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Abstract

In this study, the mathematical model of four differential equations for organisms that describe
the effect of anti-predation behavior, age stage and toxicity have been analyzed. Local bifurcation
and Hopf bifurcation have been studied by changing a parameter of a model to study the dynamic
behavior determined by bifurcation curves and the occurrence states of bifurcation saddle node,
transcritical and pitch fork bifurcation. The potential equilibrium point at which Hopf bifurcation
occurs has been determined and the results of the bifurcation behavior analysis have been fully
presented using numerical simulation.
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1. Introduction

Several tuners have recently discussed the issue of stability of nonlinear control systems and its
relationship to controllability. Nowadays, the prey - predator model is an important topic, it includes
the study of some aspects in which there are different disciplines: ecology, biology, genetics, and other
disciplines, among which is physics, for example [4, 5, 7].
A new practical way to distinguish between chaotic, periodic and quasi-cyclic cycles is presented
to solve many problems in the environment that have been extensively studied in the past decades
[8, 11]. It is either useful or has many potentials in fields such as engineering and power grids. In late
differential equations, periodic solutions can be generated through Hopf bifurcation. To determine
the nonlinear differential equations, the oscillatory solutions of the system and the steady state are
considered, look [9, 10].
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Bifurcation theory in mathematics considers is a qualitative change that occurs in the behavior of
a dynamic as a result of a change in one of its parameters [14, 1]. Physical example of this behavior
is, when you press a piece of wood in the force with in the middle of it, and the force with which
you press is considered the coeffient, so you see that the wood curves and changes its shape unit the
force reaches a certain value called the bifurcation value then the behavior of the wood changes and
it breaks. The point at which this behavior appears, the point of breaking the timber is called the
bifurcation point this behavior is usually plotted in a diagram called a bifurcation diagram. Henri
Poncare was the first to introduce the term bifurcation in (1885) [3]. As for method of calculating
the location of this change in behavior, it is explained as follows.

There are many types of bifurcation, the most important (saddle-node, transcritical, pitchfork
and hopf bifurcation) if the following differential equation ẋ = f (x, µ) had considerd the point
at which qualitative change occurse in the behavior of this dynamic system or what is expressed
mathematically in the term of bifurcation, see for example [15, 2, 12], it is first an equilibrium point
and secondly the point at which the system layout becomes the (Jacobian matrix).

Local bifurcation analysis have been used with the help of the Sotomayor theorem [13] near the
equilibrium points of the mathematical system (2.1), it consists of (first prey, second prey with age
stages and only one predator) with toxicity and anti-predator. The hopf bifurcation effect of the
positive equilibrium point has been studied.

2. Model formulation [6]

In this section, an ecological model consists of four species have been proposed : the first prey
and second prey which have a stage- structure with only one predator , which are denoted to their
populations sizes at time E1(t), E2(t), E3(t) and E4(t) respectively .

dE1

dt
= S1E1

(
1− E1

L1

)
− C1E1E4

m+ E2
1

dE2

dt
= S2E3

(
1− E3

L2

)
−DE2 − C2E2E4 − α1E2

2 −K1E2,

dE3

dt
= DE2 − C2E3E4 − α2E

2
3 −K2E3,

dE4

dt
=

A1E1E4

m+ E2
1

+ A2E2E4 + A3E3E4 − nE1E4 − α3E4 −K3E4.

(2.1)

The positive parameters of system (2.1) can be described by the Table 1.

Table 1: The parameters of the system (2.1)
Si > 0, i = 1, 2. The logistic growth rate of first prey and mature prey, respectively.

Li > 0, i = 1, 2. The carrying capacity of the first prey and the mature prey, respectively.
D > 0 The rate of transition of immature prey to mature prey.
C1 > 0 The rate of predator attack on the first prey.
m > 0 The measuring extent to which the environment is provided to protect prey and predators.
Ci > 0, i = 2, 3. The rate of predator attack on the second prey, mature and immature, respectively.
0 < Ai < 1, i = 1, 2, 3. The conversion rates of food to a predator, respectively.
n > 0 The rate of anti-predator behavior of the first prey.
Ki > 0, i = 1, 2, 3. The mortality rates of the second prey, mature and immature, and a predator, respectively.
αi > 0, i = 1, 2, 3. The toxicity rates of the second prey, mature and immature and predatory, respectively.

3. Local bifurcation analysis

In this section, the analysis of the local bifurcation of model (2.1) have been studied, focusing
on the changes around each equilibrium point when the parameter values change in the dynamic
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behavior. Our goal is to provide higher order conditions that ensure that the most common local
bifurcations appear, with the help of Sotomayor’s theorem.
Now, according to Jacobean matrix J(E1, E2, E3, E4) of the system (2.1) which is given in [6] as
follows:

J = [aij]4×4

=


S1(L1−2E1)

L1
−

C1E4(m−E2
1)

(m+E2
1)

2 0 0 − C1E1

(m+E2
1)

0, −D−C2E4−2α1E2−K1
S2(L2−2E3)

L2
−C2E2

0 D −C3E4−2α2E3−K2 −C3E3

A1E4(m−E2
1)

(m+E2
1)

2 − nE4 A2E4 A3E4
A1E1

(m+E2
1)

+A2E2+A3E3−nE1−α3−K3


(3.1)

For any non- zero vector R =(r1, r2, r3, r4)
T :

D2Fµ (X,µ) (R,R) = [αi1]4×1 ,

α11 = −2r1

(
S1

L1

+
C1E1E4 (3E1 −m)

(m+ E2
1)

3 r1 +
C1 (m− E2

1)

(m+ E2
1)

2 r4

)
,

α21 = −2

(
α1r

2
2 + C2r4r2 +

S2

L2

r23

)
,

α31 = −2r3 (α2r3 + C3r4) ,

α41 = 2

(
A1E1E4 (3E1 −m)

(m+ E2
1)

3 r21 +
A1 (m− E2

1)

(m+ E2
1)

2 r4r1 − nr4r1 + A2r4r2 + A3r4r3

)
.

(3.2)

and

D3Fµ (X,µ) (R,R,R) = [βi1]4×1

β11 = 2r1

(
C1E1 (3E

2
1 −m)

(m+ E2
1)

3 r4r1 −
C1E4 (14E

2
1m−m2 − 9E4

1)

(m+ E2
1)

4 r21

)
,

β21 = 0,

β31 = 0,

β41 = 2r1

(
A1E4 (14E

2
1m−m2 − 9E4

1)

(m+ E2
1)

4 r21 −
A1E1 (3E

2
1 −m)

(m+ E2
1)

3 r4r1

)
.

(3.3)

where X = (E1, E2, E3, E4) and µ be any parameter.

Theorem 3.1. System (2.1) with the parameter value K̈2= K2 = S2D
(D+K1)

, has a transcritical bi-

furcation at Q1 = (L1, 0, 0, 0).

Proof . By the Jacobian matrix given in Eq. (4.3) in [6] J̈1 = J1

(
Q1, K̈2

)
= [c̈ij]4×4, where c̈ij = cij

, except c̈33 = −K2 .
Then the characterise equation of J̈1 has a zero eigenvalue (say λ1E3)at K̈2= K2 , at the equilib-

rium point Q1.

Now, let R̈1 = (r̈
[1]
1 , r̈

[1]
2 , r̈

[1]
3 , r̈

[1]
4 )

T
be the eigenvector corresponding to the eigenvalue λ1E3 = 0.

Thus,
(
J̈1 (Q1)− λ1E3I

)
R̈1 = 0, this gives:

r̈
[1]
1 = 0, r̈

[1]
2 =

S2

K1 +D
r̈
[1]
3 , r̈

[1]
4 = 0
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and r̈
[1]
3 any non-zero real number .

Let B̈[1] = (b̈
[1]
1 , b̈

[1]
2 , b̈

[1]
3 , b̈

[1]
4 )

T
be the eigenvector associated with an eigenvalue λ1E3 = 0 of the

matrix J̈ T
1 .Then,

(
J̈ T
1 (Q1)− λ1E3I

)
B̈[1] = 0

By solving this equation for , B̈[1] =
(
0, D

D+K1
b̈
[1]
3 , b̈

[1]
3 , 0

)T
, where B̈

[1]
3 any non-zero real number.

Now, consider that:

∂f

∂K2

= fK2 (X,K2) =

(
∂f1
∂K2

,
∂f2
∂K2

,
∂f3
∂K2

,
∂f4
∂K2

)T

= (0, , 0,−E3, 0)
T .

So, fK2

(
Q1, K̈2

)
= (0, 0, 0, 0)T and hence

(
B̈[1]

)T
fK2

(
Q1, K̈2

)
= 0

By using Sotomayor’s theorem, the saddle- node bifurcation condition cannot be satisfied. There-
fore, the first condition for transcritical bifurcation is satisfied. Now

DfK2
(X,K2) =


0
0
0
0

0
0
0
0

0
0

−1
0

0
0
0
0


where, DfK2

(X,K2) represents the derivative of fK2 (X,K2) with respect to X = (E1, E2, E3, E4)
T .

Furthermore, it is observed that:

DfK2
(Q1, K2) R̈

[1] =


0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0




0
S2

K1+D
r̈
[1]
3

r̈
[1]
3

0

 =


0
0

−r̈
[1]
3

0


(
B̈[1]

)T [
DfK2

(
Q1, K̈2

)
R̈[1]
]
=
(
0, 0,−r̈

[1]
3 , 0

)(
0, 0, b̈

[1]
3 , 0

)T
= r̈

[1]
3 b̈

[1]
3 ̸= 0.

By substituting B̈[1] in (1.3) we get:

D2Fµ

(
Q1, K̈2

)(
R̈[1], R̈[1]

)
=


0

−2
(
r̈
[1]
3

)2
S2

(
α1S2

(D+K1)
2 +

1
L2

)
−2α2

(
r̈
[1]
3

)2
0


Hence, it was obtained

(
B̈[1]

)T [
D2Fµ

(
Q1, K̈2

)(
R̈[1], R̈[1]

)]
= −2

(
r̈
[1]
3

)2
b̈
[1]
3

(
α1K̈

2
2D

(D +K1)
3 +

DS2

L1 (D +K1)
+ α2

)
̸= 0.

This means that system (2.1) has a transcritical bifurcation at Q1 with a parameter K̈2= K2, and
no pitch fork bifurcation can occurs at K̈2= K2 . □
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Theorem 3.2. Suppose that conditions (4.8b-4.8e) in [6] with the following conditions are satisfied:

DS2 >
(
C3E4 +K2

) (
D + C4E4

)
, (3.4a)

14E2
1 < m < min

{
3E1, 3E

2
1

}
, (3.4b)

w1 ̸= w2, (3.4c)

w3 ̸= w4, (3.4d)

Then, system (2.1) with parameter value: K1= K1 =
DS2−(C3E4+K2)(D+C4E4)

C3E4+K2
, has a transcritical

bifurcation at Q2.
Proof . By the Jacobian matrix given in eq. (4.7) in [6] J2 = J2

(
Q2, K1

)
= [vij]4×4, where vij = vij

, except v22 = −D − C2E4 −K1.
Then the characterise equation of J1 has a zero eigenvalue (sayλ2E2 )at K1= K1 , at the equilibrium
point Q2 = (E1, 0, 0, E4).

Now, let R
[2]

=
(
r
[2]
1 , r

[2]
2 , r

[2]
3 , r

[2]
4

)T
be the eigenvector corresponding to the eigenvalue λ2E2 = 0. Thus,(

J2 (Q1)− λ2E2I
)
R

[2]
= 0, this gives:

r
[2]
1 = I1r

[2]
2 , r

[2]
3 = I2r

[2]
2 , r

[2]
4 = I3r

[2]
2

where: I1 = −v14
v11

I3, I2 = −v22
v23

, I3 = −v11(v42+v43I2)

v44v11−v41v14
and r

[2]
2 any non-zero real number.

Let B
[2]

= (b
[2]

1 , b
[2]

2 , b
[2]

3 , b
[2]

4 )
T

be the eigenvector associated with an eigenvalue λ2E2 = 0 of the matrix

J
T

2 .Then,
(
J

T

2 (Q2)− λ2E2I
)

B
[2]

= 0.

By solving this equation for , B
[2]

=
(
I4b

[2]

2 , b
[2]

2 , I5b
[2]

2 , I6b
[2]

2

)T
, where:

I4 = −v14
v11

I5, I5 = −v42v33−v32v43
v43v22−v23v42

, I6 = − (v23+v33I5)

v43
and b

[2]

2 any non-zero real number.
Now, consider that:

∂f

∂K1

= fK1 (X,K1) =

(
∂f1
∂K1

,
∂f2
∂K1

,
∂f3
∂K1

,
∂f4
∂K1

)T

= (0,−E2, 0, 0)
T .

So, fK1

(
Q2, K1

)
= (0, 0, 0, 0)T and hence

(
B

[2]
)T

fK1

(
Q2, K1

)
= 0.

By using Sotomayor’s theorem, the saddle- node bifurcation condition cannot be satisfied. Therefore,
the first condition for transcritical bifurcation is satisfied. Now

DfK1
(X,K1) =


0
0
0
0

0
−1
0
0

0
0
0
0

0
0
0
0

 ,

where, DfK1
(X,K1) represents the derivative of fK1 (X,K1) with respect to X = (E1, E2, E3, E4)

T .
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Furthermore, it is observed that:

DFK1 (Q2, K1)R
[2]

=


0 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0



I1r

[2]
2

r
[2]
2

I2r
[2]
2

I3r
[2]
2

 =


0

−r
[2]
2

0
0


(
B

[2]
)T [

DfK1

(
Q2, K1

)
R

[2]
]
=
(
0,−r

[2]
2 , 0, 0

)(
0, b

[2]

2 , 0, 0
)T

= −r
[2]
2 b

[2]

2 ̸= 0

D2Fµ

(
Q2, K1

) (
R

[2]
, R

[2]
)
=



−2I1

(
r
[2]
2

)2(
S1

L1
+ C1E1E4(3E1−m)

(m+E2
1)

3 +
C1(m−E2

1)
(m+E2

1)
2 I3

)
−2
(
r
[2]
2

)2 (
α1 + C2I3 +

S2

L2
I2

)
−2I2

(
r
[2]
2

)2
(α2I2 + C3I3)

2
(
r
[2]
2

)2(
I1I3

(
A1(m−E2

1)
(m+E2

1)
2 − n

)
+ I21

A1E1E4(3E1−m)

(m+E2
1)

3 + I3 (A2 + A3I2)

)


,

Hence, it was obtained by conditions (4.8b-4.8d) in [6] and ( (3.4b)-(3.4c)).(
B

[2]
)T [

D2Fµ

(
Q2, K1

) (
R

[2]
, R

[2]
)]

= 2b
[2]

2

(
r
[2]
2

)2
(w1 − w2) ̸= 0.

w1 = −I1I4

(
S1

L1

+
C1E1E4 (3E1 −m)

(m+ E2
1)

3 +
C1 (m− E2

1)

(m+ E2
1)

2 I3

)
− I2I5 (α2I2 + C3I3)

+ I1I3I6

(
A1 (m− E2

1)

(m+ E2
1)

2 − n

)
,

w2 =

(
α1 + C2I3 +

S2

L2

I2

)
− I6

(
I21

A1E1E4 (3E1 −m)

(m+ E2
1)

3 + I3 (A2 + A3I2)

)
.

This means that system (2.1) has a transcritical bifurcation at Q2 with a parameter K1= K1. If

condition (3.4c) not satisfied then. By substituting R̃[2] in (3.4a) we get:

D3Fµ

(
Q2, K1

) (
R

[2]
, R

[2]
, R

[2]
)
=


2I21

(
r
[2]
2

)3(C1E1(3E2
1−m)

(m+E2
1)

3 I3 −
C1E4(m(14E2

1−m)−9E4
1)

(m+E2
1)

4 I1

)
0
0

2I21

(
r
[2]
2

)3(A1E4(m(14E2
1−m)−9E4

1)
(m+E2

1)
4 I1 −

A1E1(3E2
1−m)

(m+E2
1)

3 I3

)

 ,

Hence, it was obtained by conditions (4.8b-4.8d) in [6], (3.4b) and (3.4d).(
B

[2]
)T [

D3Fµ

(
Q2, K1

) (
R

[2]
, R

[2]
, R

[2]
)]

= 2I21

(
r
[2]
2

)3
b
[2]

2 (w3 − w4) ̸= 0

w3=
I3E1 (3E

2
1 −m)

(m+ E2
1)

3 (C1I4 − A1I6) ,

w4 =
I1E4 (m (14E2

1 −m)− 9E2
1)

(m+ E2
1)

4 (C1I6 − A1I4) .

So, there is pitch fork bifurcation at Q2 where K1= K1. □
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Theorem 3.3. Suppose that the following conditions are satisfied:

L2 > 2Ė3, (3.5a)

1 ̸= Ė3

L2

. (3.5b)

Then, system (2.1) with parameter value: Ṡ2= S2 =
(D+2α1Ė2+K1)(2α2Ė3+K2)L2

D(L2−2Ė3)
, has a saddle-node

bifurcation at Q5.

Proof . By the Jacobian matrix given in eq. (4.10) in [6] J̇5 = J5

(
Q5, Ṡ2

)
= [u̇ij]4×4,

where u̇ij = uij , except u̇23 =
S2(L2−2Ė3)

L2
. Then the characterise equation of J̇5 a zero eigenvalue

(sayλ5E2 )at Ṡ2= S2 , at the equilibrium point Q5.

Now, let Ṙ[5] = (ṙ
[5]
1 , ṙ

[5]
2 , ṙ

[5]
3 , ṙ

[5]
4 )

T
be the eigenvector corresponding to the eigenvalue λ5E2 = 0. Thus,(

J̇5 (Q5)− λ5E2I
)
Ṙ[5] = 0, this gives:

ṙ
[5]
1 = 0, ṙ

[5]
3 = Y1ṙ

[5]
2 , ṙ

[5]
4 = 0

where: Y1 = −u32

u33
, and ṙ

[5]
2 any non-zero real number.

Let Ḃ[5] = (ḃ
[5]
1 , ḃ

[5]
2 , ḃ

[5]
3 , ḃ

[5]
4 )

T
be the eigenvector associated with an eigenvalue λ5E2 = 0 of the matrix

J̇ T
5 .Then,

(
J̇ T
5 (Q5)− λ5E2I

)
Ḃ[5] = 0.

By solving this equation for , Ḃ[5] =
(
0, ḃ

[5]
2 , Y2ḃ

[5]
2 , Y3ḃ

[2]
3

)T
, where: Y2 = −u22

u32
, Y3 = − (u24+u34Y2)

u44
. and ḃ

[5]
2

any non-zero real number.
Now, consider that:

∂f

∂S2

= fS2 (X,S2) =

(
∂f1
∂S2

,
∂f2
∂S2

,
∂f3
∂S2

,
∂f4
∂S2

)T

=

(
0, E3(1−

E3

L2

), 0, 0

)T

.

So, fS2

(
Q5, Ṡ2

)
=
(
0, Ė3

(
1− Ė3

L2

)
, 0, 0

)T
, and hence by condition (3.5b).

(
Ḃ[5]

)T
fS2

(
Q5, Ṡ2

)
= Ė3(1−

Ė3

L2

)ḃ
[5]
2 ̸= 0.

By using Sotomayor’s theorem, the transcritical bifurcation condition cannot be satisfied. Therefore,
the first condition for saddle- node bifurcation is satisfied.
Now By substituting Ṙ[5] in (3.2) we get:

D2Fµ

(
Q5, Ṡ2

)(
Ṙ[5], Ṙ[5]

)
=


0

−2
(
ṙ
[5]
2

)2 (
α1 +

S2

L2
Y 2
1

)
−2α2Y

2
1

(
ṙ
[5]
2

)2
0

 ,

Hence, it was obtained(
Ḃ[5]

)T [
D2Fµ

(
Q5, Ṡ2

)(
Ṙ[5], Ṙ[5]

)]
= −2

(
ṙ
[5]
2

)2
ḃ
[5]
2

(
α1 +

Ṡ2

L2

Y 2
1 + α2Y

2
1 Y2

)
̸= 0.
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So, system (2.1) has asaddle- node bifurcation at Ṡ2= S2.
But, opposite of condition (3.5b) imply(

Ḃ[5]
)T

fS2

(
Q5, Ṡ2

)
= Ė3(1−

Ė3

L2

)ḃ
[5]
2 ̸= 0.

So,

DfS2 (X,S2) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Where, DfS2

(X,S2) represents the derivative of fS2 (X,S2) with respect to X = (E1, E2, E3, E4)
T .

Furthermore, it is observed that:

DfS2 (Q5, S2) Ṙ
[5] =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




0

ṙ
[5]
2

Y1ṙ
[5]
2

0

 =


0
0
0
0


(
Ḃ[5]

)T [
DfS2

(
Q5, Ṡ2

)
Ṙ[5]
]
= (0, 0, 0, 0)

(
0, ḃ

[5]
2 , 0, 0

)T
= 0.

This means that system (2.1) has no transcritical and pitch fork bifurcation at Q5 with a parameter
Ṡ2= S2. □

Theorem 3.4. Suppose that conditions (4.13b), (4.13e) and (4.13f) in [6] with the following condi-
tions are satisfied:

A2
¯̄E2 + A3

¯̄E3 > α3, (3.6a)

A2δ1 − δ4

(
α1δ

2
1 + C1δ1 +

S2

L2

δ22

)
− α2δ

2
2δ5 ̸= C3δ2δ5 − A3δ2 (3.6b)

Then, system (2.1) with parameter value ¯̄K3= K3 =
¯̄w1

(e22e33−e23e32)
where:

¯̄w1 = − [(e23) (e34) (e42) + (e32) (e24) (e43)] + (e22) (e34) (e43) +
(
A2

¯̄E2 + A3
¯̄E3 − α3

)
+ (e24) (e42) [(e33)− (e32)] ,

has a saddle-node bifurcation at Q6 =
(
0, ¯̄E2,

¯̄E3,
¯̄E4

)
.

Proof . By the Jacobian matrix given in eq. (4.12) in [6] ¯̄J6 = J6

(
Q6,

¯̄K3

)
= [¯̄eij]4×4, where

¯̄eij = eij , except ¯̄e44 = A2
¯̄E2 + A3

¯̄E3 − ¯̄K3 − α3.

Then the characteristic equation ¯̄J6 having zero eigenvalue (sayλ6E4 = 0)if and if ¯̄B3 = 0 and, thus Q6

is a non-hyperbolic equilibrium point.
Note that, ¯̄K3 > 0 provided that condition (4.13e-4.13f) in [6] and (3.6a).

Now, let ¯̄R[6] = (¯̄r
[6]
1 , ¯̄r

[6]
2 , ¯̄r

[6]
3 , ¯̄r

[6]
4 )

T
be the eigenvector corresponding to the eigenvalue λ6E4 = 0.

Thus,
(
¯̄J6 (Q6)− λ6E4I

)
¯̄R[6] = 0, this gives:

¯̄r
[6]
1 = 0, ¯̄r

[6]
2 = δ1 ¯̄r

[6]
4 , ¯̄r

[6]
3 = δ2 ¯̄r

[6]
4
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where: δ1 = − e43
e42

δ2, δ2 =
e24e42

e22e34−e23e42
, and ¯̄r

[6]
4 any non-zero real number.

Let ¯̄B[6] = (¯̄b
[6]
1 , ¯̄b

[6]
2 , ¯̄b

[6]
3 , ¯̄b

[6]
4 )

T
be the eigenvector associated with an eigenvalue λ6E4 = 0 of the matrix

¯̄J T
6 .Then,

(
¯̄J T
6 (Q6)− λ6E4I

)
¯̄B[6] = 0.

By solving this equation for ¯̄B[6] =
(
δ3
¯̄b
[6]
4 , δ4

¯̄b
[6]
4 , δ5

¯̄b
[6]
4 , ¯̄b

[6]
4

)T
, where: δ3 = − e41

e11
, δ4 = − e41

e11
δ5, δ5 =

e24e42
e22e34−e24e32

, and ¯̄b
[6]
4 any non-zero real number.

Now, consider that:

∂f

∂K3

= fK3 (X, k3) =

(
∂f1
∂K3

,
∂f2
∂K3

,
∂f3
∂K3

,
∂f4
∂K3

)T

= (0, 0, 0,−E4)
T .

So, fK3

(
Q6,

¯̄K3

)
=
(
0, 0, 0,− ¯̄E4

)T
and hence

(
¯̄B[6]
)T

fK3

(
Q6,

¯̄K3

)
= − ¯̄E4

¯̄b
[6]
4 ̸= 0.

By using Sotomayor’s theorem, the transcritical bifurcation condition cannot be satisfied. Therefore,
the first condition for saddle- node bifurcation is satisfied. Now By substituting ¯̄R[6] in (3.2) we get:

D2Fµ

(
Q6,

¯̄K3

)(
¯̄R[6], ¯̄R[6]

)
=


0

−2
(
¯̄r
[6]
4

)2 (
α1δ

2
1 + C1δ1 +

S2

L2
δ22

)
−2δ2

(
¯̄r
[6]
4

)2
(α2δ2 + C3)

2
(
¯̄r
[6]
4

)2
(A2δ1 + A3δ2)

 ,

hence, it was obtained by conditions (4.13b),(4.13e) in [6] and (3.6b)(
¯̄B[6]
)T [

D2Fµ

(
Q6,

¯̄K3

)(
¯̄R[6], ¯̄R[6]

)]
= 2

(
¯̄r
[6]
4

)2 ¯̄b[6]4

(
A2δ1 − δ4

(
α1δ

2
1 + C1δ1 +

S2

L2

δ22

)
− α2δ

2
2δ5

−C3δ2δ5 + A3δ2) ̸= 0.

This means that system (2.1) has a saddle-node bifurcation at Q6 with a parameter ¯̄K3= K3, and no
pitch fork bifurcation at Q6 where ¯̄K3= K3. □

Theorem 3.5. Suppose that conditions (4.15b), (4.15e) in [6] with the following conditions are
satisfied:  A1(

m+ Ẽ2
1

) − n

 Ẽ1 + A2Ẽ2 + A3Ẽ3 > K3, (3.7a)

S1

(
L1 − 2Ẽ1

)
L1

>
C1Ẽ4

(
m− Ẽ2

1

)
(
m+ Ẽ2

1

) , (3.7b)

L2 > max{2Ẽ1, 2Ẽ3}, (3.7c)

m < 3E1 (3.7d)

w̃2 ̸= w̃3, (3.7e)
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where:

w̃2 = −t1t4

(
S1t1
L1

+
t1C1E1E4 (3E1 −m)

(m+ E2
1)

3 +
C1 (m− E2

1)

(m+ E2
1)

2

)
+ t1

(
A1 (m− E2

1)

(m+ E2
1)

2 − n

)
+ t21

A1E1E4 (3E1 −m)

(m+ E2
1)

3 − t5

(
α1t

2
2 +

S2

L2

t23

)
− α1t

2
3t6,

w̃3 = t2 (C2t5 − A2)− t3 (A3 − C3t6) ,

t1 = −h14

h11

,

t2 =
h34h23 − h24h33

h22h33 − h23h32

, t3 = −
(
h32t2 + h34

h33

)
,

t4 = −h41

h11

, t5 =
h34h32 − h24h42

h22h24 − h23h32

, t6 = −
(
h23t5 − h43

h24

)
.

Then, system (2.1) with parameter value: α̃3= α3 =
w̃1

e11(e23e32)
, where:

w̃1 = µ11µ5−h11 (µ13 + µ12)− µ10 (µ7 − µ3)− µ4µ6 +

 A1(
m+ Ẽ2

1

) − n

 Ẽ1 + A2Ẽ2 + A3Ẽ3 −K3

has a saddle-node bifurcation at Q8 =
(
Ẽ1, Ẽ2, Ẽ3, Ẽ4

)
.

Proof . By the Jacobian matrix given by eq. (4.14) in [6] J̃8 = J8 (Q8, α̃3) =
[
h̃ij

]
4×4

, where

h̃ij = hij ,excepth̃44 = A2Ẽ2 + A3Ẽ3 − α3 −K3 .

Then the characteristic equation J̃8 having zero eigenvalue (sayλ8E4 = 0) if and if ρ̃4 = 0 and,
thus Q8 is a non-hyperbolic equilibrium point.
Note that, α̃3 > 0 provided that conditions (1.7a-1.7c), (4.15b) and (4.15e) in [6].

Now, let R̃[8] = (r̃
[8]
1 , r̃

[8]
2 , r̃

[8]
3 , r̃

[8]
4 )

T
be the eigenvector corresponding to the eigenvalue λ8E4 = 0.

Thus,
(
J̃8 (Q8)− λ8E4I

)
R[8] = 0, this gives:

r̃
[8]
1 = t1r̃

[8]
4 =, r̃

[8]
2 = t2r̃

[8]
4 , r̃

[8]
3 = t3r̃

[8]
4

and r̃
[8]
4 any non-zero real number.

Let B̃[8] =
(
b̃
[8]
1 , b̃

[8]
2 , b̃

[8]
3 , b̃

[8]
4

)T
be the eigenvector associated with to the eigenvalue λ8E4 = 0 of the

matrix J̃ T
8 .Then,

(
J̃ T
8 (Q8)− λ8E4I

)
B̃[8] = 0.

By solving this equation for , B̃[8] =
(
t4b̃

[8]
4 , t5b̃

[8]
4 , t6b̃

[8]
4 , b̃

[8]
4

)T
, and b̃

[8]
4 any non-zero real number.

Now, consider that:

∂f

∂α3

= fα3 (X,α3) =

(
∂f1
∂α3

,
∂f2
∂α3

,
∂f3
∂α3

,
∂f4
∂α3

)T

= (0, 0, 0,−E4)
T .

So, fα3 (Q8, α̃3) =
(
0, 0, 0,−Ẽ4

)T
and hence

(
B̃[8]

)T
fα3 (Q8, α̃3) = −Ẽ4b̃

[8]
4 ̸= 0.
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By substituting R̃[8] in (3.2) we get:

D2Fµ (Q8, α̃3)
(
R̃[8], R̃[8]

)
=



−2t1

(
r̃
[8]
4

)2(
S1t1
L1

+ t1C1E1E4(3E1−m)

(m+E2
1)

3 +
C1(m−E2

1)
(m+E2

1)
2

)
−2
(
r̃
[8]
4

)2 (
α1t

2
2 + C2t2 +

S2

L2
t23

)
−2
(
r̃
[8]
4

)2
t3 (α1t3 + C3)

2
(
r̃
[8]
4

)2(
t1

(
A1(m−E2

1)
(m+E2

1)
2 − n

)
+ t21

A1E1E4(3E1−m)

(m+E2
1)

3 + t2A2 + A3t3

)


Hence, it was obtained by conditions (4.15b), (4.15e) in [6] and (3.7b)-(3.7e).(

B̃[8]
)T [

D2Fµ (Q8, α̃3)
(
R̃[8], R̃[8]

)]
= 2

(
r̃
[8]
4

)2
b̃
[8]
4 (w̃2 − w̃3) ̸= 0.

This means that system (2.1) has a saddle-node bifurcation at Q8 with a parameter α̃3= α3, and no
pitch fork bifurcation at Q8 where α̃3= α3. □

4. Hopf bifurcation analysis

In this section, it is explored and found the possibility of the occurrence of hopf bifurcation around
positive equilibrium points of the system (2.1) as shown below.

Theorem 4.1. Suppose that conditions (4.15a-4.15f) in [6] with the following conditions is satisfied:

G̃1 > G̃2, (4.1a)

G̃4 > G̃5, (4.1b)

G̃7 < G̃6, (4.1c)

G̃8 < G̃9, (4.1d)

µ6µ4

(
m+ Ẽ2

1

)
− C1Ẽ4

(
m− Ẽ2

1

)
G̃11 < µ6µ7

(
m+ Ẽ2

1

)
, (4.1e)

ε1 ̸= ε2, (4.1f)

ρ̃31
4

> (ρ̃1ρ̃2 − ρ̃3) . (4.1g)

Where:

G̃1 = h44 (µ3 + µ5 + µ6)− µ2
0h44 − µ0 (µ7 − µ3 − µ4 − µ5)− µ0h

2
44

G̃2 = µ3h22 − (µ12 + µ13)− µ5h33,

G̃3 = h44 (µ4 − µ7) + µ0µ6 + µ3h22 + µ5h33 − (µ12 + µ13) ,

G̃4 = (µ0 + h44) (µ4 − µ7 + µ3 + µ5 − µ0h44) ,

G̃5 = µ4h44 − h22 (µ7 − µ3)− (µ13 + µ12) + µ5h33,

G̃6 =
(
−µ2

0−2µ0h44 − h2
44 + µ6

)
(µ4 − µ7 + µ3 + µ5 − µ0h44) + (µ0 − h44) G̃3,

G̃7 = −2 (−µ0 − h44) (h22 (µ7 − µ3)− µ4h44 + (µ13 + µ12)− µ5h33) + µ6 (µ4 − µ7) ,
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G̃8 =
(
µ2
0 + 2µ0h44 + h2

44

)
(µ7 − µ3 + µ4h44 + (µ13 + µ12)− µ5h33)− G̃3

(
µ6 − µ2

0 − 2µ0h44 − h2
44

)
−
(
G̃1 + G̃2

)
(µ4 − µ7 + µ3 + µ5 − µ0h44) ,

G̃9 = −2µ6 (µ4 − µ7) (µ0 + h44) ,

G̃10 = (µ6 − 2µ0h44 + h44)µ6 (−µ4 + µ7) ,

G̃11 = h22 (µ7 − µ3)− µ4h44 − (µ13 + µ12)− µ5h33,

G̃12 = C1Ẽ4

(
m− Ẽ2

1

)
G̃11 − µ6µ4

(
m+ Ẽ2

1

)
+ µ6µ7

(
m+ Ẽ2

1

)
.

Then at the parameter value S̃1 = S1 =
L1(ρ̃3∆1(m+Ẽ2

1)+ρ̃21G̃12 )
(L1−2Ẽ1)(m+Ẽ2

1)ρ̃
2
1G̃11

, the system (2.1) has a hopf bifurcation

close to pointẽ1.
Proof . The characteristic equation of system (2.1) at ẽ1 which is given in [6]:[

λ4 + ρ̃1λ
3 + ρ̃2λ

2 + ρ̃3 λ+ ρ̃4
]
= 0, (1.8h)

where ρ̃i; i = 1, 3, 4, denotes the characteristic coefficients of eq. (1.8h) which are given in [6].

Then, applying the hopf bifurcation theorem, for (n=4) we need to find a parameter say (S̃1), it is

clear that S̃1 > 0 provided that the condition (1.8e) to confirm the necessary conditions for the hopf
bifurcation to achieve:

ρ̃i

(
S̃1

)
> 0 ; i = 1 , 3, 4 , ∆1

(
S̃1

)
= (ρ̃1ρ̃2 − ρ̃3) > 0 , Provided that conditions (4.15a -

4.15f) and (4.1a). While ρ̃31(S̃1) − 4 ∆1(S̃1) > 0 , provided the conditions (4.1a) and (4.1g).

∆2

(
S̃1

)
= (ρ̃1ρ̃2 − ρ̃3) ρ̃3 − ρ̃21ρ̃4 = 0, Straightforward computation we get:[

τ1(S̃
3
1) + τ2(S̃

2

1) + τ3(S̃1) + τ4

]
(1.8i)

Where:

τ1 =

 C1L1Ẽ4

(
m− Ẽ2

1

)
(
L1 − 2Ẽ1

)
(m+ Ẽ2

1)

3 (
G̃5 − G̃4

)
,

τ2 =

 C1L1Ẽ4

(
m− Ẽ2

1

)
(
L1 − 2Ẽ1

)
(m+ Ẽ2

1)

2 (
G̃6 − G̃7

)
,

τ3 =

 C1L1Ẽ4

(
m− Ẽ2

1

)
(
L1 − 2Ẽ1

)
(m+ Ẽ2

1)

(G̃9 − G̃8

)
,

τ4 = G̃3(G̃1−G̃2) + G̃10,

Cleary, τi > 0, i = 1, 2, and τi < 0, i = 3, 4 under local stability conditions, see [6], as well as
conditions (4.1a)-(4.1d).

Now, at S̃1 = S1 the characteristic equation given by Eq. (1.8h) can be written as:
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λ2 + ρ̃3

ρ̃1

)(
λ2 + ρ̃1λ+ ∆1

ρ̃1

)
= 0, which has four roots:

λ1,2 = ±i

√
ρ̃3
ρ̃1

and λ3,4 =
1

2

(
−ρ̃1 ±

√
ρ̃21 − 4

∆1

ρ̃1

)
.

Clearly, at S1 = S̃1 there are two pure imaginary eigenvalues (λ1and λ2) and two real and negative

eigenvalues. Now for all values of S1in the neighbourhood of S̃1 .In general the roots of the following
form.

λ1 = ω̃1 + iω̃2 , λ1 = ω̃1 − iω̃2, λ3,4 =
1

2

(
−ρ̃1 ±

√
ρ̃21 − 4

∆1

ρ̃1

)
.

Clearly, Re(λ1,2(S1)) |S1=S̃1
= ω̃1(S̃1) = 0, this means that the first condition of the necessary and

sufficient hopf bifurcation is satisfied at S1 = S̃1.Now, that the transversality condition is verified, we
must prove that:

Θ̃
(
S̃1

)
Ψ̃
(
S̃1

)
+ Γ̃

(
S̃1

)
ϕ̃
(
S̃1

)
̸= 0

Note that for S1 = S̃1 we have ω̃1(S̃1) = 0 and ω̃2(S̃1) =
√

ρ̃3
ρ̃1

, so give the following simplification:

Ψ̃
(
S̃1

)
= −2ρ̃3

(
S̃1

)
, ϕ̃

(
S̃1

)
= 2

ω̃2

(
S̃1

)
ρ̃1

(ρ̃1ρ̃2 − 2ρ̃3) ,

Θ̃
(
S̃1

)
= ρ̃

′

4

(
S̃1

)
− ρ̃3

ρ̃1
ρ̃

′

2

(
S̃1

)
, Γ̃

(
S̃1

)
= ω̃2

(
S̃1

)(
ρ̃

′

3

(
S̃1

)
− ρ̃3

ρ̃1
ρ̃

′

1

(
S̃1

))
,

where

ρ̃
′

1 =
dρ̃1

dS̃1

= −

(
L1 − 2Ẽ1

)
L1

, ρ̃
′

2 =
dρ̃2

dS̃1

=

(
L1 − 2Ẽ1

)
L1

(µ0 + h44) ,

ρ̃
′

3 =
dρ̃3

dS̃1

=

(
L1 − 2Ẽ1

)
L1

(µ4 − µ7 + µ3 + µ5 − µ0h44) ,

ρ̃
′

4 =
dρ̃4

dS̃1

=

(
L1 − 2Ẽ1

)
L1

(h22 (µ7 − µ3)− (µ13 + µ12)− µ5h33) ,

well, then we get the: Θ̃
(
S̃1

)
Ψ̃
(
S̃1

)
+ Γ̃

(
S̃1

)
ϕ̃
(
S̃1

)
= ε1 − ε2 ̸= 0.

Where:

ε1 = 2ρ̃3


(
L1 − 2Ẽ1

)
L1

((µ4 − µ7 + µ3 + µ5 − µ0h44) ρ̃2 +
ρ̃3
ρ̃1

(µ0 + h44)− µ5h33

)
,

ε1 = 2ρ̃3


(
L1 − 2Ẽ1

)
L1

(h22 (µ7 − µ3) + (µ13 + µ12) + 2
ρ̃3
ρ̃1

(µ4 − µ7 + µ3 + µ5 − µ0h44)

)
.

By conditions (4.15a-4.15f) in [6] and (4.1f) hold, so we get the hopf bifurcation that occurs at the

equilibrium point Q̃8 at parameter S1 = S̃1. □
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5. Numerical simulation

In this section the dynamic behavior of the system (2.1) have been studied. Calculations can
be performed for a different set of parameters with different initial points to confirm the analytical
results and the effect of the parameters on the dynamic model. Fig. (1) ( a− d) it appears that the
system (2.1) at the hypothetical set of parameters (5.1) has global positive equilibrium point.

Si = 0.3, i = 1, 2, Li = 0.6, i = 1, 2, Ci = 0.4, i = 1, 2, 3, m = 0.6, D = 0.6,

αi = 0.01, i = 1, 2, 3, Ki = 0.01, i =, 1, 2, 3 Ai = 0.09, i = 1, 2, 3, n = 0.1.
(5.1)

Figure 1: (a-d): Time series of the solution of system (2.1) start with different initial points (0.5 , 1.8 , 0.6 , 0.7) ,
(0.3, 0.2 , 0.1, 0.9) , and (1.9 , 2 , 0.4, 0.3) . (a) Path of E1 as a function of time, (b) Path of e2 as a function of
time, (c) Path of E3 as a function of time, (d) Path of E4 as a function of time.

Figure 2: Graphical representation of the solution which approaches Q8.
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Now in order to study the effect of parameters on the dynamical behavior of the system (2.1), the
system (2.1) has been numerically resolved to the data given in (5.1) with changing one parameter
each time the results are obtained.
The effect of others parameters on the dynamics summarized in Table 2.

Table 2: The bifurcation point of system (2.1).
Range of parameter The stable point The bifurcation point

0.1 ≤ Li, αi ≤ 1,= 1, 2. Q8

0.1 ≤ n,m ≤ 1.5 Q8

0.01 ≤ K2 < 0.096 Q8 K2 = 0.096
0.096 ≤ K2 ≤ 1 Q5

0.1 ≤ S2 < 0.27 Q8 S2 = 0.27
0.27 ≤ S2 < 0.44 Q5 S2 = 0.44
0.44 ≤ S2 < 2 Q1

0.1 ≤ Ci < 0.42 Q8

0.42 ≤ Ci ≤ 1 , i = 1, 2. Q5

0.01 ≤ A3 < 0.017 Q8

0.017 ≤ A3 ≤ 0.3 Q5

0.01 ≤ α3,K3 < 0.077 Q5 α3,K3 = 0.077
0.01 ≤ α3,K3 < 1 Q5

0.01 ≤ K1 < 0.42 Q1 K1 = 0.42
0.42 ≤ K1 < 0.61 Q5 K1 = 0.61
0.61 ≤ K1 ≤ 1 Q8

.1 ≤ S1 < 0.23 Q5 S1 = 0.23
0.23 ≤ S1 < 1 Q8

0.1 ≤ D < 0.169 Q5

0.169 ≤ D ≤ 1 Q8

0.01 ≤ Ai ≤ 0.3, i = 1, 2. Q8

0.1 ≤ C3 < 1 Q8

The effect of varying the parameter S2 in the range 0.1 ≤ S2 < 0.27 the solution approaches
to Q8, as shown in Fig.(3) (a) , increasing further in the range 0.27 ≤ S2 < 0.44 the solution
approaches to Q5, as shown in Fig.(3) (b), but in the 0.44 ≤ S2 < 2 the solution approaches to Q1,
as shown in Figure 3 (c).

Figure 3: (a-c): (a) Time series of the solution of system (2.1) with S2 = 0.1, which approaches to Q8 =
(0.360, 0.039, 0.167, 0.020) , and (b) time series of the solution of system (2.1) with S2 = 0.28, which approaches
to Q5 = (0.140, 0.010, 0.032, 0) , and (c) time series of the solution of system (2.1) with S2 = 0.43, which approaches
to Q1 = (0.5, 0, 0, 0) .
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For the parameter K1 in the range 0.01 ≤ K1 < 0.42 the solution approaches to Q1, as shown
in Fig.(4) (a), increasing further in the range 0.42 ≤ K1 < 0.61 the solution approaches to Q5, as
shown in Fig.(4) (b), but in the 0.61 ≤ k1 ≤ 1 the solution approaches to Q8 , as shown in Fig.(4)
(c) .

Figure 4: (a-c): (a) Time series of the solution of system (2.1) with K1 = 0.01 ,which approaches toQ1 = (0.5, 0, 0, 0) ,
and (b) time series of the solution of system (2.1) with K1 = 0.43 ,which approaches to Q5 = (0.410, 0.032, 0.140, 0) ,
and (c) time series of the solution of system (2.1) with K1 = 0.61 ,which approaches to Q8 = (0.360, 0.065, 0.157.080) .

6. Conclusions and Discussions

In this study, the mathematical model of four differential equations for living organisms that de-
scribe the characteristic of the effect of anti-predation behavior in the mathematical model containing
toxicity and its life stages have been analyzed, which are proposed to focus on age logically. Local
bifurcation and Hopf bifurcation have been studied by changing a parameter of a model to study
the dynamic behavior determined by bifurcation curves and the occurrence states of saddle node
bifurcation occurring at points Q5, Q6, Q8 and transcritcal bifurcation occurring at points Q1, Q2

The pitch fork bifurcation that occurs at point is determined Q2 . The positive equilibrium point
at which Hopf bifurcation occurs has been determined and the results of the bifurcation behavior
analysis have been fully presented using numerical simulation. With data given in Eq. (5.1). Which
are summarized as follow:

1. There is no periodic dynamics for system (2.1).

2. The parameters A3, D, α3, Si, Ci, i = 1, 2 and Ki, i = 1, 2, 3 , play an important role on the
dynamics of system (2.1), while at others parameters Li, αi, Ai, i = 1, 2, n,m, the solution is
still approaching the positive equilibrium point.
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