
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,756 |
تعداد دریافت فایل اصل مقاله | 7,656,168 |
مشخصات عملکردی مخلوط میکروسرفیسینگ حاوی پودر سرباره فولاد کوره اکسیژنی بهعنوان جایگزین فیلر طبیعی | ||
مهندسی زیر ساخت های حمل و نقل | ||
دوره 7، شماره 4 - شماره پیاپی 28، اسفند 1400، صفحه 115-135 اصل مقاله (1.77 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/jtie.2021.24660.1559 | ||
نویسندگان | ||
حسن دیواندری* 1؛ محمد حیدری2؛ مهدی زال نژاد3 | ||
1دانشکده مهندسی عمران، دانشگاه آزاد اسلامی، واحد نوشهر | ||
2دانشجوی کارشناسی ارشد گرایش راه و ترابری، دانشکده مهندسی عمران، دانشگاه شمال، آمل | ||
3دانشجوی دکتری گرایش راه و ترابری، دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران، تهران | ||
تاریخ دریافت: 03 مهر 1400، تاریخ بازنگری: 11 آبان 1400، تاریخ پذیرش: 28 آبان 1400 | ||
چکیده | ||
با توجه به اهمیت راهها در ایجاد ارتباط بین نواحی مختلف، همواره مسئله تعمیر و نگهداری راهها امری حیاتی برای سازمانهای راهداری یا حملونقل جادهای محسوب میشود. یکی از اثربخشترین شیوههای نگهداری پیشگیرانه و تعمیر راهها آسفالت حفاظتی میکروسرفیسینگ است. هدف این پژوهش، بررسی بهکارگیری فیلر سرباره فولاد کوره اکسیژن- بازی در طرح اختلاط میکروسرفیسینگ جهت سنجش عملکرد آن است. برای این منظور، ابتدا ویژگیهای شیمیایی و فیزیکی مصالح سنگی و فیلر سرباره فولاد مورد تحقیق و مطالعه واقع شده و سپس جهت بررسی عملکرد مخلوطها، از پنج ترکیب مختلف حاوی صفر، 5/2، 0/5، 5/7 و 0/10 درصد فیلر سرباره فولاد بر حسب وزن کل سنگدانه استفاده گردید. ارزیابی نمونهها بهواسطه آزمایشهای سایش در شرایط مرطوب، چرخ بارگذاری شده- جابهجایی، چرخ بارگذاری شده- چسبندگی ماسه و آزمایشهای چسبندگی مرطوب در 30 و 60 دقیقه، مطابق با دستورالعمل ISSA A143 و ASTM D6372 انجام شد. نتایج طراحی نشان داد که مخلوطهای حاوی فیلر سرباره فولاد، موجب بهبود عملکرد میکروسرفیسینگ میشوند. همچنین، در میان مخلوطها، مخلوط حاوی 5/7 درصد فیلر سرباره فولاد نسبت به نمونه شاهد موجب افزایش چسبندگی در مدت زمان 30 و 60 دقیقه به ترتیب به میزان 28 و 45 درصد، بهبود مقاومت در برابر سایش به میزان 3/48 درصد، کاهش قیر زدگی مخلوط به میزان 3/29 درصد و افزایش مقاومت در برابر جابهجایی عمودی و جانبی به ترتیب به میزان 6/47 و 0/40 درصد گردید. این مخلوط نسبت به نمونه شاهد دارای 1 درصد قیر امولسیون بیشتر بهمنظور دستیابی به چسبندگی مناسب در زمان مشخص است. | ||
کلیدواژهها | ||
آسفالت حفاظتی؛ نگهداری پیشگیرانه؛ پودر سرباره فولاد؛ میکروسرفیسینگ | ||
عنوان مقاله [English] | ||
Performance Characteristics of Microsurfacing Mixture Containing Basic Oxygen Furnace Steel Slag Powder as an Alternative to Natural Filler | ||
نویسندگان [English] | ||
Hassan Divandari1؛ Mohammad Heidari2؛ Mahdi Zalnezhad3 | ||
1ABRC | ||
2Department of Civil Engineering, Shomal University | ||
3PhD Candidate of Road & Transportation Engineering, Department of Civil Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran | ||
چکیده [English] | ||
Given the crucial importance of roads in connecting different areas, road maintenance has long been seen as a vital duty of road transportation/maintenance organizations. Microsurfacing is an important method of preventive maintenance for roads. The present research was aimed at investigating the use of basic oxygen furnace steel slag as filler in microsurfacing mix design in an attempt to evaluate its performance. For this purpose, we began by studying the physical and chemical properties of aggregates and steel slag filler. Subsequently, the performance of five different asphalt mixtures containing the steel slag filler at 0, 2.5, 5.0, 7.5, and 10.0 wt.% per total weight of aggregate was investigated. The microsurfacing specimens were evaluated using wet track abrasion, loaded wheel-displacement, loaded wheel-sand cohesion, and wet cohesion tests for 30 and 60-min testing times according to ISSA A143 and ASTM D6372. The results showed that the steel slag filler-containing mixtures tended to improve the performance of microsurfacing. Among other mixtures, the one containing the steel slag filler at 7.5 wt.% could improve the cohesion strength by 28 and 45% upon 30 and 60 min of testing, respectively, as compared to the control specimen. Moreover, this specimen exhibited 48.3% higher abrasion resistance, 29.3% lower bleeding, and increased resistance to vertical and lateral displacements by 47.6 and 40.0%, respectively. Compared to the control specimen, this specimen contained 1% higher bitumen emulsion, setting the scene for achieving an appropriate level of cohesion strength within a given time. | ||
کلیدواژهها [English] | ||
Surface Treatment, Preventive Maintenance, Steel Slag Powder, Micro surfacing | ||
مراجع | ||
ایزدی، ا.، زال نژاد، م.، زال نژاد، ح. و بزرگی، پ. 1399. "ارزیابی آزمایشگاهی عملکرد آسفالت حفاظتی میکروسرفیسینگ رنگی حاوی رنگدانههای قرمز اکسید آهن". مهندسی زیرساختهای حملونقل، 6(4): 99-120. .doi:10.22075/jtie.2020.20189.1449
فخری، م.، احمدی، ا.، علی نسب، ر. و کریمی گوغری، م. 1396. "بررسی آزمایشگاهی رفتار فیزیکی و مکانیکی مخلوطهای آسفالتی اصلاح شده با مصالح سنگی سربارهای". پژوهشنامه حملونقل، 14(2): 227-238.
کاووسی، ا.، جلیلی قاضی زاده، م.، محمدزاده مقدم، ا. و ضیائی، س. ع. 1394. "بررسی و مقایسه خصوصیات مکانیکی مخلوطهای آسفالتی حاوی سربارههای کوره قوس الکتریک و کوره اکسیژنی". مهندسی زیرساختهای حملونقل، 1(3): 15-31. doi:10.22075/jtie.2015.314
کی منش، م. ر.، زیاری، ح.، زال نژاد، ح. و زال نژاد، م. 1400. "ارزیابی مشخصات رئولوژی و قیرزدگی باقیمانده قیرهای امولسیون اصلاح شده با پلیمر به روشهای مختلف ساخت". مهندسی زیرساختهای حملونقل، 7(3): 59-78. .doi:10.22075/jtie.2020.20509.1459
Arabani, M., Tahami, S. A. and Taghipoor, M. 2017. “Laboratory investigation of hot mix asphalt containing waste materials”. Road Mater. Pavement Design, 18(3): 713-729. doi:10.1080/14680629.2016.1189349
Asi, I. M. 2007. “Evaluating skid resistance of different asphalt concrete mixes”. Build. Environ., 42(1): 325-329.
ASTM D6372. 2015. “Standard practice for design, testing, and construction of microsurfacing”. West Conshohocken, PA, American Society of Testing and Materials.
ASTM D7497. 2021. “Standard practice for recovering residue from emulsified asphalt using low-temperature evaporative technique”. West Conshohocken, PA. American Society of Testing and Materials.
Awed, A. M., Tarbay, E. W., El-Badawy, S. M. and Azam, A. M. 2022. “Performance characteristics of asphalt mixtures with industrial waste/by-product materials as mineral fillers under static and cyclic loading”. Road Mater. Pavement Design, 23(2): 335-357. doi:10.1080/14680629.2020.1826347
Aziz, M. M. A., Hainin, M. R., Yaacob, H., Ali, Z., Chang, F. L. and Adnan, A. M. 2014. “Characterisation and utilisation of steel slag for the construction of roads and highways”. Mater. Res. Innov., 18(S6): 255- 259. doi:10.1179/1432891714Z.000000000967
Barišić, I., Netinger Grubeša, I. and Hackenberger Kutuzović, B. 2017. “Multidisciplinary approach to the environmental impact of steel slag reused in road construction”. Road Mater. Pavement Design, 18(4): 897-912. doi:10.1080/14680629.2016.1197143
Bista, S. 2020. “Guidelines for mix design and construction of slurry seal and microsurfacing pavement preservation treatments”. University of Nevada, Reno.
Blankendaal, T., Schuur, P. and Voordijk, H. 2014. “Reducing the environmental impact of concrete and asphalt: A scenario approach”. J. Clean. Prod., 66: 27-36.
Buss, A. F. and Claypool, B. S. 2021. “Analytical methods to determine effectiveness of slurry seals in wet/freeze climate using pavement management information systems”. Road Mater. Pavement Design, 1-19. doi:10.1080/14680629.2020.1868327
Choudhary, J., Kumar, B. and Gupta, A. 2020. “Utilization of solid waste materials as alternative fillers in asphalt mixes: A review”. Constr. Build. Mater., 234: 117271. doi:10.1016/j.conbuildmat.2019.117271
Choudhary, J., Kumar, B. and Gupta, A. 2021. “Evaluation of engineering, economic and environmental suitability of waste filler incorporated asphalt mixes and pavements”. Road Mater. Pavement Design, 22(S1): 624-640. doi:10.1080/14680629.2021.1905698
Dong, Q., Chen, X., Huang, B. and Gu, X. 2018. “Analysis of the influence of materials and construction practices on slurry seal performance using LTPP data”. J. Transport. Eng., Part B: Pavements, 144(4): 04018046. doi:10.1061/JPEODX.0000069
Georgiou, P. and Loizos, A. 2021. “Environmental assessment of warm mix asphalt incorporating steel slag and high reclaimed asphalt for wearing courses: A case study”. Road Mater. Pavement Design, 22(S1): 662-671. doi:10.1080/14680629.2021.1906305
Gransberg, D. D. 2010. “NCHRP Synthesis 411: Microsurfacing; A synthesis of highway practices”. Transportation Research Board of the National Academies, Washington, DC. doi:10.17226/14464.
Hainin, M. R., Rusbintardjo, G., Hameed, M. A. S., Hassan, N. A. and Yusoff, N. I. M. 2014. “Utilisation of steel slag as an aggregate replacement in porous asphalt mixtures”. Jurnal Teknologi (Sci. and Eng.), 69(1): 67-73.
ISSA. 2017a. “Laboratory test method for wet track abrasion of slurry surfacing systems”. Technical Bulletin, International Slurry Surfacing Association.
ISSA. 2017b. “Test method for measurement of excess asphalt in bituminous mixtures by use of a loaded wheel tester and sand adhesion”. Technical Bulletin, International Slurry Surfacing Association.
ISSA. 2017c. “Test method for measurement of stability and resistance to compaction, vertical and lateral displacement of multilayered fine aggregate cold mixes”. Technical Bulletin, International Slurry Surfacing Association.
ISSA. 2017d. “Test method to classify emulsified asphalt/aggregate mixture systems by modified cohesion tester measurement of set and cure characteristics”. Technical Bulletin, International Slurry Surfacing Association.
ISSA. 2017e. “Trial mix procedure for slurry seal design”. Technical Bulletin, International Slurry Surfacing Association.
ISSA A143. 2010. “Recommended performance guidelines for micro surfacing”. International Slurry Surfacing Association.
Izadi, A., Zalnezhad, M., Bozorgi Makerani, P. and Zalnezhad, H. 2020. “Mix design and performance evaluation of coloured slurry seal mixture containing natural iron oxide red pigments”. Road Mater. Pavement Design, 1-18. doi:10.1080/14680629.2020.1860803
Johannes, P. T. 2014. “Development of an improved mixture design framework for slurry seals and micro-surfacing treatments”. The University of Wisconsin.
Kavussi, A. and Qazizadeh, M. J. 2014. “Fatigue characterization of asphalt mixes containing electric arc furnace (EAF) steel slag subjected to long term aging”. Constr. Build. Mater., 72: 158-166. doi:10.1016/j.conbuildmat.2014.08.052
Keymanesh, M. R., Ziari, H., Zalnezhad, H. and Zalnezhad, M. 2021. “Mix design and performance evaluation of microsurfacing containing electric arc furnace (EAF) steel slag filler”. Constr. Build. Mater., 269: 121336. doi:10.1016/j.conbuildmat.2020.121336
Kumar, R. and Ryntathiang, T. L. 2016. “New laboratory mix methodology of microsurfacing and mix design”. Transport. Res. Proc., 17: 488-497.
Li, F., Feng, J., Li, Y. and Zhou, S. 2021. “Preventive maintenance technology for asphalt pavement”. Springer.
Masoudi, S., Abtahi, S. M. and Goli, A. 2017. “Evaluation of electric arc furnace steel slag coarse aggregate in warm mix asphalt subjected to long-term aging”. Constr. Build. Mater., 135: 260-266. doi:10.1016/j.conbuildmat.2016.12.177
Mistry, R., Karmakar, S. and Kumar Roy, T. 2019. “Experimental evaluation of rice husk ash and fly ash as alternative fillers in hot-mix asphalt”. Road Mater. Pavement Design, 20(4): 979-990. doi:10.1080/14680629.2017.1422791
Pattanaik, M. L., Choudhary, R., Kumar, B. and Kumar, A. 2021. “Mechanical properties of open graded friction course mixtures with different contents of electric arc furnace steel slag as an alternative aggregate from steel industries”. Road Mater. Pavement Design, 22(2): 268-292. doi:10.1080/14680629.2019.1620120
Pittenger, D. M. and Gransberg, D. D. 2020. “Life cycle cost analysis of Portland cement slurry seal and microsurfacing to correct rutting”. J. Struct. Integrity Maint., 5(1): 1-7. doi:10.1080/24705314.2019.1692166
Prapaitrakul, N., Han, R., Jin, X., Martin, A. and Glover, C. 2010. “Comparative study on recovered binder properties using three asphalt emulsion recovery methods”. J. Test. Eval., 38(6): 653-659. doi:10.1520/JTE102739
Rezaei Lori, A., Bayat, A. and Azimi, A. (2021). “Influence of the replacement of fine copper slag aggregate on physical properties and abrasion resistance of pervious concrete”. Road Mater. Pavement Design, 22(4): 835-851. doi:10.1080/14680629.2019.1648311
Shen, D. H., Wu, C. M. and Du, J. C. 2009. “Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture”. Constr. Build. Mater., 23(1): 453-461.
Simone, A., Mazzotta, F., Eskandarsefat, S., Sangiorgi, C., Vignali, V., Lantieri, C. and Dondi, G. 2019. “Experimental application of waste glass powder filler in recycled dense-graded asphalt mixtures”. Road Mater. Pavement Design, 20(3): 592-607. doi:10.1080/14680629.2017.1407818
Skaf, M., Manso, J. M., Aragón, Á., Fuente-Alonso, J. A. and Ortega-López, V. 2017. “EAF slag in asphalt mixes: A brief review of its possible re-use”. Resour., Conserv. Recy., 120: 176-185. doi:10.1016/j.resconrec.2016.12.009
Stehlik, D., Dasek, O., Hyzl, P., Coufalik, P., Krcmova, I. and Varaus, M. 2015. “Pavement construction using road waste building material – from a model to reality”. Road Mater. Pavement Design, 16(S1): 314-329. doi:10.1080/14680629.2015.1029680
Takamura, K. and James, A. 2015. “Paving with asphalt emulsions”. PP. 393-426. In: S. C. Huang and H. Di Benedetto (Eds.), Advances in Asphalt Materials, Oxford, Woodhead Publishing.
Wang, A., Shen, S., Li, X. and Song, B. 2019. “Micro-surfacing mixtures with reclaimed asphalt pavement: Mix design and performance evaluation”. Constr. Build. Mater., 201: 303-313.
Zalnezhad, M. and Hesami, E. 2020. “Effect of steel slag aggregate and bitumen emulsion types on the performance of microsurfacing mixture”. J. Traffic Transport. Eng., (English Edition), 7(2): 215-226. | ||
آمار تعداد مشاهده مقاله: 544 تعداد دریافت فایل اصل مقاله: 693 |