
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,725 |
تعداد دریافت فایل اصل مقاله | 7,656,155 |
Magnetic properties of Co0.9Cd0.1Fe1.9X0.1O4 (X = Cr, Yb) nanoparticles prepared by hydrothermal method | ||
Progress in Physics of Applied Materials | ||
دوره 1، شماره 1، اسفند 2021، صفحه 50-56 اصل مقاله (1.48 M) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22075/ppam.2021.23974.1011 | ||
نویسندگان | ||
Hamzeh Ghorbani1؛ Mahin Eshraghi* 2؛ Amir Abbas Sabouri1 | ||
1Department of Physics, Payam Noor University, Iran | ||
2Department of Physics, Payam Noor University, Iran | ||
تاریخ دریافت: 23 تیر 1400، تاریخ بازنگری: 02 شهریور 1400، تاریخ پذیرش: 20 شهریور 1400 | ||
چکیده | ||
The present study investigated the cadmium-cobalt ferrite nanoparticles doped with chromium and ytterbium ions synthesized using the hydrothermal method. We analysed the samples by X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), and vibrating Sample Magnetometer devices (VSM). XRD confirmed the formation of an almost pure spinel structure. FESEM-obtained micrographs showed spherical shapes for nanoparticles and by using ImageJ software, an average particle size of about 40 nm was obtained. The saturation magnetization, the remnant magnetization, and the coercivity field were estimated using the hysteresis loop of the samples. The maximum coercivity field (815 Oe )was obtained in the sample doped with ytterbium. This could be due to enhancing the spin-orbit coupling and magnetocrystalline anisotropy constant of the cadmium-cobalt ferrite sample with ytterbium doping. The saturation magnetization decreased with the doping of both ions due to the lower magnetic moment of the doped ions compared to the Fe ion. | ||
کلیدواژهها | ||
Nanoparticles؛ Cadmium-Cobalt ferrite؛ Chromium doping؛ Ytterbium doping؛ Hydrothermal method | ||
مراجع | ||
[1] P.P. Goswam, H.A. Choudhury, S. Chakma, V.S. Moholkar, Sonochemical Synthesis of Cobalt Ferrite Nanoparticles, International Journal of Chemical Engineering, 2013 (2013) 934234. [2] N. Somaiah, T.V. Jayaraman, P.A. Joy, D. Das, Magnetic and magnetoelastic properties of Zn doped cobaltferrites CoFe2−xZnxO4(x = 0, 0.1,0.2, and 0.3), J. Magnetism and Magnetic Materials, 324-14 (2012), 2286-2291. [3] S. Singhal, T. Namgyal, S. Bansal, K. Chandra, Effect of Zn Substitution on the Magnetic Properties of Cobalt Ferrite Nano Particles Prepared Via Sol-Gel Route, J. Electromagnetic Analysis and Applications, (2010), 2, 376-381. [4] R. Bhowmik, R. Ranganathan, B. Ghosh , S. Kumar, S. Chattopadhyay, Magnetic ordering and electrical resistivity in Co0.2Zn0.8Fe2O4 spinel oxide, J. Alloys and Compounds, 456 (2008) 348-352. [5] A. Daigle, J. Modest, A. L. Geiler, S. Gillette, Y. Chen, M. Geiler, B. Hu, S. Kim, K. Stopher, V. G. Harris, Structure, morphology and magnetic properties of Mg(x)Zn(1− x)Fe2O4 ferrites prepared by polyol and aqueous coprecipitation methods: a low-toxicity alternative to Ni(x)Zn(1− x)Fe2O4 ferrites, J. Nanotechnology, (2011), 22(30), 305708. [6] C. Upadhyay, D. Mishra, H. Verma, S. Anand, R. Das, Effect of preparation conditions on formation of nanophase Ni–Zn ferrites through hydrothermal technique, J. Magn. Magn. Mater, 260 (2003) 188-194. [7] P. Coppola, F.G. da Silva, G. Gomide, F.L.O. Paula, A.F.C. Campos, R. Perzynski, C. Kern, J. Depeyrot, R. Aquino, Hydrothermal synthesis of mixed zinc–cobalt ferrite nanoparticles: structural and magnetic properties, J. Nanoparticle Research, 18 (2016) 138. [8] F. Saffari, P. Kameli, M. Rahimi, H. Ahmadvand, H. Salamati, Effects of Co-substitution on the structural and magnetic properties of NiCoxFe2−xO4 ferrite nanoparticles, J. Ceramics International, 41 (2015) 7352-7358. [9] M. Shelar, P. Jadhav, S. Chougule, M. Mallapur, B. Chougule, Structural and electrical properties of nickel cadmium ferrites prepared through selfpropagating auto combustion method, J. Alloys and Compounds, 476 (2009) 760-764. [10] M. Rahimi, M. Eshraghi, P. Kameli, Structural and magnetic characterizations of Cd substituted nickel ferrite nanoparticles. Ceramics international, 40 (2014) 15569-15575. [11] S.P. Dalawai, T.J. Shinde, A.B. Gadkarai, P.N. Vasambekar, Structural properties of Cd–Co ferrites, J. Indian Academy of Sciences, 36 (2013) 919-922 . [12] G. Tang, D. Ji, Y. Yao, S. Liu, Z. Li ,W. Qi, et al., Quantummechanical method for estimating ion distributions in spinel ferrites, J. Appl. Phys. Lett, 98(2011), 072511. [13] M. Kaur, S. Rana, P.S. Tarsikka, Comparative analysis of cadmium doped magnesium ferrite Mg1-xCdxFe2O4 (x= 0.0, 0.2, 0.4, 0.6) nanoparticles, J. Ceram. Int. 38 (2012) 4319-4323. [14] S.P. Jadhav, B.G. Toksha, K.M. Jadhav, N.D. Shinde, Effect of cadmium substitution on structural and magnetic properties of nanosized nickel ferrite, Chin. J. Chem. Phys. 23 (2010) 459. [15] M. Karanjkar, N. Tarwal, A. Vaigankar, P. Patil, Structural, Mössbauer and electrical properties of nickel cadmium ferrites, J. Ceram. Inter. 39 (2013) 1757- 1764. [16] Y.H. Hou, Y.J. Zhao, Z.W. Liu, H.Y. Yu, X.C. Zhong, W.Q. Qiu, D.C. Zeng, L.S. Wen, First-principles investigations of Zn (Cd) doping effects on the electronic structure and magnetic properties of CoFe2O4, Journal of Applied Physics, 109 (2011) 07A502. [17] S.S. Jadhav, S.E. Shirsath, S.M. Patange, K. Jadhav, Effect of Zn substitution on magnetic properties of nanocrystalline cobalt ferrite, J. Appl. Phys. 108 (2010) 093920-093926. [18] A. Gadkari, T. Shinde, P. Vasambekar, Structural and magnetic properties of nanocrystalline Mg–Cd ferrites prepared by oxalate coprecipitation method, J. Mater. Sci.:Mater. Electron. 21 (2010) 96-103. [19] A.M. Abdeen, O.M. Hemeda, E.E. Assem, M.M. El-Sehly, Structural, electrical and transport phenomena of Co ferrite substituted by Cd, J. Magnetism and Magnetic Materials 238 (2002) 75-83. [20] H. Ghorbani, M. Eshraghi, Investigation of chromium doping effect on the structural and magnetic properties of MnFe2-xCrxO4 ferrite nanoparticles, J. Research on Many-body Systems, 6 (2016) 1-9. [21] G. Goya, T. Berquo, F. Fonseca, M. Morales, Static and dynamic magnetic properties of spherical magnetite nanoparticles, J. Appl. Phys. 94 (2003) 3520. [22] H. Kaur, A. Singh, V. Kumar, D.S. Ahlawat, Structural, thermal and magnetic investigations of cobalt ferrite doped with Zn2+ and Cd2+ synthesized by auto combustion method, J. Magnetism and Magnetic Materials 474 (2019) 505–511 . [23] K.P. Remya, S. Amirthapandian, M.M. Raja, C. Viswanathan, N. Ponpandian, Effect of Yb substitution on room temperature magnetic and dielectric properties of bismuth ferrite nanoparticles, J. Appl. Phys. 120 (2016), 134304. [24] K.L. Routray, S. Saha, D. Behera, Rare-earth (La+3) substitution induced changes in the structural, dielectric and magnetic properties of nanoCoFe2O4For high-frequency and magneto-recording devices, J. Applied Physics A, (2019) 125:328. [25] M. A. Almessiere, Y. Slimani, A. D. Korkmaz, S. Guner, M. Sertkol, S. E. Shirsath, A. Baykal, Structural, optical and magnetic properties of Tm3+ substituted cobalt spinel ferrites synthesized via sonochemical approach, J. Ultrasonics sonochemistry, (2019), 54, 1- 10. [26] G. Bulai, L. Diamandescu, I. Dumitru, S. Gurlui, M. Feder, O.F. Caltun, Effect of rare earth substitution in cobalt ferrite bulk materials, J. Magn. Magn. Materials 390(2015), 123–131. [27] W. Zhang, X. Zuo, D. Zhang, C. Wu, S. R. P. Silva, Cr3+ substituted spinel ferrite nanoparticles with high coercivity, J. Nanotechnology, 27 (2016) 245707. [28] H. Khedri, A. Gholizadeh, Experimental comparison of structural, magnetic and elastic properties of M0.3Cu0.2Zn0.5Fe2O4 (M = Cu, Mn, Fe, Co, Ni, Mg) nanoparticles, J.Applied Physics A (2019) 125:709. [29] S.J. Olusegun, E.T.F. Freitas, L.R.S. Lara, H.O. Stumpf, N.D.S. Mohallem, Effect of drying process and calcination on the structural and magnetic properties of cobalt ferrite, J. Ceramics International 45 (2019) 8734–8743. [30] A. Manohar, D.D. Geleta, C. Krishnamoorthi, J. Lee, Synthesis, characterization and magnetic hyperthermia properties of nearly monodisperse CoFe2O4 nanoparticles, J. Ceramics International , 46 (2020) 28035-28041. [31] N. Shamgani, A. Gholizadeh, Structural, magnetic and elastic properties of Mn0.3−xMgxCu0.2Zn0.5Fe3O4 nanoparticles, J.Ceramics International 45 (2019) 239–246. [32] A. Gholizadeh, A comparative study of physical properties in Fe3O4 nanoparticles prepared by coprecipitation and citrate methods.Journal of the american ceramic society,100 (2017) 3577-3588. [33] S. Karimi , P. Kameli , H. Ahmadvand , H. Salamati, Effects of Zn-Cr-substitution on the structural and magnetic properties of Ni1-xZnxFe2-xCrxO4 ferrites, J. Ceramics International 42 (2016) 16948–16955. [34] R. Topkaya , A. Baykal , A. Demir , Yafet–Kittel-type magnetic order in Zn-substituted cobaltferrite nanoparticles with uniaxial anisotropy, J.Nanopart Res (2013) 15:1359. [35] G. Alvarez, H. Montiel, J.F. Barron, M.P. Gutierrez , R. Zamorano, Yafet–Kittel-type magnetic orderingin Ni0.35Zn0.65Fe2O4 ferrite detected by magnetosensitive microwave absorption measurements, J. Magnetism and Magnetic Materials , 322 (2010) 348–352 . [36] Y. Yafet, C. Kittel, Antiferromagnetic arrangements in ferrites, J. Phys. Rev. 87 (1952) 290. [37] C. Choodamani, G.P. Nagabhushana, S. Ashoka, B. DarukaPrasad, B. Rudraswamy, G.T. Chandrappa, Structural and magnetic studies of Mg1−xZnxFe2O4 nanoparticles prepared by a solution combustion method, J. Alloys and Compounds, 578(2013) 103-109. [38] M. Beyranvand, A. Gholizadeh, Structural, magnetic, elastic, and dielectric properties of Mn0.3−xCdxCu0.2Zn0.5Fe2O4 nanoparticles. Journal of Materials Science: Materials in Electronics, 31 (2020) 5124-5140. [39] M. Yousaf, M.N. Akhtar, B. Wang, A. Noor, Preparations, optical, structural, conductive and magnetic evaluations of RE's (Pr, Y, Gd, Ho, Yb) doped spinel nanoferrites, J. Ceramics International 46-4 (2020), 4280-4288. [40] S.M. Peymani-Motlagh, A. Sobhani-Nasab, M. Rostami, H. Sobati, M. Eghbali-Arani, M. Fasihi-Ramandi, M. R. Ganjali, M. Rahimi-Nasrabad, Assessing the magnetic, cytotoxic and photocatalytic influence of incorporating Yb3+ or Pr3+ ions in cobalt–nickel ferrite, J. Materials Science: Materials in Electronics 30(2019), 6902–6909. [41] M. Yehia, A. Hashhash, Structural and magnetic study of Sm doped NiFe2O4Nanoparticles, J. Materials Science: Materials in Electronics, (2019), 10854-019- 00988-9. [42] V. Turchenko, V.G. Kostishin, S. Trukhanov, F. Damay , M.B.B. Bozzo, I. Fina, V.V. Burkhovetsky, S. Polosan, M.V. Zdorovets, A.L. Kozlovskiy, K.A. Astapovich, A. Trukhanov, Structural features, magnetic and ferroelectric properties of SrFe10.8In1.2O19 compound, J. Materials Research Bulletin 138(2021) 111236. [43] D.E. Grady, Origin of the Linear Term in the Expression for the Approach to Saturation in Ferromagnetic Materials, J. Phys. Rev. B, 4 (1971) 3982. [44] A. Arrott, Dzialoshinski‐Moriya Interactions About Defects in Antiferromagnetic and Ferromagnetic Materials, J. Applied Physics, 34 (1963) 1108. [45] A. Aharoni, One-Dimensional Theory of the Parasitic Paramagnetism Term in the Approach to Saturation, J. Phys. Rev. 132 (1963)105. [46] N. Modaresi, R. Afzalzadeh, B. Aslibeiki, P. Kameli, Competition between the Impact of Cation Distribution and Crystallite Size on Properties of MnxFe3-xO4 Nanoparticles Synthesized at Room Temperature, J. ceramics Int, 43(2017) 15381-15391. [47] H. Ghorbani, M. Eshraghi, A. S. Dodaran, P. Kameli, S. Protasowicki, C. Johnson, D. Vashaee, Effect of Yb doping on the structural and magnetic properties of cobalt ferrite nanoparticles, J. Materials Research Bulletin, 147(2022) 111642. [48] B. Yalcin, S. Ozcelik, K. Icin, K.Senturk, B. Ozcelik, L. Arda, Structural, optical, magnetic, photocatalytic activity and related biological effects of CoFe2O4 ferrite nanoparticles, J. Mater Sci: Mater Electron 32 (2021) 13068–13080. [49] H. Zhang, D. Zeng, Z. Liu, The law of approach to saturation in ferromagnets originating from the magnetocrystalline anisotropy, J. Magn. Magn. Materials 322 (2010) 2375–2380. [50] B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, John Wiley & Sons, (2011) | ||
آمار تعداد مشاهده مقاله: 1,208 تعداد دریافت فایل اصل مقاله: 471 |