
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,772 |
تعداد دریافت فایل اصل مقاله | 7,656,171 |
Optimal values range of interval polynomial programming problems | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 158، دوره 13، شماره 1، خرداد 2022، صفحه 1917-1929 اصل مقاله (399.43 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.23797.2611 | ||
نویسندگان | ||
Somayeh Amirmahmoodi؛ Hassan Mishmast Nehi* ؛ Mehdi Allahdadi | ||
Mathematics Faculty, University of Sistan and Baluchestan, Zahedan, Iran | ||
تاریخ دریافت: 05 تیر 1400، تاریخ پذیرش: 19 آبان 1400 | ||
چکیده | ||
Uncertainty exists in many real-life engineering and mechanical problems. Here, we assume that uncertainties are caused by intervals of real numbers. In this paper, we consider the interval nonlinear programming (INLP) problems where the objective function and constraints include interval coefficients. So that the variables are deterministic and sign-restricted. Additionally, the constraints are considered in the form of inequalities. A basic task in INLP is calculating the optimal values range of objective function, which may be computationally very expensive. However, if the boundary functions are available, the problems become much easier to solve. By making these assumptions, an efficient method is proposed to compute the optimal values range using two classic nonlinear problems. Then, the optimal values range are obtained by direct inspection for a special kind of interval polynomial programming (IPP) problems. Two numerical examples are given to verify the effectiveness of the proposed method. | ||
کلیدواژهها | ||
Interval uncertainty؛ Interval nonlinear programming؛ Optimal values range؛ Interval polynomial؛ Boundary functions | ||
مراجع | ||
[1] E. Garajov´a, M. Hlad´ık and M. Rada, Interval linear programming under transformations: Optimal solutions and optimal value range, Cent. Eur. J. Oper. Res. 27 (2019) 601–614. [2] M. Hlad´ık, Optimal value bounds in nonlinear programming with interval data, TOP 19 (2011) 93–106. [3] C. Jiang, X. Han, GR. Liu and GP. Liu, A nonlinear interval number programming method for uncertain optimization problems, Eur. J. Oper. Res. 188(1) (2008) 1–13. [4] C. Jiang, ZG. Zhang, QF. Zhang, X. Han, HC. Xie and J. Liu, A new nonlinear interval programming method for uncertain problems with dependent interval variables, Eur. J. Oper. Res., 238 (2014) 245-253. [5] P. Kumar and G. Panda, Solving nonlinear interval optimization problem using stochastic programming technique, Opsearch 54 (2017) 752–765. [6] VI. Levin, Nonlinear optimization under interval uncertainty, Cybern. Syst. Anal. 35(2) (1999) 297–306. [7] VI. Levin, Optimization in terms of interval uncertainty: The determinization method, Autom. Control Comput. Sci. 46(4) (2012) 157-163. [8] X. Liua, Z. Zhanga and L. Yina, A multi-objective optimization method for uncertain structures based on nonlinear interval number programming method, Mech. Based Des. Struct. Mach. 45(1) (2017) 25–42. [9] Y. Li and YL. Xu, Increasing accuracy in the interval analysis by the improved format of interval extension based on the first order Taylor series, Mech. Syst. Sig. Process. 104 (2018) 744–757. [10] A. Mostafaee and M. Hlad´ık, Optimal value bounds in interval fractional linear programming and revenue efficiency measuring, Cent. Eur. J. Oper. Res. 28 (2020) 963–981. [11] R.E. Moore, Methods and Applications of Interval Analysis, Philadelphia, 1979. | ||
آمار تعداد مشاهده مقاله: 15,796 تعداد دریافت فایل اصل مقاله: 328 |