
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,795 |
تعداد دریافت فایل اصل مقاله | 7,656,249 |
مقایسۀ قابلیت گزینش پذیری سنتز اتیلن گلیکول و زیست مولکول گلیسرآلدهید از طریق واکنش فورموس در حلال آب و متانول | ||
شیمى کاربردى روز | ||
دوره 17، شماره 63، تیر 1401، صفحه 39-54 اصل مقاله (710.72 K) | ||
نوع مقاله: مقاله علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/chem.2021.22337.1942 | ||
نویسندگان | ||
آرش وجود؛ محمد خدادادی مقدم؛ غلامرضا ابراهیم زاده رجائی* ؛ سحر مهاجری؛ علی شامل | ||
گروه شیمی، واحد اردبیل، دانشگاه آزاد اسلامی، اردبیل، ایران | ||
تاریخ دریافت: 19 دی 1399، تاریخ بازنگری: 25 شهریور 1400، تاریخ پذیرش: 25 مهر 1400 | ||
چکیده | ||
در مقاله حاضر، ابتدا واکنش فورموس برای تولید پُلیاُلها در حلال متانول و در حضور کاتالیست معدنی آروزیل ( فیوم سیلیکا) مورد بررسی قرار گرفته است. مکانیسم واکنش فورموس در واقع همان تراکم آلدولی است که در محیط قلیایی انجام میپذیرد و وجود کاتالیزور ناهمگن آن را تسریع مینماید. محصولات مشاهده شده در محیط واکنش، اتیلن گلیکول و گلیسرآلدهید میباشند. نهایتاً گزینش پذیری سنتز این دو محصول پُلیاُلی با دو محصول متناظر سنتز شده از طریق واکنش فورموس در حلال آب مورد مقایسه و ارزیابی قرار گرفت. مطالعۀ حاضر نشان میدهد که در حضور کاتالیزور فیوم سیلیکا در حلال آب، با افزایش pH از 6/7 تا 3/9 میزان تولید اتیلن گلیکول کاهش مییابد، درحالیکه تبدیل اتیلن گلیکول به گلیسرآلدهید افزایش مییابد. در نتیجه مقدار اتیلن گلیکول موجود در مخلوط واکنش در pH های قلیایی، در مقایسه با pH های خنثی کاهش مییابد، ولی در مقابل، گزینش پذیری واکنش نسبت به تولید گلیسرآلدهید افزایش مییابد. تغییر حلال از آب به متانول نیز باعث کاهش تولید محصول میگردد. بنابراین، این امر نشان دهندۀ گزینش پذیری پایین محیط متانولی در مقایسه با محیط آبی نسبت به تولید دو محصول 1،2-اتان دی اُل و 2،3-دی هیدروکسی پروپانال است. | ||
کلیدواژهها | ||
پیدایش حیات؛ واکنش فورموس؛ تراکم آلدولی؛ حلال متانول؛ گزینش پذیری؛ فیوم سیلیکا؛ پُلیاُل | ||
عنوان مقاله [English] | ||
Comparison of selectivity of ethylene glycol synthesis and glyceraldehyde biomolecule through Formose reaction in water and methanol solvent | ||
نویسندگان [English] | ||
Arash Vojood؛ Mohammad Khodadadi-Moghaddam؛ Gholamreza Ebrahimzadeh-Rajaei؛ Sahar Mohajeri؛ Ali Shamel | ||
Department of Chemistry, Ardabil Branch, Ardabil, Iran | ||
چکیده [English] | ||
In the present paper, the Formose reaction to produce polyols in methanol solvent in the presence of an aerosil (fumed silica) catalyst is first investigated. The mechanism of Formose reaction is actually the same aldol condensation that occurs in an alkaline media and is accelerated by the presence of a heterogeneous catalyst. The products observed in the reaction medium are ethylene glycol and glyceraldehyde. Finally, the selectivity of the synthesis of these products was compared and evaluated with the two corresponding products synthesized through the Formose reaction in aqueous solvent. The present study shows that in the presence of fumed silica catalyst in aqueous solvent, the production of ethylene glycol decreases with increasing pH from 7.6 to 9.3, while the conversion of ethylene glycol to glyceraldehyde increases. As a result, the amount of ethylene glycol in the reaction mixture decreases at alkaline pHs compared to neutral pHs; in contrast, the selectivity of the reaction to the production of glyceraldehyde increases. Changing the solvent from water to methanol also reduces production efficiency. Therefore, it indicates the low selectivity of the methanolic medium compared to the aqueous medium to produce two products, 1,2-ethanediol and 2,3-dihydroxypropanal. | ||
کلیدواژهها [English] | ||
Origin of life, Formose reaction, Aldol condensation, Methanol solvent, Selectivity, Fumed silica, polyol | ||
مراجع | ||
[1] A. Pross, What is Life? How Chemistry Becomes Biology, Oxford University Press, Oxford (2012) 82.
[2] J.N. Jensen, A Problem-Solving Approach to Aquatic Chemistry, 1st ed., John Wiley & Sons Inc, Hoboken, NJ, (2003) 8.
[3] M.A. Siraj and M.A.K. Tayab, Water in Islam, In Water and Scriptures, K.V. Raju and S. Manasi (eds), Springer, Heidelberg, (2017) 21.
[4] D.W. Deamer and J.P. Guruswamy-Thangavelu, Chemistry and Physics of Primitive Membranes, In Prebiotic Chemistry from Simple Amphiphiles to Protocell Models, P. Walde (ed), Springer, Heidelberg, (2005) 2.
[5] J.B. Lambert and S.A. Guruswamy-Thangavelu, The Role of Silicates in the Synthesis of Sugars Under Prebiotic Conditions, In Bio-Inspired Silicon-Based Materials, P.M. Zelisko (ed), Springer, Heidelberg, (2014) 14.
[6] O. Pestunova, A. Simonov, V. Snytnikov, V. Stoyanovsky and V. Parmon, Adv. Space Res. 36 (2005) 214.
[7] K. Niaza, F. Khanb and M. Ajmal Shah, Analysis of Carbohydrates (Monosaccharides, Polysaccharides), In Recent Advances in Natural Products Analysis, 1st ed., A. Sanches Silva, F. Seyed Nabavi, M. Saeedi and M. Seyed Nabavi (eds), Elsevier, Amsterdam, (2020) 621.
[8] J.B. Lambert, S.A. Guruswamy-Thangavelu and K. Ma, Science. 327 (2010) 984.
[9] A.L. Weber, J. Mol. Evol. 35 (1992) 1.
[10] Z. Iqbal and S. Novalin, Curr. Org. Chem. 16 (2012) 769.
[11] A.K. Eckhardt, R.C. Wende and P.R. Schreiner, J. Am. Chem. Soc. 140 (2018) 12333.
[12] M. Masaoka, T. Michitaka and A. Hashidzume, Beilstein J. Org. Chem. 12 (2016) 2663.
[13] N.W. Gabel and C. Ponnamperuma, Space Life Sci. 1 (1968) 64.
[14] P.M. Gardner, K. Winzer and B.J. Davis, Nat. Chem. 1 (2009) 377.
[15] A. Omran, C. Menor-Salvan, G. Springsteen and M. Pasek, Life. 10 (2020) 125.
[16] T. Mizuro and A.H. Weiss, Adv. Carbohydr. Chem. Biochem. 29 (1974) 173.
[17] A. Butlerow, Justus Liebigs Ann. Chem. 120 (1961) 295.
[18] J. Castells, F. Lopez-Calahorra and F. Geijo, Carbohydr. Res. 116 (1983) 197.
[19] F. Dinger and U. Platt, Front. Sustain. Food Syst. 4 (2020) 905.
[20] T.I. Khomenko, M.M. Sakharov and O.A. Golovina, Russ Chem. rev. 49 (1980) 570.
[21] A.N. Simonov, O.P. Pestunova, L.C. Matvienko, V.N. Snytnikov, O.A. Snytnikova, Y.B. Tsentalovich and V.N. Parmon, Adv. Space Res. 40 (2007) 1634.
[22] I.V. Delidovich, A.N. Simonov, O.P. Taran and V.N. Parmon, ChemSusChem. 7 (2014) 1833.
[23] Y. Shigemasa, T. Taji and C. Sakazawa, J. Catal. 58 (1979) 296.
[24] Y. Shigemasa, S. Akagi, E. Waki and R. Nakashima, J. Catal. 69 (1981) 58.
[25] M. Huč, G. Žakelj and T. Urbič, Acta Chim Slov. 62 (2015) 524.
[26] G. Ebrahimzadeh Rajaei and A. Vojood, Iran. J. Chem. Chem. Eng. (IJCCE). 38 (2019) 91.
[27] S. Lamour, S. Pallmann, M. Haas and O. Trapp, Life. 9 (2019) 52.
[28] G Ebrahimzadeh-Rajaei and M Yahyavi Ghasem Gheshlaghi, Studying the Acidic Dissociation Constants of Cytosine in Bbinary of Methanol and Water. 3rd National Conference & 1rd International Conference on Applied Researches in Chemistry and Chemical Engineering, 2016 Apr 3, Iran. Tehran: Malek Ashtar University of Technology.
[29] A.P. Gregory and R.N. Clarke, Meas. Sci. Technol. 16 (2005) 1506.
[30] F. Gharib, A. Farajtabar, A. Masteri Farahani and F. Bahmani, J. Chem. Eng. Data. 55 (2010) 327.
[31] F. Gharib, M. Jabbari, A. Farajtabar, and A. Shamel, J. Chem. Eng. Data. 53 (2008) 1772.
[32] F. Gharib and F. Sadeghi, Appl. Organometal. Chem. 21 (2007) 218.
[33] J.N. Jensen, Fundamentals of Analytical Chemistry, 9th ed., Cengage Learning, Boston, (2003) 197.
[34] M. Mohsen-Nia, H. Amiri and B. Jazi, J. Solution Chem. 391 (2010) 701.
[35] J.C. Soetens and P.A. Bopp, J. Phys. Chem. B. 119 (2015) 8593.
[36] T. Michitaka, T. Imai and A. Hashidzume, Polymers. 9 (2017) 549.
[37] Y. Shigemasa, M. Kawahara, C. Sakazawa, R. Nakashima and T. Matsuura, J. Catal. 62 (1980) 701.
[38] T. Matsumoto and S. Inoue, J. Chem. Soc., Perkin Trans. 1. (1982) 1975.
[39] A.A. Morozov, React. Kinet., Mech. Catal. 46 (1992) 71.
[40] T. Imai, T. Michitaka and A. Hashidzume, Beilstein J. Org. Chem. 12 (2016) 2668.
[41] S.R. Azimi Pirsaraei, H. Asilian Mahabadi, A. Jonidi Jafari, Z. Farahmandkia and J. Taran, J. of Applied Chemistry. 9 (2015) 21, in Persian.
[42] A.D. Mckee, M. Solano, A. Saydjari, C.J. Bennett, N.V. Hud and T.M. Orlando, Chem Bio Chem. 19 (2018) 1913.
[43] F. Khanmohammadi, S.N. Azizi and B.M. Razavi Zadeh, J. of Applied Chemistry. 16 (2021) 165, in Persian.
[44] A. Pérez-Villaa, F. Pietruccia and A.M. Saitta, Phys. Life Rev. 34-35 (2020) 105.
[45] A. Vojood, M. Khodadadi-Moghaddam, G. Ebrahimzadeh-Rajaei, S. Mohajeri and A. Shamel, Chem Methodol. 5 (2021) 422.
[46] K.M. Li, J.G. Jiang, S.C. Tian, X.J. Chen and F. Yan, J. Phys. Chem. C. 118 (2014) 2454.
[47] V. Jafari and A. Allahverdi, J. Ultrafine Grained Nanostruct. Mater .47 (2014) 105.
[48] H.J. Kim, A. Ricardo, H.I. Illangkoon, M.J. Kim, M.A. Carrigan, F. Frye and S.A. Benner, J Am Chem Soc. 133 (2011) 9457.
[49] M. Mostakhdemin Hosseini, E. Kolvari, M. Vahidian and R. Bagheri, J. of Applied Chemistry. 11 (2016) 109.
[50] S. Nitta, Y. Furukawa and T. Kakegawa, Orig Life Evol Biosph. 46 (2016) 189.
[51] Y. Furukawa, A. Nitta, C. Abe, T. Kakegawa, H.J. Kim and S.A. Benner, Jpn Geosci Union. 6 (2018) 1.
[52] A.S. Benner, H.J. Kim and M.A. Carrigan, Acc Chem Res. 45 (2012) 2025. | ||
آمار تعداد مشاهده مقاله: 779 تعداد دریافت فایل اصل مقاله: 473 |