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Abstract

This paper is concerned with the study of the existence of positive solutions for a Navier boundary
value problem involving the p-biharmonic operator; the right hand side of problem is a nonsmooth
functional with variable parameters. The existence of at least three positive solutions is established
by using nonsmooth version of a three critical points theorem for discontinuous functions. Our results
also yield an estimate on the norms of the solutions indepent of the parameters.
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1. Introduction

It is well known that the mathematical modelling of important equations in different fields of
research, such as mechanical engineering, control systems, economics, computer science and many
others, leads naturally to the consideration of nonlinear differential equations. In particular, the
deformations of an elastic beam in an equilibrium state or study travelling waves in suspension
bridges, can be described by fourth-order boundary value problems, as Timoshenko and Gare [14]
have pointed out that a classical fourth-order equation arising in the beam column theory and Lazer
and Mckenna [7], pointed out that this type of nonlinearity furnishes a model to study travelling waves
in suspension bridges. So, in recent years, these type of equations have attracted much attention
owing to its interest to a large class of physical phenomena.

It is the purpose of this paper to investigate the following nonlinear, nonsmooth, Navier boundary
value problem involving the p-biharmonic operator

∆(|∆u|p−2∆u) ∈ λ∂F (x, u) + µa(x)|u|p−2u inΩ
u ≥ 0 inΩ
u = ∆u = 0 on ∂Ω

(1.1)
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where a(x) ∈ L∞(Ω), λ, µ ∈ [0,+∞), Ω ⊂ RN(N ≥ 1) is a non-empty bounded open set with smooth
boundary ∂Ω, 1 < p < N

2
and F : Ω×R→ R is a function such that F (., u) is measurable for every

u ∈ R and F (x, .) is locally Lipschitz for a.e. x ∈ Ω. Also ∂F (x, u) denotes the generalized Clarke
gradient of F (x, u) at u ∈ R.

In many papers, the right-hand side nonlinearity is a continuously defferentiable with respect to
the real variable and the technical approach adopted is based on the three-critical-points theorem
obtained by Ricceri [12]. We refer to [6] and [8]-[10]. But, in many applications, we encounter
problems with inequality constraints and deal with functionals defined on a closed and convex subset
of a Banach space. Such inequalities arise in problems of mechanics and engineering, when one wants
to describe more realistic laws of nonmonotone and multivalued nature. This leads to nonsmooth
(locally Lipschitz) and nonconvex energy functionals; for example see [3]-[6].

In the beam column theory and in one-dimentional case, Gyulove and Morosanu in [3], investigate
the problem

(|u′′|p−2u′′)′′ − (a(t)|u′|p−2u′)′ + b(t)|u|p−2u ∈ ∂F (t, u) t ∈ [0, 1] (1.2)

with a general boundary condition and proved the problem has a solution by nonsmooth critical
point theory.

On the other hand, Iannizotto in [4], by extension from three-critical-point theorem of Ricceri
[12], considered the p-Laplacian problem

−∆pu ∈ λ∂F (x, u) + µ∂G(x, u) inΩ
u ≥ 0 inΩ
u = 0 on ∂Ω

(1.3)

with a nonsmooth nonlinearity and proved the existence of at least three positive solutions.
In present study, we prove the existence of at least three positive solutions for problem (1.1) and

obtain an estimate on the norms of the solutions. Our approach is chiefly based on the main critical
point theorem given in [4], and related to the results obtained in [1]. We achieve our goal under
different assumptions on F ( see Theorem 3.1) with respect to those adopted on [4]. Also, problem
(1.1) is generated to p-biharmonic with a certain function G. In particular, our assumptions can
state in a more general form.

2. Preliminaries

Let X be a Banach space whose dual is denoted by X∗. We recall that the generalized directional
derivative Φ◦(u; v) of a locally Lipschitz function Φ : X → R at a point u ∈ X and in the direction
v ∈ X is defined by

Φ◦(u; v) = lim sup
w→u,τ→0+

Φ(w + τv)− Φ(w)

τ
.

The set ∂Φ(u) := {u∗ ∈ X∗ :< u∗, v >≤ Φ◦(u; v) for all v ∈ X} denotes the generalized ∂Φ(u) of
the function Φ (in the sense of Clarke [2]).
The following Lemma summarizes some basic properties of the generalized gradients that can find
in [[2], chapter 2].

Lemma 2.1. Let Φ, H : X → R be locally Lipschitz functionals. Then, for every u, v ∈ X the
following conditions hold:

(1) ∂Φ(u) is convex and weakly∗- compact;
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(2) the set-valued mapping ∂Φ(u) : X → 2X
∗

is weakly∗ upper semicontinuous;

(3) Φ◦(u; v) = max
u∗∈∂Φ(u)

< u∗, v >≤ L||v||;

(4) ∂(λΦ)(u) = λ∂Φ(u) for every λ ∈ R;

(5) ∂(Φ +H)(u) ⊆ ∂Φ(u) + ∂H(u);

(6) ∂(ϕ ◦ Φ)(u) ⊆ {ξu∗ : ξ ∈ ∂ϕ(Φ(u)), u∗ ∈ ∂Φ(u)} for

every locally Lipschitz ϕ : R→ R.

The classical Lagrange Mean value theorem is extended to the nonsmooth framework by the
following result (the Lebourge Mean value theorem).

Theorem 2.2 ([4]). Let Φ : X → R be a locally Lipschitz functional. Then, for every u, v ∈ X
there exists w ∈ [u, v], w∗ ∈ ∂Φ(u) such that Φ(u)− Φ(v) =< w∗, u− v >.

To prove of our main result, we need the following lemmas and definitions.

Lemma 2.3 ([4], Lemma 6). Let Φ : X → R be a locally Lipschitz functional with compact gradi-
ent. Then Φ is sequentially weakly continuous.

Definition 2.4 ([11]). Let X be a Banach space, I : X → (−∞,+∞] is a Motreanu-Panagiotopoulos-
type functional, where I = h + Ψ such that h : X → R is locally Lipschitz and Ψ : X → (−∞,+∞]
is convex, proper and lower semicontinuous.

We have the following Definitions from [[4], section 2].

Definition 2.5. Let Φ : X → R be a locally Lipschitz functional and χ : X → R∪{+∞} be a proper,
convex, lower semicontinuous functional whose restriction to the set dom(χ) = {x ∈ X : χ(u) < +∞}
is continuous. Then Φ + χ is a Motreanu-Panagiotopoulos functional.

Definition 2.6. Let Φ + χ be a Motreanu-Panagiotopoulos functional. A vector u ∈ X is said to
be a critical point of the functional Φ + χ, if the following inequality holds

Φ◦(u; v − u) + χ(v)− χ(u) ≥ 0, ∀v ∈ X.

Definition 2.7. Let Φ : X → R be locally Lipschitz and C be a nonempty, closed, convex subset
of X. The indicator of C is the function χC : X → R ∪ {+∞} defined by putting for every u ∈ X,

χC =

{
o if u ∈ C

+∞ ifu /∈ C (it is easily seen that χC is proper, convex and lower semicontinuous),

while its restriction to dom(χC) = C is the constant 0; clearly u ∈ X is a critical point for the
Motreanu-Panagiotopoulos functional Φ + χC iff u ∈ C and the following condition holds

Φ◦(u; v − u) ≥ 0 for every v ∈ C.

Definition 2.8. A mapping A : X → X∗ is of type (S)+ if, for every sequence {un} such that
un ⇀ u ∈ X and lim sup

n→+∞
< A(un), un − u >≤ 0, one has un → u.
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Now, Here and in the sequel Ω is an open bounded subset of RN , 1 < p < N
2

, while X denotes

the space W 2,p(Ω) ∩ W 2,p
0 (Ω) endowed with the norm ||u|| = (

∫
Ω
|∆u(x)|p)

1
p for allu ∈ X which

is equivalent to usual intersection norm ||u|| = max{||u||W 2,p , ||u||W 2,p
0
} and (X, ||.||) is a reflexive

uniformly convex Banach space and its dual (X∗, ||.||∗) is strictly convex.
The Rellich Kondrachov theorem assures that X is compactly embedded in Ls(Ω) s.t. s < Np

N−2p

and

k := sup
u∈X\{0}

||u||Ls(Ω)

||u||
< +∞. (2.1)

The hypotheses on the nonsmooth potential F : Ω× R→ R are the following.

(F1) for all u ∈ R, x→ F (x, u) is measurable;

(F2) for almost all x ∈ Ω, u→ F (x, u) is locally Lipschitz;

(F3) for almost all x ∈ Ω, all u ∈ R and all ξ ∈ ∂F (x, u), we have |ξ| ≤ α(x) + c|u|s−1 with
α ∈ L∞(Ω), c > 0, 1 ≤ s < p∗ = NP

N−2p
;

(F4) for almost every x ∈ Ω and every u ∈ R, F (x, u) ≤ β(x)(1 + |u|q) (β ∈ L1(Ω), 1 < q < p).

For our aim, the following theorem is the main tool that contained in [[4], Theorem 14] and is
the key to show the existence of solutions.

Theorem 2.9. Let (X, ||.||) be a reflexive Banach space, Λ ⊆ R an interval, C a nonempty, closed,
convex subset of X, N ∈ C1(X,R) a sequentially weakly lower semicontinuous functional, bounded
on any bounded subset of X, such that N ′ is of type (S)+, F : X → R a locally Lipschitz functional
with compact gradient, and ρ1 ∈ R. Assume also that the following conditions hold:

(1) supλ∈Λinfu∈C [N (u) + λ(ρ1 −F(u))] < infu∈Csupλ∈Λ[N (u) + λ(ρ1 −F(u))];

(2) lim
||u||→+∞

[N (u)− λF(u)] = +∞ for every λ ∈ Λ.

Then, there exists λ′, λ′′ ∈ Λ(λ′ < λ′′) and σ1 > 0 such that for every λ ∈ [λ′, λ′′] and every locally
Lipschitz functional G : X → R with compact gradient, there exists µ1 > 0 such that for every
µ ∈]0, µ1[ the functional N − λF − µG + χC has at least three critical points whose norms are less
than σ1.

Proposition 2.10 ([13], Proposition 3.1). Let X be a nonempty set, and Φ, Ψ two real function
on X. Assume that there are r > 0 and u0, u1 ∈ X such that

Φ(u0) = Ψ(u0) = 0, Φ(u1) > r, sup
u∈Φ−1(]−∞,r[)

Ψ(u) < r
Ψ(u1)

Φ(u1)
.

Then, for each h satisfying

sup
u∈Φ−1(]−∞,r[)

Ψ(u) < h < r
Ψ(u1)

Φ(u1)
,

one has
sup
λ≥0

inf
u∈X

(Φ(u) + λ(h−Ψ(u))) < inf
u∈X

sup
λ≥0

(Φ(u) + λ(h−Ψ(u))).
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3. Existence and multiplicity

For our approach we will use the functionals N ,F ,G : X → R defined by putting N (u) :=
1

p
||u||p,F(u) :=

∫
Ω

F (x, u(x))dx,G(u) :=

∫
Ω

pa(x)|u|pdx and setG(x, u) := pa(x)|u|p that ∂G(x, u) =

a(x)|u|p−2u.
Let C = {u ∈ X : u(x) ≥ 0 a.e on Ω} (the positive cone in the Sobolev space) and for every λ, µ > 0,
put I = N − λF − µG + χC and Λ = [0,+∞).

Moreover, by a weak solution of (1.1) , we mean a function u ∈ W 2,p(Ω) ∩W 1,p
0 (Ω) such that for

a.e x ∈ Ω,
∆2
pu ∈ λ∂F (x, u) + µ∂G(x, u), u(x) ≥ 0.

It is obvious that our goal is to find critical points of the functional N − λF − µG on the closed and
convex cone C.

Let m := sup distx∈Ω(x, ∂Ω). Fix x0 ∈ Ω such that B(x0,m) ⊆ Ω, where B(x0,m) denotes the
open ball of center x0 and radius m. Also, denote

L :=
Γ(1 + N

2
)

π
N
2 (mN − (m

2
)N)

(
3m2

8kN
)p, (3.1)

where Γ being the Gamma function and k is defined in (2.1).
The main our result reads as follows.

Theorem 3.1. Let Ω, p, F,G be as above and (F1), (F2), (F3) and (F4) be satisfied. Also, assume

that there exist two positive constants γ and d, with d > L
1
pγ such that

(i) F (x, t̃) ≥ 0 for each (x, t̃) ∈ (Ω̄\B(x0,
m
2

))× [0, d]; and F (x, 0) = 0 for almost every x ∈ Ω.

(ii)
1

γp
sup
||u||s≤γ

∫
Ω

F (x, u(x))dx <
L

dp

∫
B(x0,

m
2

)

F (x, d)dx.

Then, there exists λ′, λ′′ > 0 (λ′ < λ′′) and σ1 > 0 such that for every λ ∈ [λ′, λ′′], there exists
µ1 > 0 such that for every µ ∈]0, µ1[, problem (2.1) admits at least three solutions whose norms are
less than σ1.

Before giving the proof of theorem 3.1, we give some lammas.

Lemma 3.2. N ∈ C1(X,R) and its gradient defined for every u, v ∈ X by

< N ′(u), v >=

∫
Ω

|∆u(x)|p−2∆u(x)∆v(x)dx

is of type (S)+.

Proof . Let (un)n be a sequence in X such that un ⇀ u and lim sup
n→+∞

< N ′(un), un − u >≤ 0. Since

N ′(u) is an element of X∗, then by weakly convergence lim
n→+∞

< N ′(u), un − u >= 0 and so

0 ≥ lim sup
n→+∞

< N ′(un)−N ′(u), un − u >

= lim sup
n→+∞

∫
Ω

(|∆un|p−2∆un(x)− |∆u|p−2∆u(x))(∆un −∆u)dx
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= ||∆un||pp + ||∆u||pp −
∫

Ω

|∆un|p−2∆un∆udx−
∫

Ω

|∆u|p−2∆u∆undx

≥ lim sup
n→+∞

(||∆un||p−1
p − ||∆u||p−1

p )(||∆un||p + ||∆u||p) ≥ 0.

Then ||∆un||p → ||∆u||p and due to the uniform convexity of X, we have un → u in X. �

Lemma 3.3. Assume that F : Ω×R→ R satisfies (F1), (F2) and (F3), Then the functional F(u) is
locally Lipschitz with compact gradient for every u ∈ X. Moreover, if u∗ ∈ ∂F(u) then u∗ ∈ Ls′(Ω)
and satisfies u∗(x) ∈ ∂F (x, u(x)) for a.e x ∈ Ω.

Proof . By Theorem 2.2 and from (F3), we deduce that for a.e x ∈ Ω and every u ∈ R,

|F (x, u)| ≤ α1(x) + c1|u|s; α1 ∈ L∞(Ω), c1 > 0.

So F (., u(.)) ∈ L1(Ω) and it shows that F is well defined.
Now, by the compactly embedding of X in Ls(Ω) and assumption (F2), it follows that F is indeed

locally Lipschitz. So, if u ∈ X, u∗ ∈ ∂F(u), we have for every v ∈ X, < u∗, v >≤ F◦(u; v) and
F◦(u; .) : Ls(Ω)→ R. Moreover, u∗ ∈ X∗ is continuous also with respect to the topology induced on
X by the norm ||.||s. So, we can represent u∗ as an element of Ls

′
(Ω) with 1

s
+ 1

s′
= 1 and write for

every v ∈ Ls(Ω), < u∗, v >=
∫

Ω
u∗(x)v(x)dx.

For the proof of the inclusion

u∗(x) ∈ ∂F (x, u(x)) for a.e x ∈ Ω. (3.2)

we refer the reader to Clarck [[2],section 2.7].
Now, we prove that ∂F is compact: let {un}n≥1 be a sequence in X such that ||un|| ≤ M for

every n ∈ N (M > 0) and choose u∗n ∈ ∂F(un) for every n ∈ N. Then by (3.2) and (F3), we get for
every n ∈ N, v ∈ X,

< u∗n, v >≤
∫

Ω

|u∗n(x)||v(x)|dx ≤
∫

Ω

(α(x) + c|u∗n|s−1)|v(x)|dx

≤ (||α||∞ + c2||u||s−1)||v|| (with c2 > 0) ≤ (M1 + c2M2)||v||.

So ||u∗n||∗ ≤M1 +c2M2 (with M1,M2 > 0) and it follows that {un}n≥1 is bounded and by passing
to a subsequence, if necessary, we may assume that u∗n ⇀ u∗ in X∗. So for proving that ∂F(u) is
compact, we shall prove the convergence of u∗n is strong.

We argue by contraction: assume that there is some ε > 0 such that for every n ∈ N, ||u∗n−u∗||∗ >
ε and hence for every n ∈ N there is a vn ∈ B(0, 1) such that

< u∗n − u∗, vn >> ε. (3.3)

Then {vn}n≥1 is a bounded sequence and up to subsequence, vn ⇀ v in X, and ||vn − v||s → 0 in
Ls(Ω) by compact embedding of X into Ls(Ω).So for n big enough,

| < u∗n − u∗, v > | <
ε

3
(by u∗n ⇀ u∗ in X∗)

| < u∗, vn − v > | <
ε

3
(by vn ⇀ v in X) and ||vn − v||s <

ε

3(M1 + c2M2)
.

This implies
< u∗n − u∗, vn >≤< u∗n − u∗, v > + < u∗n, vn − v > − < u∗, vn − v >

≤ ε

3
+

∫
Ω

|u∗n||vn − v|dx+
ε

3
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≤ 2ε

3
+ ||u∗n||s′ ||vn − v||s ≤

2ε

3
+
ε

3
= ε,

contradicting (3.3). �

Lemma 3.4. Assume G : X → R is the functional defined in the first of section 3, then G is a locally
Lipschitz functional and its gradient defined for every u, v ∈ X, by < G ′(u), v >=

∫
Ω
a(x)|u|p−2uvdx,

is compact.

Proof .We know G(u) =
∫

Ω
pa(x)|u|pdx is locally continuous on each bounded subset of X : indeed,

let u, v ∈ B(0,M)(M > 0) so

|G(u)− G(v)| = |
∫

Ω

(pa(x)|u|p − pa(x)|v|p)dx| ≤
∫

Ω

|pa(x)(|u|p − |v|p)|dx

≤ p||a||∞
∫

Ω

(|u|p−1 − |v|p−1)|u(x)− v(x)|dx ≤ 2Mp−1p||a||∞||u− v||p

≤ c3||u− v||.

Hence G is locally Lipschitz. Also, G(u) ∈ C1(X,R) at u ∈ X, so ∂G(u) = {G ′(u)} and G ′ : X →
X∗ is compact. �

Lemma 3.5. Let F : Ω × R → R satisfies (F1), (F2) and (F3). Then, for every λ, µ > 0, I : X →
R ∪ {+∞} , is a Motreanu-Panagiotopoulos functional and if u ∈ X is a critical point of I, then u
is a solution of problem (1.1).

Proof .By Lemmas 3.2, 3.3 and 3.4, the functional J = N − λF − µG is locally Lipschitz; besides,
C is a closed convex cone and 0 ∈ C : thus, I = N − λF − µG + χC is a Motreanu-Panagiotopoulos
functional.

Let u ∈ X be a critical point of I : then u ∈ C and by Definition 2.7,

J0(u; v − u) ≥ 0. (3.4)

If we take v = u+ sw (s > 0), in the inequality (3.4), we easily get

< N ′(u), w > −λF0(u;w)− µ < G ′(u), w >≥ 0, (3.5)

for all w ∈ X. So, inequality (3.5) reads

−λF0(u;w) ≥ −
∫

Ω

|∆u|p−2∆u∆wdx+ µ

∫
Ω

a(x)|u|p−2uwdx ∀w ∈ X.

Now, by putting l(w) = −
∫

Ω
|∆u|p−2∆u∆wdx+ µ

∫
Ω
a(x)|u|p−2uwdx we have

− λF0(u;w) ≥ l(w). (3.6)

Moreover, the estimate

−λF0(u;w) ≤ λF0(u;w) ≤ λc4||w|| ∀w ∈ X.

holds with c4 > 0 being a Lipschitz constant of F in a vicinity of u as in Lemma 2.1, (3). Hence,

|l(w)| ≤ c5||w|| (with c5 > 0) ∀w ∈ X,
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showing that l is continuous. The inequality (3.6) yields that l ∈ −λ∂F(u) and hence there is some
ul ∈ ∂F(u) such that by Lemma 3.3, ul ∈ Ls

′
(Ω), ul(x) ∈ ∂F (x, u(x)) for a.e x ∈ Ω that l = −λul

and < l, w >=
∫

Ω
l(x)w(x)dx that shows∫

Ω

|∆u|p−2∆u∆wdx− µ
∫

Ω

a(x)|u|p−2uwdx− λ
∫

Ω

ulwdx = 0,

for all w ∈ X that is, u is a weak solution of the Navier problem{
∆2
pu = λul + µa(x)|u|p−2u in x ∈ Ω
u = ∆u = 0 on x ∈ ∂Ω.

Recalling Lemmas 3.3 and 3.4, get for a.e x ∈ Ω

∆2
pu ∈ λ∂F (x, u(x)) + µ∂G(x, u(x)),

and u is a solution of (1.1). �
Now we can give the proof of our main result.

Proof of the Theorem 3.1
Proof . We are going to apply Theorem 2.9. Under the conditions (F1)− (F4) and Lemmas 3.2-3.5,
put Λ = [0,+∞) and observe that X is a reflexive Banach space; C 6= ∅ is closed and convex,
N ∈ C1(X,R) is continuous and convex and hence sequentially weakly lower semicontinuous and
obviously, bounded on each bounded subset of X. In particular, N ′ is of type (S)+. Also, F is a
locally Lipschitz functional with compact gradient.

We wish to prove condition (1) in Theorem 2.9. We explicitly observe that, in view of (2.1), it
follows that, for every t > 0,

N−1(−∞, t] := {u ∈ X : N (u) ≤ t} ⊆ {u ∈ Ls(Ω) : ||u||Ls ≤ k(pt)
1
p} (3.7)

Next, put

ũ :=


0 x ∈ Ω̄\B(x0,m)

1

m2 − (m
2

)2
[
N∑
i=1

(xi − x0i)
2]d x ∈ B(x0,m)\B(x0,

m
2

)

d x ∈ B(x0,
m
2

).

We have,

∂ũ(x)

∂xi
=

{
0 x ∈ (Ω̄\B(x0,m)) ∪ (B(x0,

m
2

))
4

3m2
[−2(xi − x0i)]d x ∈ B(x0,m)\B(x0,

m
2

)

∂2ũ(x)

∂x2
i

=

{
0 x ∈ (Ω̄\B(x0,m)) ∪ (B(x0,

m
2

))
−8

3m2
d x ∈ B(x0,m)\B(x0,

m
2

)

N∑
i=1

∂2ũ(x)

∂x2
i

=

{
0 x ∈ (Ω̄\B(x0,m)) ∪ (B(x0,

m
2

))
−8

3

d

m2
N x ∈ B(x0,m)\B(x0,

m
2

).

It is easy to verify that ũ ∈ W 2,p(Ω) ∩ W 1,p
0 (Ω) and in particular, one has N (ũ) =

1

p
||ũ||p =

1

p

π
N
2

Γ(1 + N
2

)

∫ m

m
2

|8
3

d

m2
N |prN−1dr, then

N (ũ) =
1

p
(

8N

3m2
)p

π
N
2

Γ(1 + N
2

)
dp(mN − (

m

2
)N) =

1

p

dp

kpL
. (3.8)
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Put t :=
1

p
(
γ

k
)p. Now, from d > L

1
pγ, it follows that N (ũ) >

1

p

Lγp

kpL
=

1

p

γp

kp
= t. Moreover, taking

(3.7) into account,

η(t) = sup{F(u) : u ∈ C,N (u) ≤ t} ⊆ sup{F(u) : u ∈ C, ||u||Ls ≤ γ} = η′(t),

so
η(t)

t
≤ pkp

η′(t)

γp
. (3.9)

At this point, by definition of ũ, clearly we can write∫
Ω

F (x, ũ(x))dx =

∫
B(x0,m)\B(x0,

m
2

)

F (x, ũ(x))dx+

∫
B(x0,

m
2

)

F (x, ũ(x))dx.

Moreover, owing to 0 ≤ ũ(x) ≤ d, for each x ∈ Ω, ũ ∈ C and by using (i) in Theorem 3.1, we have∫
Ω

F (x, ũ(x))dx ≥
∫
B(x0,

m
2

)

F (x, ũ(x))dx, (3.10)

and by (3.8)-(3.12) and (ii) in Theorem 3.1, it follows that

F(ũ)

N (ũ)
≥ pkpL

∫
B(x0,

m
2
F (x, d)dx

dp
>
η′(t)

γp
≥ η(t)

t
,

that is sup
u∈N−1(−∞,r]

F(u) < t
F(ũ)

N (ũ)
. Then, there is some h ∈ R such that

sup
u∈N−1(−∞,r]

F(u) < h < t
F(ũ)

N (ũ)
.

So, conditions of Proposition 2.10, are verified taking u1 := ũ and u0 = 0 since N (0) = F(0) = 0.
Hence condition (1) from Theorem 2.9 is satisfied taking ρ1 := h, C = X in Proposition 2.10.

Next, we prove condition (2) in Theorem 2.9 by using (F4), one has

F(u) =

∫
Ω

F (x, u(x))dx ≤ ||β||L1(Ω)(meas(Ω) + c5||u||q),

and hence for every λ ∈ Λ

N (u)− λF(u) ≥ ||u||
p

p
− λ||β||L1(Ω)(meas(Ω) + c5||u||q).

Therefore, owing to q < p, the following relation holds

lim
||u||→+∞

N (u)− λF(u) = +∞,

for every λ > 0.
Finally, all the assumption of Theorem 2.9 are satisfied. Hence there exists λ′, λ′′ ∈ Λ and σ1 > 0 as
in Theorem 2.9. Then for G that is locally Lipschitz functional with compact gradient (Lemma 3.4),
there exists µ1 > 0 that for every µ ∈ (0, µ1) there exists three solutions u0, u1, u2 ∈ C ∩B(0, σ1) for
problem (1.1) and the proof is completed. �
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Remark 3.6. We point out that hypothesis (ii) in Theorem 3.1, can be given in a more general
form. Precisely, fix x0 ∈ Ω and pick r1, r2 ∈ R with r1, r2 > 0, such that B(x0, r1) ⊂ B(x0, r2) ⊆ Ω.
Moreover, denote

Lr1,r2 :=
Γ(1 + N

2
)

π
N
2

(
r2

2 − r2
1

2Nk
)p

1

rN2 − rN1
. (3.11)

If d and γ in Theorem 3.1 are satisfying d > L
1
pγ, hypothesis (ii) can be replaced by the following

assumption:
1

γp
sup
||u||s6γ

∫
Ω

F (x, u(x))dx <
Lr1,r2
dp

∫
B(x0,m/2)

F (x, d)dx. (3.12)

Remark 3.7. A comparison between our main result (Theorem 3.1) and some of those the previously
cited ones, is now in order: in the present paper, we extended the main result of Candito ([2] Theorem
3.1) to a class of perturbed Motrreanu-Panagiotopoulos functionals, this feature gains a remarkable
importance in the applications. Moreover, it is worth noticing that, since parameter a(x) in problem
(1.1), is variable , causes that the fourth-order problem is investigate in a complete form. Also, owing
to estimate of norms of solutions, several applications can be improved.

On the other hand, the main difference between Theorem 3.1 above and the main result of Ianniz-
zotto [4] in applications (Theorem 22) consists in different assumption about the F (x, u), that it is
possible to obtain a well determined interval of values of parameter λ for which the problem depending
on λ admits at least three weak solutions.
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