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Abstract

The researchers faced challenges in the outlier detection process, mainly when deals with the high
dimensional dataset; to handle this problem, we use The principal component analysis. Outlier de-
tection or anomaly detection, with local density-based methods, compares the density of observation
with the surrounding local density neighbors. We apply the outlier score as a measure of comparison.
In this research, we choose different density estimation functions and calculated different distances.
Weighted kernel density estimation with adaptive bandwidth for multivariate kernel density estima-
tion(Gaussian) considered the K NN and RNN. KN N is considered too for the Epanenchnikov kernel
density estimation. Lastly, we estimate the LOF as a base method in detecting outliers. Extensive
experiments on a synthetic dataset have shown that RKDOS and EPA are more efficient than LOF
using the precision evaluation criterion.
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1. Introduction

the most recent research on outlier detection methods which based on a probability density estimate
(pdf) that follow up the structure of local outlier factor(LOF).

There are many definitions for outliers or anomalies. Grubbs defines an outlier as an outlying
observation that appears to deviate from other members of the sample in which occurs [§]. Hawkins
defines an outlier as an object that differs so much from other observations that it raises the possibility
that it was caused by a different mechanism [9].
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For the past decades, the outlier detection methods varied from: univariate to multivariate, unsu-
pervised to supervised, parametric to nonparametric, global to local approach.

The classification of outlier detection methods into several types [16]: the first methods model-based
or distribution-based, the second methods proximity-based (the approach based on distance and that
based on density), the third methods Clustering-based.

Breunig et al. presented a density estimation method based on the local outlier factor (LOF). This
method explains that it is more significant to give each object a grade of being an outlier. This
grade named (LOF) means how much the observation is isolated locally from other surrounding
neighborhoods [1].

Papadimitriou, S. et al. propose a method for detecting outlier and group of outliers called Local
Correlation Integral for finding outliers in multiple dimensional data set [13]

Shekhar, S. et al. introduced a method for detecting spatial outliers in traffic data for multidimen-
sional datasets. Defined the test and analyze the statistical model of this approach and provide a
good algorithm and the cost model to detect spatial outlier [15].

Fan, H. et al. give a modern solution and data mining algorithm for nonparametric outlier detection.
The outlier algorithm results take into account the local and global objects of the dataset. Both syn-
thetic and real-life on large building contractor datasets are applied on the algorithm, and compared
with another previous mining algorithm, this method proved effective and superior [4].

Latecki, L. J. et al. proposed a nonparametric algorithm using the variable kernel density estimation
function to detect outliers locally. The local density of each object is compared with the local density
of its surrounding neighbours. The algorithm was compared with the local outlier factor (LOF) and
local correlation integral (LOCI) and proved efficiency and effectiveness [11]

Gao, J. et al. give a Multi-Scale Local Kernel Regression in a classic nonparametric regression by
using the primary local density method in the local regression estimator of a kernel in neighborhoods
that multi-scaled in detection outliers [6]

The LOF is not accurate enough when the data set is big. Gao, J. et al. present the density estimate
of the variable kernel and the density estimation of the weighted neighborhood. They use various k
parameters to improve robustness and the LOF framework. Besides, they propose another method of
detection based on kernel density function called Volcano kernel, real and synthetic data set explains
that these methods are suitable for a good detection performance, and also work in large data sets
[7.

Fink, O. et al. detected outliers using approach based on multivariate kernel density estimation, The
other approach is an unsupervised algorithm based on artificial neural gas named the growing neural
gas (GNG). These two methods are applied in the railway field of turnout systems. Both approaches
proved their appropriateness in detecting novel patterns. Moreover, the GNG was most suitable for
input data dimensionality and online learning [5].

Tang, B. and He, H. introduce a density-based measure for local outliers detection, named relative
density outlier detection. This method by which the object is estimated locally with local KDE by
using the extended nearest neighbours (k nearest neighbours, reverse nearest neighbours, and shared
nearest neighbours) to estimate the density distribution of an object[16].

Zhang, L. et al. presented a nonlinear system to measure outlier detection. They used the Gaussian
kernel and adoptive kernel bandwidth for better smoothness and improved the distinguish power.
The method put an outlier degree defined as a proportional measure for each sample to show the
deviation for each sample from its neighbors in the local density[19].

Wahid, A. and Rao, A. C. S. propose an approach to detect outliers based on density estimation
at the location of an object. In this method, the researchers use weighted kernel density estimation
with an adoptive kernel width by the extended nearest neighbours using both K NN and RNN to
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estimate the density of an object]17].
This paper applies LOF, WKDE for The Gaussian kernel and Epanchinikov kernel once for the
Euclidian distance and once for the Chebyshev distance.

2. Methods

2.1. LOF

LOF [I] is an algorithm in data mining and belongs to density-based approaches. This method is
presented by Breunig et al., which is supposed the density around regular observation is the same as
the density around its neighbours. The density surrounding an outlier observation is exceptionally
different from the density around its neighbours. It’s a way in multidimensional datasets of finding
outliers. Local in outlier factor means each point taking into account and restricted the neighbor-
hood of that point only. The presented LOF algorithm attempts to find the outlier data points by
measuring the local deviation of the given object while taking into account all other neighbors. In
this algorithm, the outlier-score will tell us whether the observation is an outlier or not.

Let’s have the data set D={c¢, ¢, ..., ¢, }, where ¢1,c2 and ¢z are observations in the dataset. This
method uses the math abbreviation d(c;, ¢2) which implying the distance between objects ¢; and c,.

e The k-distance of object ¢y

Let’s k be a positive integer. it represents the k-distance between two observations ¢y, co € D
known as k-distance (c;), and it is denoted as the distance d(c;, ¢2) such that :

For at least k observations ¢, ¢ D\ {c1} under the condition d(c;, ¢5)< d(cy, o).
For at most k-1 observations ¢, € D\ {c;} under the condition d(cy, ¢})< d(c1,ca) .

The nearest distance between observation ¢; and its k-neighbors, if we have K NN to object
c1 then the k-distance of ¢; will equal to the maximum distance among all pairs of observation
C1.

e k-distance neighborhood of an observation ¢

set k-distance of an observation c;, the k-distance neighborhood of an observation ¢, consist of
each observation whose distance from c¢; is not larger than k-distance:

Ni—distance(er) (€1) = Ni(c1) = {cs € DN\ {a1}| d(c1,c3) < k — distance(ci)} (2.1)
These observations c3 is the k-nearest neighbor of ¢;.

e reachability distance of an object cywith respect to object co

For any natural number k, The reachability distance of an observation ¢;with respect to obser-
vation ¢s is determined as:

reach — disty, (c1, c2) = mazx {k — distance (c3) ,d (¢1,¢2)} (2.2)
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Figure 1: to clarify the concept of reachability distance with k =5

When ¢ faraway from observation ¢y (c12 in ﬁgur the reach- dist. between them is their actual
distance, but if the two observations are close (c; in figure , the actual distance is equal to the k-
distance of ¢, .So we do that to significantly reduce the statistical fluctuation for the distance d(cy, ¢z)
to all the ¢;’s that near to ¢y. Parameter k is the locality parameter it takes control of the smoothing
effect. The greater the value of k£, The closer the reachability distances between observations in the
same neighborhood.

e local reachability density of an object ¢,

For the observation ¢;we can calculate the local reach- dist. as:

1
cheNk(c1) (cl’ 02)
[ Nig(c1)]

The average reachability distance of observation c¢;depend on K NN for observation ¢y, the local
reachability density of an observation cy, is the inverse of the average reachability distance.

Lrdy (¢p) = (2.3)

(

If we have an observation whose neighbors are entirely distant from it. Then the distance of
the observation from their neighbors would become larger, which means the average distance
would be higher so that when we divide one by the amount of the average distance, we gain a
small density.

That reasonable cause all the observation neighbors are entirely distant from it, and then we
get this observation has low density.

Furthermore, the close the neighbors are to the observation (the small the distance between
the neighbors and the observation), the object’s density will increase.
e local outlier factor of an observation ¢;

LOF of an observation ¢; is determined as:
Irdy (c2)
ZCQENk(Cl) lrdg(c1)

Lofk (Cl) = ‘Nk(cl)‘

(2.4)
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of the local reachability density of c;is represented by Lof which it is an average ratio and its
nearest neighbors, Lof is good way to measure the degree to which c¢;is an outlier. The smaller
the local reachability density of the ¢; is the larger local reachability density of the ¢; nearest
neighbors are, and the larger Lof value is.

2.2. FEstimation Of Weighted Kernel Density With Adaptive Band Width

This local outlier detection method estimates weighted kernel density (WKD) with adaptive kernel
bandwidth [I7]. This method of estimation takes into account the observation neighborhoods instead
of taking all the observations in the dataset. This approach takes into account two kinds of neighbors
(K-nearest neighbor (K NN), reverse nearest neighbor (RNN)). This method calculates the Average
Density Fluctuation (ADF) to measure the fluctuation of a data point with the rest of the objects
in the influence set then evaluate the density for each observation by using the Relative kernel
density-based outlier score (RDOS).

Let D be the given data set D = {c1,¢s,c3,¢4...,¢,} where n is the sample size from a given data
set or the data space from the euclidian distance

The presented approach calculates the degree of deviation or outlierness score locality for the data
points. In order to calculate the local outline measurement, the method first performs a density
estimate.

In estimating the density of the data points, we depend on the given data set, which uses an approach
with nonparametric weight for KDE with adaptive bandwidth. In this approach, the density estimate
is given by adapting the kernel estimator, where Each observation is given a sample weight.

The adaptive bandwidth for KDE depends on the random sample ¢y, ¢o,¢3,¢4 ..., ¢p

Where ¢; € RY for i=1,2,3,4,...,n with weight wy,ws,...,w, , which have been normalized to
equal to 1(3_7_, w; = 1) ,and the weigted KDE is:

pe) = i ( ,;C") (2.5)

Jj=1

Where K(x) is denoted as the kernel function, The smoothness of the estimator is controlled by the
bandwidth h; the smoothing parameter, w; is performing the observation’s weight, which the formula
can represent as :

a—>Y " . Euclidean(x;, x

a

Where [a] is known as the highest Euclidean dist. between the points and the point that applied
normalization [} 7, Euclidean(v;, ;)] is denoted as the sum of Euclidean dist. for the point z; of
the j** Gaussian to the point x;, including the outliers.

The kernel function that commonly used is many, but we will use Gaussian and Epanenchnikov[3].
The smoothing kernel is necessary to obtain smoothness in density estimation. The characteristic of
smoothing kernel function is:

Kw)du=1, [uK(u)du=0, [ v’K(u)du >0 (2.7)
/ / /

The Gaussian kernel and Epanchinikov kernel the most widely used function in outlier detection

¢ — ¢ 1 lei = e511”
K J = = I 2.
) @ry " < 2% h? (28)

Gaussian
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d
K(Ci — Cj) — (%) 1— Hcl — cj||2 (2'9)
hj FEpanechnikov 4 hJQ

Where ||¢; — ¢;]| is the Euclidean distance between the points ¢; and ¢; ,d: is dimensions, h: is kernel
bandwidth.

Chebyshev distance is used to calculate the maximum distance[2] between any two points ¢; and ¢y
or any two coordinates ¢; and c¢;. It is also referred to as the chessboard distance since chess is a
game of strategy, where a king’s minimal number of moves from one square on the chessboard to
another is the Chebyshev distance between squares centres.

A
Chebyshev Distance

< >
Cj .
Euclidean
Distance

®
€

>

Figure 2: the difference between the Euclidean and Chebyshev distances.

The calculation of Chebyshev distance, if we have two vectors with N-dimensional points ¢; =
{c11,¢12, - ,ean} and ¢3 = {eo1, €29, -+, can } the Chebyshev distance can be determined as :

d= max(|cu - 021| ) |C12 - C22| ) |01N - C2N|) (2-10)
If we have two-point ¢; = {4, 5} and ¢y = {3, 8} so the distance calculation would be equal to:
d=max(|4—3|, |5—8|) =max(1,3)=3

2.3.  Estimation of density at the location

Estimation of density at the location ¢;[17] It is determined by considering its neighbors as kernels
instead of the data point in the data set. Because if we first estimate the density for all the data
points, we may lose the local density differences, and we will be unsuccessful in identifying the local
outliers. Second, The approach for detecting outliers determines the outlying degree for all data
points in the data sets will lead to high computation complexity, especially in O(n?) where n is the
data set’s total number of samples.

For accurate density estimation in the neighborhood, this approach applies the influence set (I_Set),
the set of K NN, and the RNN to a data point. Influential observations that influence ¢ are included
in the influence set for an observation c¢. more precisely estimation of density in ¢’s neighborhood
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with regards to these objects. In recent research, the RNN has been present for best local distribution
data information and applied to detect outliers and classification [10][3].

If NN;(¢;) is the j™ nearest neighbors of the observation ¢; , the set of K nearest neighbor can be
written as:

KNN (¢;)={NN, (¢;), NNy (ci) , .. NNg ()} (2.11)

Let we have two data points, ¢ and z; taken from the collection of a data set, we can define K NN
by using the Euclidean distance and calculating the distance between ¢ and x; as d(c, zi) from all
the points ¢ =1,2,3,...,n:

KNN = {xi: d(c,xi)<dy (2.12)

Where dj, is the minimum distance from ¢ to z;
The RNNs of the observation ¢;, are these points that have ¢; is considered one of their K-nearest
neighbors, or we say that the observation c is consider one of the RNNs of ¢; if

So that the RNN could be equal to zero or one or more data points.
Then the kernel function in (2.5)) would be equivalent to kernel estimation at the location ¢; :

ple)=> %K(%) (2.14)

cel _set(c;) €

from equation (2.14)), the final formula of density estimation at the location of ¢; is:

v HCi—CHQ
Pe= 3 e ) 215)
cdét:(ci) hg * (277)% Q*hg

where the |I — set (¢;)| Defined as the influence set, which is a number of data points.

2.4. The computation of the influence set

For each observation ce D[I7], We get at least k results from the N Ng search, while reverse nearest
neighbors can be equal to zero, one or more observations. By merging NN(c) and RN Ny (c) as
k-influence space for ¢ and determined as I_Set;(c),We will generate a space of local neighborhood
around c in estimating the density distribution.

Figure [3| explain the RNN and how it obtained the data points [c, ¢1, ¢2, ¢3, csand, cs] , Where k =
4. NNk (c) = { c1,¢9,¢3,¢4}, NNk (¢1) = {¢,¢3,¢a,¢5}, NN (c2) = {c,c1,¢3,¢4}, NNk (c3) =
{c,c1,¢4,¢5}, NNk (cq) = {c,c1,c9,¢c5} and NNk (ps) = {c,c1,¢3,¢4}.

While KNN searches for the points ¢, ¢, ca,c3,cq,and c5, the RNNg (¢) = { ¢1,¢a,¢3,¢4, C5} 18
gradually structured. And in the same way RN Nk (c¢1) = {¢,ca,¢3,¢4,¢5}, RNNg (¢2) = {c, ¢4}
RN Nk (c3) = {c,c1,¢0,¢5} RNNg (c4) ={c,c1,¢2,¢3,¢5F and RN Nk (¢5) = {c1,¢3,¢4}.

We notice that:

NNk (¢) = {e,co,c3,¢c4 and RNNg(c) = {ci,c0,c3,cq, c5} will be equal to
I _Sety(c) ={ c1,¢a,c3, ¢4, 5} and similarly, we calculate I_Sety(cy), [_Sety(cs), I _Sety(cs), I _Sety(cy),
I _Sety(cs).
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Figure 3: the influence set K NN and RNN of ¢

2.5.  Calculation of Adaptive Width

In the density estimation at ¢; Location, We use the KDE to determine the density for ¢; at the
location by the criterion for outlier detection using the function of kernel smooth to perform the
smoothness. We use the adaptive kernel bandwidth to improve the power of differencing between
anomalies and regular data points.

In calculation KDE, the bandwidth parameter h of all data points is fixed. Therefore h optimum is
determined by the specific locations in the data space. Still, when using large width parameter h in
the low-density region could result in over-smoothing, while small h parameter can result in noise
estimates.

Adaptive kernel width will have two outcomes: the data points that are distant from others are the
more isolated, and there is a hazy difference between the regular data points. We shall employ the
notion of adaptive kernel width shown in [19].

The estimated kernel adaptive bandwidth is equal to:

hi = [dk—mafe + dk_mm + 5 — dk (Cl)] (2.16)

Where
dy (¢;): indicates the average distance between one point and the K NN. Whereas

1
dy (¢;) =zt Z d(c;, ¢j)
jekNN(c;)
dk—maz : the biggest amount in the dataset {dy(¢;) |i=1,2,...,n}
dk—min: the smallest amount in the dataset {dx(c;) |i=1,2,...,n}

And a (a > 0): The smoothing effect is controlled by the scale factor.
0: a minimal positive numeric number that ensures that the kernel width does not equal zero.

2.6. RKDOS Method

following the evaluation of each object’s density, RKDOS is used to determine how different obser-
vation ¢’s density is from the surroundings, as it’s known [17]:

ZpeLSet(ci) ADF (C)

RKDOS, (¢;) =
k() = 2hF (c2) * | Tseren)]

(2.17)
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RKDOSy: is the average density fluctuation (ADF) of influence set observations divided by the
ADF of a test point ¢;, If RKDOSj/(c;) is considerably more than 1, the observation ¢; Is outside
the cluster density, indicating that it is an outlier. If RKDOSk(c;) equals or is less than 1, the
observation ¢; is surrounded by a dense population of neighbors. This proves that ¢; Observation is
not an anomaly.

We should mention that the average density fluctuation ADF can be determined as:

ADF (py) = 2 pen (P (’1]9\[)’ —p(p)) (2.18)

The RKDOS method uses K NN as an input graph to give a detailed description of RKDOS. KNN
is a directed graph in which every observation is a vertex that is linked to its nearest neighbors in
an outbound manner. In the K NN-G, the outward edge of a data point is k, and it has zero, one,
or more incoming edges. From the K NN-G, the KNN and RNN may be simply calculated. We
create an influence set (I_set) and describe a method for combining K NN with RNN. Then, based
on the densities of neighbors in I_set, compute the RKDOS for each observation.

In this research, we will use the principal component analysis PCA[12]. Its linear transformation
reduces the information and keeps it as a component, and the variance represents this information.
It’s also a mathematical style that transforms a set of correlated explanatory variables into a new
orthogonal set of uncorrelated variables named the principal component. The PCA employs the
variance-covariance matrix or the correlation matrix for the explanatory variables in this analysis.
The PCA is a linear combination of explanatory variables ¢y, cs, ..., ¢, determined by eigen vectors
a; which is related to eigen values );, the eigen value came from var-cov matrix or correlation matrix.
We should mention that the number of principal components is equal to the number of explanatory
variables. The mathematical expression is:

PCZ-:ai10i+ai20i+---+ain0i, 1= 1,2,...,% (219)
PC, ai 21 ct Apl Ch
PC, _ CL‘12 a?? T a'”2 q2 — A'C (2.20)
Pcn an1 an2 st Qpp Cn

Each column in matrix A represented eigen vector that corresponding to the eigen value and corre-
lated to it.

The first PC is a linear combination of explanatory variables with the coefficient of eigen vector
corresponding to the first eigen value \irepresent the biggest eigen value. The eigen values will be

represented as:
M= > >\, (2.21)

Altho the number of PC is equal to the explanatory variables, but we will use the dimension reduction
we will eliminate the weak PC specially the variance of eigen value that less than 1.

In the calculation steps; we will use a variance-covariance matrix if we have the same measuring
units and a correlation matrix if we have different measuring units, finding the first chara vector a,
which its equal to the first eigen value A;, the element of @, should satisfy :

aia, =1 (2.22)
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The formula of the first principle component is :
PC, = a1Cy + a12Cy + - - - + a1,C,, (2.23)
The second:
PCy = a91C + a92Cy + - - - + a2, C,, (2.24)
The points of the characteristic vector are chosen under the two constrain:
asay =1, dya,=0 (2.25)

Where PC & PC5 under this condition are orthogonal.

the criterion for evaluating the performance of outlier approaches in this paper is Precision(P)[18],
it is defined as the ratio that divided the number of correct outliers by the total number of points
that filtered to be outliers:

Precz’sion? (2.26)

m=number of correct outliers that found in the set, t=total number of points that filtered to be
outliers

3. Experiment Analysis and Result

The dataset is about three groups of random numbers naturally generated according to the normal
distribution of mean= 0 and variance 0.5. These groups are represented in three different sizes (
N=50, N=100, N= 150). Three explanatory variables were generated (P= 3, P=5, P=7). The
nearest neighbours are in the range (2 to 10). And the number of iterations for each dataset and
explanatory variables is (itr =100) according to Tabel [l Several experiments were conducted.

Table 1: The order of initial variables generated according to the size of the variables and the sizes
of the samples

Explanatory variables | Sizes of samples | nearest neighborhood

3 50 | 100 | 150 2.3,4,5,6,7,8,9,10
5 50 | 100 | 150 2.3,4,5,6,7,8,9,10
7 50 | 100 | 150 2.3,4,5,6,7,8,9,10

LOF, RKDOS and EPA are the methods applied to the simulated data set of size (N=50) of three
explanatory variables (3, 5, 7) with Euclidian distance and Chebyshev distance, as shown in Table
and Tabel 2| as shown below where the average number of outliers in the Chebyshev distance is larger
than in Euclidian. The figures [4] [6] [§] [F, [7] and [J] explain the difference between these two distances
in the three methods.

The same methods applied for sample size (N=100) and the three variables (3, 5, 7). Table [4]
show that (RKDOS, EPA) is significantly larger in the average number of outliers than the same
methods in the Echiedian distance while the LOF is slightly decreasing in the Chebyshev distance.
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The figures and illustrate the increase and the decrease in (LOF, RKDOS and
EPA).

For sample size (150), the RKDOS method significantly increased when calculating the average
number of outliers in the Chebyshev distance, especially when the number of variables was (3, 5).
Slightly increases in the average number of outliers when we use the Chebyshev distance for The EPA
method but minimal fluctuation for the LOF method. The performance of Euclidian and Chebyshev

distance is in the Figures , , and .

Table 2: The results of 50 observations for the methods with 100 replicate for Euclidean distance

average mumber of outliers
K 3 5 7
LOF | RKDOS| EPA LOF | RKDOS EPA LOF REDOS|  EPA

2 15 21 25 15 18 27 15 17 28
3 16 14 21 16 14 24 16 11 25
4 17 13 17 16 12 22 16 9 22
5 17 11 17 16 12 21 16 11 19
6 16 10 16 16 11 20 16 9 20
7 16 11 16 16 10 19 16 11 19
8 16 11 16 15 12 18 15 10 19
9 15 11 15 15 10 17 15 9 18
10 14 11 15 15 11 17 15 9 17

Table 3: The results of 50 observations for the methods with 100 replicate for Chebyshev distance

average munber of outliers
K 3 5 7
LOF | RKDOS | EPA LOF | RKDOS EPA LOF RKDOS| EPA

2 15 26 24 16 20 27 16 19 26
3 16 15 22 16 11 24 17 9 25
4 17 12 20 17 11 23 17 11 23
5 16 9 19 16 11 23 17 10 21
6 16 13 18 16 11 22 16 9 20
7 16 11 18 15 10 21 16 10 19
8 16 12 17 15 8 20 16 10 19
9 15 10 16 14 10 19 15 11 19
10 15 11 16 14 9 18 15 10 18
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Table 4: The results of 100 observations for the methods with 100 replicate for Euclidean distance

Table 5: The results of 100 observations for the methods with 100 replicate for Chebyshev distance

Table 6: The results of 150 observations for the methods with 100 replicate for Euclidean distance

average number of outliers
" 3 5 7
LOF REDOS | EPA LOF | RKDOS EPA LOF | RKDOS EPA

2 35 40 43 32 34 46 31 37 48
3 37 35 28 35 31 36 35 26 34
4 37 23 24 35 23 31 35 22 30
5 37 23 23 35 21 29 34 18 29
6 36 22 23 35 16 27 34 19 29
7 EE] 18 24 34 17 26 33 19 27
8 34 21 24 34 22 26 32 14 27
9 33 21 24 33 22 25 31 17 26
10 32 20 23 32 22 25 30 19 26

average number of outliers
3 5 7
K LOF | RKDOS | EPA LOF | RKDOS EPA LOF REKDOS EPA
2 33 52 40 32 41 45 31 39 45
3 35 28 30 34 33 34 34 26 34
4 36 25 26 36 22 31 35 19 32
5 38 22 24 36 20 29 35 18 32
6 36 23 24 35 20 29 35 18 31
7 35 20 24 33 19 29 35 20 30
8 33 21 24 32 19 28 34 19 29
9 33 21 24 31 17 28 34 16 28
10 32 19 24 32 17 27 32 20 27

average number of owtliers
K 3 5 7
LOF | RKDOS| EPA LOF [ RKDOS | EPA LOF RKDOS | EPA
2 49 52 46 49 58 56 50 59 58
3 34 51 29 34 47 39 33 41 43
4 55 45 25 55 36 34 57 35 36
3 54 39 24 35 29 30 36 335 34
6 54 33 23 35 34 30 34 26 34
7 54 29 22 54 28 30 53 29 35
8 52 32 23 52 30 30 51 23 34
9 52 28 23 51 30 30 50 24 33
10 49 27 23 51 27 30 49 29 33
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Table 7: The results of 150 observations for the methods with 100 replicate for Chebyshev distance

average number of outliers
K 3 5 7
LOF | RKDOS | EPA LOF | REKDOS EPA LOF REKDOS| EPA

2 53 76 49 51 85 55 49 59 62

3 56 45 33 55 44 35 54 44 40

4 57 40 28 56 40 34 55 35 36

5 57 33 26 55 35 32 55 34 36

6 55 40 25 55 32 32 55 24 35

7 54 28 25 56 32 33 54 29 36

8 54 31 25 53 27 34 52 22 36

9 52 31 26 54 32 34 51 22 36

10 50 35 27 52 27 35 S0 26 35
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Figure 4: sample size 50 three variables with Figure 5: sample size 50 three variables with
Euclidian distance for LOF, RKDOS, EPA

Chebyshev distance for LOF, RKDOS, EPA
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Figure 10: sample size 100 three variables with Figure 11: sample size 100 three variables with

Euclidian distance for LOF, RKDOS, EPA
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Figure 13: sample size 100 five variables with
Chebyshev distance for LOF, RKDOS, EPA
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Figure 14: sample size 100 seven variables with Figure 15: sample size 100 seven variables with

Euclidian distance for LOF, RKDOS, EPA Chebyshev distance for LOF, RKDOS, EPA
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Figure 16: sample size 150 three variables with Figure 17: sample size 150 three variables with
Euclidian distance for LOF, RKDOS, EPA Chebyshev distance for LOF, RKDOS, EPA
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Figure 18: sample size 150 five variables with  Figure 19: sample size 150 five variables with
Euclidian distance for LOF, RKDOS, EPA Chebyshev distance for LOF, RKDOS, EPA
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Figure 20: sample size 150 seven variables with Figure 21: sample size 150 seven variables with
Euclidian distance for LOF, RKDOS, EPA Chebyshev distance for LOF, RKDOS, EPA

Table 8: The precision ratio of three sample sizes (50, 100 and 150) and with £ from (2 to 10).

testing the performans of outliers by the precision ratio on sample size 50 for the testing the performans ofoutliersby the precision ratio on sample size 50 for the
Euclidean distance Chebyshev distance
3 5 7 . 3 b 7
¥ LOF |REDOS| EPA LOF |RKDQS| EPA LOF | RKDO §| EPA * LOF | RKDOS | EPA LOF | RKDOS EPA LOF REDOS| EPA
2 054 | 0.7 089 | 054 | 064 09 | 054 | 0.6l 100 2 0.54 093 0.86 0.57 0.71 0.96 057 0.63 0.93
3 057 | 050 | 075 | 057 | 0% 086 | 057 | 039 | 089 3 057 054 0.79 0.57 039 086 061 0.32 0.89
4 061 | 04 | o061 | 057 | 043 079 | 057 | 032 0.79 i 061 043 071 0.61 039 082 061 0.3 0.82
5 061 0.3 0.61 057 0.43 0.75 0.57 039 0.68 b 037 032 0.68 0.57 0.39 0.82 0.61 0.36 0.73
[] 057 | 03 | 057 | 057 | 039 071 | 057 | 032 0.71 6 0.57 0.46 0.64 0.57 039 0.79 057 0.32 0.71
1 057 | 03 | o057 | 057 | 03 068 | 057 | 039 | 068 7 0.57 0.39 0.64 0.54 0.36 0.75 057 0.36 0.68
§ 057 0.39 0.57 054 0.43 0.64 054 0.38 0.68 8 0.57 043 0.61 0.54 029 0.71 0.57 0.36 0.68
9 0.54 0.38 054 054 0.3 061 054 0.32 084 9 034 0.36 0.57 0.30 0.36 0.68 0.54 0.39 0.68
1 050 | 039 [ o054 | 054 | 03 | o061 | 054 | 032 | osl 10 | os4 [ 039 | os7 [ oso | o3 | o6s | oss | 036 | ose
testing the per formans of outliers by the precision ratio on sample size 100 for the testing the performans of outliers by the precision ratio on sample size 100 for the
Euclidean distance Chebyshev distance
3 5 7 3 5 7
k LOF |RKDOS| EPA LOF | RKDOS| EPA LOF |RKDOS| EPA K LOF | REDOS | EPA LOF | RKDOS EPA LOF REDOS| EPA
2 067 | o077 083 | 082 | 085 088 | 050 | 071 0.52 2 063 1.00 0.77 0.62 0.79 0.87 0.60 0.75 0.87
3 071 | 0.8 054 | 087 | 080 069 | 067 | 050 | 085 3 067 0.54 0.58 0.65 0.63 0.65 0.65 0.50 0.65
4 071 | 0.4 046 | 067 | 0.4 060 | 067 | 042 058 4 069 0.48 0.50 0.69 0.42 0.60 0.67 037 0.62
5 071 | 0.4 044 | 067 | 040 0s6 | 065 | 035 | 056 5 073 0.42 0.46 0.69 0.38 0.5 0.67 035 0.62
[] 069 | 042 044 | 067 | 031 052 | 065 | 037 | 056 6 069 0.44 0.46 0.67 0.38 0.5 0.67 035 0.60
1 067 | 0.35 046 | 065 | 0.3 050 | 063 | 037 | 052 7 067 0.38 0.46 0.63 0.37 0.56 0.67 0.38 0.58
§ 085 0.40 046 085 0.42 0.50 0.62 0.27 0.52 § 063 0.40 0.46 0.62 0.37 0.54 0.65 037 0.56
9 063 | 04 | 04 | 063 | 0# 048 | 060 | 033 | 050 B 063 040 0.46 060 | 033 0.54 0.65 031 0.54
10 062 | 038 | 044 | 062 | 042 | 048 | 058 | 037 | 050 10 062 | 037 0.46 062 | 033 | 082 0.62 0.38 052
testing the performansof outliersby the precision ratio on sample size 150 for the testing the performans of outliers by the precis on ratio on sample size 150 for the
Eudidean distance Chebyshev distance
K 3 5 7 ] 3 3 7
LOF [RKDOS| EPA | LOF |RKDOS| EPA | LOF | RKDO§ EPA | K 7o TrnosT e | LoF |miDos| @A | LoF | RKDos| &2a
2 058 | 061 054 0.58 068 066 | 059 | 069 0.68 2 0.62 0.80 058 0.60 100 065 0.58 0.60 0.73
3 064 0.60 034 0.64 0355 0.46 065 048 051 3 0.66 053 030 065 03 041 064 0.5 047
4 (.65 053 | 029 0.65 042 040 | 067 | 041 042 4 067 047 033 0.66 047 040 0.65 0.41 042
5] 064 | 046 | 028 | 065 | 034 | 035 | 066 | 041 | 040 5 | o67 | 03 [ o031 [ 06 | o4 | 038 | 06 | 040 | 042
6 | 064 | 039 | 027 | 065 | 040 | 035 | 064 | 031 | 040 | 6 [ 065 [ 047 | 020 | 065 | 038 [ 038 [ 06 | 028 | 041
7 0.64 0.34 026 0.64 033 0.35 062 0.34 041 7 0.64 0.33 029 (.66 0.38 039 0.64 UF‘-I 042
§ 0.61 0.38 027 0.61 0.35 0.35 0.60 0.27 040 3 0.64 0.36 0.29 0.62 0.3 040 0.61 0.6 042
9 061 | 033 | 027 | 060 | 035 | 035 | 059 | 028 | 039 9 0.61 0.36 031 0.64 0.38 040 0.60 0.26 042
10 058 0.32 027 0.60 032 0.35 058 0.34 039 10 059 041 032 0.61 032 041 0.59 0.31 041

Table [§) illustrates the precision ratio of the RKDOS experiments decreases when the number of
neighbors approaches 10. As well, the precision ratio of the EPA gradually decrease when the number
of neighbors increases. While the LOF experiments show fluctuations from increase to decrease, it’s
the least affected method in increasing the number of neighbors.
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4. Discussion

From the results above, We notice that when we increase the number of neighbors, it significantly
influences the number of outliers specially in the two methods of (RKDOS, EPA), but the method
of LOF was the least affected.

When we compare the result from the Euclidean distance and Chebyshev distance specially for the
(RKDOS, EPA) the average number of outliers in Chebyshev is larger than the average of outliers
in the Euclidian distance, but when the number of neighbors increases, the number of outliers will
decrease. Noticing that Local Outlier Factor(LOF) is less affected by the distance changes than
RKDOS and EPA.
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