
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,924 |
تعداد دریافت فایل اصل مقاله | 7,656,375 |
On the exact solutions and conservation laws of a generalized (1+2)-dimensional Jaulent-Miodek equation with a power law nonlinearity | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 143، دوره 13، شماره 1، خرداد 2022، صفحه 1721-1735 اصل مقاله (709.07 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2020.20589.2175 | ||
نویسندگان | ||
Sivenathi Mbusi1؛ Ben Muatjetjeja2، 3؛ A. R. Adem* 4 | ||
1Department of Mathematical Sciences North-West University Private Bag X 2046, Mmabatho 2735 Republic of South Africa | ||
2Department of Mathematical Sciences, North-West University Private Bag X 2046 Mmabatho 2735, Republic of South Africa | ||
3Department of Mathematics Faculty of Science, University of Botswana Private Bag 22, Gaborone, Botswana | ||
4Department of Mathematical Sciences, University of South Africa, UNISA 0003, Republic of South Africa | ||
تاریخ دریافت: 21 خرداد 1399، تاریخ بازنگری: 24 مرداد 1399، تاریخ پذیرش: 07 مهر 1399 | ||
چکیده | ||
In this paper, a generalized (1+2)-dimensional Jaulent-Miodek equation with a power law nonlinearity is examined, which arises in numerous problems in nonlinear science. The computed conservation laws reside in enormously crucial areas both at the foundations of nonlinear science such as biology, physics and other related areas. Exact solutions are acquired using the Lie symmetry method. In addition to exact solutions, we also present conservation laws. The arbitrary functions in the multipliers lead to infinitely many conservation laws. | ||
کلیدواژهها | ||
A generalized (1+2)-dimensional Jaulent-Miodek equation with a power law nonlinearity؛ Lie symmetry method؛ Conservation laws | ||
مراجع | ||
[1] A.R. Adem, Symbolic computation on exact solutions of a coupled Kadomtsev–Petviashvili equation: Lie symmetry analysis and extended tanh method, Comput. Math. Appl. 74 (2017) 1897–1902. [2] A.R Adem, On the solutions and conservation laws of a two-dimensional Korteweg de Vries model: Multiple exp-function method, J. Appl. Anal. 24 (2018) 27–33. [3] S.J. Chen, W.X. Ma and X. L¨u, Backlund transformation, exact solutions and interaction behaviour of the (3+1)- dimensional Hirota-Satsuma-Ito-like equation, Commun. Nonlinear Sci. Numerical Simul. 83 (2020) 105135. [4] Z. Du, B. Tian, H.P. Chai, Y. Sun and X.H. Zhao, Rogue waves for the coupled variable-coefficient fourth-order nonlinear Schrodinger equations in an inhomogeneous optical fiber, Chaos, Solitons Fract. 109 (2018) 90-–98. [5] X.X. Du, B. Tian, X.Y. Wu, H.M. Yin and C.R. Zhang, Lie group analysis, analytic solutions and conservation laws of the (3+ 1)-dimensional Zakharov-Kuznetsov-Burgers equation in a collisionless magnetized electron-positron-ion plasma, The European Phys. J. Plus 133 (2018) 378. [6] X. Guan, W. Liu, Q. Zhou and A. Biswas, Some lump solutions for a generalized (3+1)-dimensional KadomtsevPetviashvili equation, Appl. Math. Comput. 366 (2020) 124757. [7] X. Guan, W. Liu, Q. Zhou and A. Biswas, Darboux transformation and analytic solutions for a generalized super-NLS-mKdV equation, Nonlinear Dyn. 98 (2019) 1491–1500. [8] T.M Garrido, R.D.L Rosa, E. Recio and M.S Bruzon, Symmetries, solutions and conservation laws for the (2+1) filtration-absorption model, J. Math. Chem. 57 (2019) 1301–1313. [9] X.Y. Gao, Mathematical view with observational/experimental consideration on certain (2+1)-dimensional waves in the cosmic/laboratory dusty plasmas, Appl. Math. Lett. 91 (2019) 165–172. [10] Y.F. Hua, B.L. Guo, W.X. Ma and X. L¨u, Interaction behavior associated with a generalized (2 + 1)-dimensional Hirota bilinear equation for nonlinear waves, Appl. Math. Model. 74 (2019) 184–198. [11] X. Liu, W. Liu, H. Triki, Q. Zhou and A. Biswas, Periodic attenuating oscillation between soliton interactions for higher-order variable coefficient nonlinear Schrodinger equation, Nonlinear Dyn. 96 (2019) 801–809. [12] L. Liu, B. Tian, Y.Q. Yuan and Z. Du, Dark-bright solitons and semirational rogue waves for the coupled SasaSatsuma equations, Phys. Rev. E 97 (2018) 052217. [13] L. Liu, B. Tiana, Y.Q. Yuan and Y. Sun, Bright and dark N-soliton solutions for the (2 + 1)-dimensional Maccari system, European Phys. J. Plus 133 (2018) 72. [14] W. Liu, Y. Zhang, A.M. Wazwaz and Q. Zhou, Analytic study on triple-S, triple-triangle structure interactions for solitons in inhomogeneous multi-mode fiber, Appl. Math. Comput. 361 (2019) 325–331. [15] S. Liu, Q. Zhou, A. Biswas and W. Liu, Phase-shift controlling of three solitons in dispersion-decreasing fibers, Nonlinear Dyn. 98 (2019) 395–401. [16] B. Muatjetjeja, Coupled Lane-Emden-Klein-Gordon-Fock system with central symmetry: Symmetries and conservation laws, J. Diff. Equ. 263 (2017) 8322–8328. [17] B. Muatjetjeja, On the symmetry analysis and conservation laws of the (1+ 1)-dimensional Henon-Lane-Emden system, Math. Meth. Appl. Sci. 40 (2017) 1531–1537. [18] E. Recio, T.M Garrido, R.D.L Rosa and M.S Bruzon, Conservation laws and Lie symmetries a (2+1)-dimensional thin film equation, J. Math. Chem. 57 (2019) 1243–1251. [19] S. Saez, R.D.L Rosa, E. Recio, T.M Garrido and M.S Bruzon, Lie symmetries and conservation laws for a generalized (2+1)-dimensional nonlinear evolution equation, J. Math. Chem. 58 (2020) 775–798. [20] A.M. Wazwaz, Multiple kink solutions and multiple singular kink solutions for (2+1)-dimensional nonlinear models generated by the Jaulent-Miodek hierarchy, Phys. Lett. A 373 (2009) 1844–1846. [21] A.M. Wazwaz, Multiple complex soliton solutions for integrable negative-order KdV and integrable negative-order modified KdV equations, Appl. Math. Lett. 88 (2019) 1–7. [22] A.M. Wazwaz, Multiple complex soliton solutions for the integrable KdV, fifth-order Lax, modified KdV, Burgers, and Sharma-Tasso-Olver equations, Chinese J. Phys. 59 (2019) 372–378. [23] A.M. Wazwaz and M.S. Osman, The combined multi-waves polynomial solutions in a two-layer-liquid medium, Comput. Math. Appl. 76 (2018) 276–283. [24] A.M. Wazwaz and, M.S. Osman, An efficient algorithm to construct multi-soliton rational solutions of the (2+1)- dimensional KdV equation with variable coefficients, Appl. Math. Comput. 321 (2018) 282–289. [25] X.Y.Wu, B.Tian, L. Liu and Y. Sun, Rogue waves for a variable-coefficient Kadomtsev–Petviashvili equation in fluid mechanics, Comput. Math. Appl. 76 (2018) 215–223. [26] H.N. Xu, W.Y. Ruan, Y. Zhang and X. L¨u, Multi-exponential wave solutions to two extended Jimbo-Miwa equations and the resonance behavior, Appl. Math. Lett. 99 (2020) 105976. [27] Y.Q. Yuan, B. Tian, L. Liu, X.Y. Wu and Y. Sun, Solitons for the (2 +1)-dimensional Konopelchenko-Dubrovsky equations, J. Math. Anal. Appl. 460 (2018) 476–486.A generalized (1+2)-dimensional Jaulent-Miodek equation 1735. [28] C.R. Zhang, B. Tian, X.Y. Wu, Y.Q. Yuan and X.X. Du, Rogue waves and solitons of the coherently coupled nonlinear Schrodinger equations with the positive coherent coupling, Phys. Scripta 93 (2018) 095202. [29] X.H. Zhao, B. Tian, X.Y. Xie, X.Y. Wu, Y. Sun and Y.J. Guo, Solitons, Backlund transformation and Lax pair for a (2+1)-dimensional Davey-Stewartson system on surface waves of finite depth, Waves in Random and Complex Media 28 (2018) 356–366. | ||
آمار تعداد مشاهده مقاله: 15,862 تعداد دریافت فایل اصل مقاله: 474 |