
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,728 |
تعداد دریافت فایل اصل مقاله | 7,656,156 |
Estimation of parameter for the Pareto distribution based on right censoring | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 154، دوره 13، شماره 1، خرداد 2022، صفحه 1873-1877 اصل مقاله (329.9 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.5819 | ||
نویسندگان | ||
Rana Hasan Shamkhi* 1؛ Wisam Kamil Ghafil2؛ Aseel Ali Jaaze1 | ||
1Department of pharmacognosy and medicinal plants, University of Basrah, Iraq | ||
2Department of Mathematics, College of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq | ||
تاریخ دریافت: 26 اردیبهشت 1400، تاریخ بازنگری: 14 شهریور 1400، تاریخ پذیرش: 29 شهریور 1400 | ||
چکیده | ||
In this paper, we found the estimation of the unknown parameter $\delta$ when $\vartheta$ is a known parameter in the Pareto distribution. First, we get the maximum probability estimators(MLEs) for unknown parameters. We have obtained the Bayes Estimators of unknown parameter $\delta$ using Lindley's approximation. A Monte Carlo simulation is performed and used a programming language R to compare the performance of the method used, and the data set was analyzed for illustration purposes. | ||
کلیدواژهها | ||
Estimation Pareto distribution؛ right censoring | ||
مراجع | ||
[1] B.C. Arnold and S.J. Press, Bayesian estimation and prediction for Pareto data, J. Amer. Stat. Assoc. 84(408) (1989) 1079–1084. [2] L. Briliano, S. Abdullah and I. Fithriani, Parameter estimation of burr distribution for right censored data with Bayes method, AIP Conf. Proc. 2242 (2020) 030004. [3] J. Cahoon and R. Martin, Generalized inferential models for censored data, Int. J. Appr. Reas. 137 (2021) 51–66. [4] S. Datta, Estimating the mean lifetime using right censored data, Stat. Method. 2(1) (2005) 65–69. [5] F. Ducros and P. Pamphile, Bayesian estimation of Weibull mixture in heavily censored data setting, Reliability Engin. Syst. Safety, 180 (2018) 453–462. [6] W.K. Ghafil, T. J. Khraibet and A.A. Alwan, Maximum likelihood and Bayesian estimation of rayleigh with partly interval-censored case-i data, Neuro Quantol. 18(5) (2020) 26–28. [7] W.K. Ghafil and R.H. Shamkhi, Parametric regression analysis of bivariate proportional hazards model with current status data, Int. J. Nonlinear Anal. Appl. 12(2)(2021) 1591–1598. [8] J.H. Kim, S. Ahn and S. Ahn, Parameter estimation of the Pareto distribution using a pivotal quantity, J. Korean Stat. Soc. 46(3) (2017) 438–450. [9] N. Kim, On the maximum likelihood estimation for a normal distribution under random censoring, Commun. Stat. Appl. Meth. 25(6) (2018) 647–658. [10] A. Lavanya and T.L. Alexander, Estimation of parameters using Lindley’s method, Int. J. Adv. Res. 4(12) (2016) 1767–1778. [11] R.E. Quandt, Old and new methods of estimation and the Pareto distribution, Metrika 10 (1964) 55-–82. [12] A. Rasheed and A. Al-Gazi, Bayes estimators for the shape parameter of Pareto type ii distribution under generalized square error loss function, Math. Theory Model. 6(11) (2014) 20–32. [13] M. Rytgaard, Estimation in the Pareto distribution, ASTIN Bulletin: The Journal of the IAA 20(2) (1990) 201–216. [14] J.I. Seo, S.B. Kang and H.Y. Kim, New approach for analysis of progressive type-II censored data from the Pareto distribution, Commun. Stat. Appl. Meth. 25(5)(2018) 569–575. [15] R. Shinohara, Estimation of Survival of Left Truncated and Right Censored Data Under Increasing Hazard, Master of Science, McGill University, Montreal, Quebec, 2007. [16] K.S. Sultan and W. Emam, The combined-unified hybrid censored samples from Pareto distribution: Estimation and properties, Appl. Sci. 11(13) (2021) 6000. [17] X. Wang and W. Gui, Bayesian estimation of entropy for burr type xii distribution under progressive type-ii censored data, Math. 9(4)(2021) 313. | ||
آمار تعداد مشاهده مقاله: 15,886 تعداد دریافت فایل اصل مقاله: 528 |