
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,815 |
تعداد دریافت فایل اصل مقاله | 7,656,334 |
Medical images fusion based on equilibrium optimization and discrete wavelet | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، Special Issue، اسفند 2021، صفحه 1337-1354 اصل مقاله (560.59 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.24255.2703 | ||
نویسندگان | ||
Saeed Amiri* 1؛ Ahmad Mosallanejad2؛ Amir sheikhahmadi1 | ||
1Department of Computer Engineering, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran | ||
2Department of Computer Engineering, Sepidan Branch, Islamic Azad University, Sepidan, Iran | ||
تاریخ دریافت: 27 بهمن 1399، تاریخ پذیرش: 01 شهریور 1400 | ||
چکیده | ||
Integrating multimodal medical imaging has many advantages for diagnosis and clinical analysis because it creates the conditions for physicians to make more accurate diagnoses. To the best of our knowledge, there are still some disadvantages to current image fusion methods. First, image fusion often has low contrast due to the law of weight average to combine low-frequency components. The second problem is the loss of accurate information in the merged image. This paper presents a wavelet-based method and equilibrium optimization for MRI and PET medical image fusion to obtain a high-quality image fusion. In the proposed method, the equilibrium optimization algorithm finds the appropriate common points in MRI and PET images and performs the combination with the help of wavelet transform. This allows the welded image to retain the details transferred from the MRI images significantly. Experimental results show that the proposed approach is effective in significantly increasing the quality of the integrated image and preserves the insignificant information transmitted from the input images. | ||
کلیدواژهها | ||
Medical Image؛ Image Fusion؛ Equilibrium Optimization؛ Wavelet Transform | ||
مراجع | ||
[1] J. Li, K. Cheng, S. Wang, F. Morstatter, R.P. Trevino, J. Tang and H. Liu. Feature selection: A data perspective, ACM Comput. Surv. 50(6) (2017) 1–45. [2] Y. Seo, Y. Choi, and J. Choi, River stage modeling by combining maximal overlap discrete wavelet transform, support vector machines and genetic algorithm, Water 9(7) (2017) 525. [3] J. Tian, G. Liu and J. Liu, Multi-focus image fusion based on edges and focused region extraction, Optik 171 (2018) 611–624. [4] A. Narimani, M. Akbarzadeh and M. Hamzeh, Evaluation of general health in medical students of AJA University of Medical Sciences, 2009, (2010) 49-55. [5] X. Yi, E. Walia and P. Babyn, Generative adversarial network in medical imaging: A review, Medical Image Anal. 58 (2019) 101552. [6] H.W. Goo and J.M. Goo, Dual-energy CT: new horizon in medical imaging, Korean J. Radiology 18(4) (2017) 555–569. [7] S. Chakraborty, S. Chatterjee, A.S. Ashour, K. Mali and N. Dey, Intelligent Computing in Medical Imaging: A study, Advancements in Applied Metaheuristic Computing, IGI Global, 2018. [8] B. Meher, S. Agrawal, R. Panda and A. Abraham. A survey on region based image fusion methods, Inf. Fusion 48 (2019) 119–132. [9] S. Ului¸sik, F. Yildiz and A.T. Ozdem ¨ ˙Ir. Image processing based machine vision system for tomato volume estimation, 2018 Electric Elect. Compu. Sci. Biomed. Engin. Meeting (EBBT). IEEE, 2018. [10] L. Sajn and M. Kukar, ˇ Image processing and machine learning for fully automated probabilistic evaluation of medical images, Comput. Meth. Prog. Biomed. 104(3) (2011) 75–86. [11] W. Yin, W. Zhao, D. You and D. Wang, Local binary pattern metric-based multi-focus image fusion, Optics Laser Tech. 110 (2019) 62–68. [12] Y. Lakrissi, A. Saaidi and A. Essahlaoui, Novel dynamic color image watermarking based on DWT-SVD and the human visual system, Multimedia Tools Appl. 77(11) (2018) 13531–13555. [13] E. Daniel, J. Anitha, K.K. Kamaleshwaran and I. Rani, Optimum spectrum mask based medical image fusion using Gray Wolf Optimization, Biomed. Signal Proces. Cont. 34 (2017) 36–43. [14] S. Rein, and M. Reisslein, Performance evaluation of the fractional wavelet filter: A low-memory image wavelet transform for multimedia sensor networks, Ad Hoc Networks 9(4) (2011) 482–496. [15] M. Manchanda and R. Sharma, An improved multimodal medical image fusion algorithm based on fuzzy transform, J. Visual Commun. Image Repres. 51 (2018) 76–94. [16] M.M.H. Chowdhury and A. Khatun, Image compression using discrete wavelet transform, Int. J. Comput. Sci. Iss. 9(4) (2012) 327. [17] K. Joshi, M. Kirola, S. Chaudhary, M. Diwakar and N.K. Joshi, Multi-focus image fusion using discrete wavelet transform method, Int. Conf. Adv. Engin. Sci. Manag. Tech. 2019, Uttaranchal University, Dehradun, India. 2019. [18] J. Du, W. Li, K. Lu and B. Xiao, An overview of multi-modal medical image fusion. Neurocomputing 215 (2016): 3-20. [19] R.R. Nair and T. Singh, Multi-sensor medical image fusion using pyramid-based DWT: a multi-resolution approach. IET Image Proces. 13(9) (2019) 1447–1459. [20] V. Bhateja, H. Patel, A. Krishn, A. Sahu and A. Lay-Ekuakille, Multimodal medical image sensor fusion framework using cascade of wavelet and contourlet transform domains. IEEE Sensors J. 15(12) (2015) 6783–6790. [21] R.X. Gao and R. Yan, From Fourier Transform to Wavelet Transform: A Historical Perspective, Springer, Boston, MA, 2011.[22] J. Majak, B.S. Shvartsman, M. Kirs, M. Pohlak and H. Herranen, Convergence theorem for the Haar wavelet based discretization method, Composite Struc. 126 (2015) 227–232. [23] J.E. Chen and G.H. Glover, Functional magnetic resonance imaging methods, Neuropsych. Rev. 25(3) (2015) 289–313. [24] X. Xu, Y. Wang and S. Chen, Medical image fusion using discrete fractional wavelet transform, Biomed. Signal Proces. Cont. 27 (2016) 103–111. [25] X. Xu, D. Shan, G. Wang and X. Jiang, Multimodal medical image fusion using PCNN optimized by the QPSO algorithm, Appl. Soft Comput. 46 (2016) 588–595. [26] F.B. Ozsoydan, Effects of dominant wolves in grey wolf optimization algorithm, Appl. Soft Comput. 83 (2019) 105658. [27] P. Niu, S. Niu and L. Chang, The defect of the Grey Wolf optimization algorithm and its verification method, Knowledge-Based Syst. 171 (2019) 37–43. [28] R. Gharbia, A.E. Hassanien, A.H. El-Baz, M. Elhoseny and M. Gunasekaran, Multi-spectral and panchromatic image fusion approach using stationary wavelet transform and swarm flower pollination optimization for remote sensing applications, Future Gen. Comput. Syst. 88 (2018) 501–511. [29] A. Wunnava, M. K. Naik, R. Panda, B. Jena and A. Abraham, A novel interdependence based multilevel thresholding technique using adaptive equilibrium optimizer, Engin. Appl. Artif. Intell. 94 (2020) 103–136. [30] A. Faramarzi, M. Heidarinejad, B. Stephens and S. Mirjalili, Equilibrium optimizer: A novel optimization algorithm, Knowledge-Based Syst. 191 (2020) 105–120. | ||
آمار تعداد مشاهده مقاله: 44,159 تعداد دریافت فایل اصل مقاله: 489 |