimators described in section (4), as well as many other estimators that may be derived from
the estimator yRP (g).
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