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Abstract

The growth of the Internet of Things and mobile devices highly rely on independent and distributed
operation in wireless networks. A focus on the allocation of spectrum for effective communication,
mitigation of interference and reduction in the energy consumption in the wireless environment is
essential. Non-availability of the spectrum in a wireless network can be overcome by spectrum reuse
in Cognitive Radio Femtocell networks (CRFN) which improves the indoor communication coverage.
is mostly preferred. The spectrum is sensed at regular intervals by the secondary user (SU) to
detect the presence of the primary user(PU). Sensing the spectrum reduces the performance and the
throughput of the secondary users. To overcome the above in this research, a novel multichannel
spectrum allocation (MSA) technique combined with a decode-and-forward (DF) based cooperative
spectrum sensing scheme is proposed. The information rate that can be transmitted over a given
bandwidth is greatly enhanced in the proposed multichannel resource allocation (MRA) technique
It is evident from the simulation results, that the throughput of the SUs is boosted when compared
over the established techniques.

Keywords: Terms–Cognitive radio femtocell network, Resource allocation, Cooperative spectrum
sensing, Primary user, Licensed band, Secondary user allocation

1. Introduction

In real time wireless communication systems, the network is simultaneously used by multiple users
and is in a shared state at any given point of time. The requirement of a bandwidth / spectrum for
data transmission in a wireless network is achieved by dynamic allocation of resources [7]. With the
advent of new devices, the number of users subscribing to the network increase from time to time, the
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need of radio spectrum is continuously in demand. Rather than increasing the number of macro cells,
introducing femtocells in the traditional network will support in increasing the network capacity [4].
The unlicensed users defined as Secondary users (SU), operate in fallow licensed spectrum bands
without interfering with the Primary / licensed Users (PU), by sharing the spectrum. Primary Users
are given more priority to use the spectrum compared to that of the Secondary Users in such a
shared network. The dynamic spectrum allocation approach enables the Cognitive Radio Femtocell
Network to serve both the Primary and Secondary users.The secondary users have to continuously
monitor the spectrum to identify the absence of any primary users so as to transmit the data to
other secondary receivers. The DF approach is utilized to ensure that there is no interference to the
PU [9].

The most important aspect of cognitive radio is spectrum sensing, which involves monitoring
the frequency spectrum for empty bands. Spectrum sensing can be accomplished using a variety of
methods, such as an energy detector or a matching filter. Only at larger signal to noise ratio (SNR)
values can the energy detector function well, but the complexity of matched filters is very high. [12].

Due to these limits, the multichannel access technique was developed, which works better under
low SNR conditions and has a lower complexity than the traditional algorithm. matched filter.
Sensing throughput trade-off is experienced, with the enhancement in sensing reliability which causes
a reduction in total throughput. Increase in throughput can be achieved by varying the sensing period
interval [11].In this research a cooperative cognitive radio environment is adopted as it provides higher
spectrum sensing capacity and also to exploit the spatial diversity present in the wireless channel.
The cooperative environment comprises of a centralized Fusion Centre (FC). The FC is synchronized
with multiple secondary users, so as to enable the SUs to report thediagnosed sensing results to the
FC at regular intervals [2]. FC identifies the presence of the PU based on the sensing data, and
broadcasts this information to all the nodes.

Often, all SUs are required to sense the spectrum band and report the local sensing information to
the FC during every slot period [5]. SUs spend a considerable amount of energy every time to sense
the channel which decreases the performance and also the of total throughput of SUs is reduced.
Thus it becomes imperative to consider the energy of the SUs.To warrant energy-saving for sensing
operation as well as to improve the total throughput, a minimal number of SUs have to be identified
and deployed.

In the proposed system, a multi-channel resource allocation scheme which enhances the total
throughput of SUs and has better target detection performance is implemented. The enhancement
in the total throughput of SUs is achieved based on the design of the time and energy spent in
cooperative sensing.The energy required to operate the devices is more in wireless networks. As the
blockage in the battery capacity still persists, optimization of battery power is another important
concern that is addressed in this paper. The DF (decode and forward) methodology is utilized
to reduce the interference, as interference is the major factor that reduces battery capacity of the
devices.

This paper is organized as follows. In Section 2, presents a detailed overview of the related work,
Section 3 elaborates on the system model. In Section 4 details the proposed work, with a brief
discussion of the results in Section 5. And the conclusion is presented in Section 6.

2. Related work

The authors Rosouli et al [10] perform an improvement in throughput by optimizing sub-carrier
pairing and power distribution. The concept of queueing was implemented at the SUs for the trans-
mission of the data packets by the authors Wu and Min G [13]. Transmission of data using multiple
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paths with a path selection mechanism using DF method was implemented by Bhatnagar [3]. Ian
F. Akyildiz, Brandon F. Lo, Ravikumar Balakrishnan [1] in their work presented a technique which
detects the spectrum for data transmission efficiently and also safeguards the licensed users from
harmful interference. The efficiency of detection is impaired with multipath fading, shadowing and
receiver uncertainty issues. CSS has been found as an effective technique for mitigating the impact
of these issues. While augmenting the detection performance, CSS can bring about a cooperation
overhead. The overhead refers to any additional sensing time, delay, performance degradation. These
overhead are the drawbacks in this system.Zhuo Li, Song Guo,DezeZeng, Ahmed Barnawi and Ivan
Stojmenovic [8] proposed a joint resource allocation in multicell networks. A joint optimization
across power control, channel allocation anduser association is considered. The optimization goal
is to enhance the minimal throughput of cells. A simulated annealing based algorithm is used for
solving user association and channel allocation problem. Branch and Bound algorithm is used for
solving power control. The expected goal and efficiency has not been obtained.

Ghurumuruhan Ganesan and Ye Geoffrey Li [6] proposed a system with Cooperative Spectrum
Sensing in Cognitive Radio Networks. This scheme utilizes the benefit of cooperation from the used
spectrum sensing for obtaining improved detection time and increasing agility. The location of the
primary transmitter is assumed in such a system. If the location of the primary transmitter is
unknown, the benefit of cooperation cannot be utilized. This is the pitfall in such a system.

3. System model

A Cognitive Radio Femtocell network with a single PU node and multiple SU nodes are considered.
The network is assumed to have a FC to identify whether the spectrum is in use by a PU or not.
The nodes operate in half duplex mode with the DF scheme.

The SNR value is compared and if it found to be greater than the threshold value, the node is
permitted to decode the received information.

The two dimensional CRFN with a PU is placed at the middle of F, denoted by kc and N SUs
are randomly located at {Kr ∈ F}Nr=1. The complete frame design comprising of an initial sub-frame
and M consecutive sub-frames for the sensing and broadcasting overhead [3] as represented in Fig.
1.

The network coherence time between PU and SUs is used to calculate the number of sub-frames
M+1. At the initial sub-frame, the proposed joint RA approach is acknowledged. This is maintained
for M sub-frames in a row. FC receives local sensing information from SUs in each sub-frame and
makes an overall conclusion about the condition of the spectrum band, whether PU is present or not.
SUs begin their own data transmissions to their secondary receivers, based on the ultimate decision
of the SUs. vacancy by FC. The transmission of data by one SU is interfered by other SUs in such
a system.

The discrete-time observation vector of the r-th SU is indicated by xr = [xr,1, xr,2, . . . , xr,D], where

H0 : xr,n = vr,n (1)

when the spectrum band is not presently being used by PU,

H1 : xr,n = grfn + vr,n (2)

and when the spectrum band is presently being used by PU at the n−th time instant observation,
and the positive integer D is the view size. Inequations (1) and (2), vr,n is denoted as an independent
and identically distributed complex additive Gaussian noise with zero mean and variance σ2

v .gr is
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denoted as a complex channel between PU and r-th SU and fn is denoted as a transmitted complex
signal of the PU. Assume that, each SU uses the energy detector, thenthe representation of the local
test statistics of the r-th SU is given by

T (xr) =
D∑

n=1

|xr,n|2 (3)

Assuming independent and identically distributed noise, χ2(D) as the central chi-square distribution
under H0 and χ

2(D, ηr) under H1 as the non-central chi-square distribution are followed by the local
test statistics T (xr), where ηr is calculated as b0||kc − kr||−α with path gain at the unit distance b0
and path-loss exponent α. The complex channel gr is formed as an independent but not identically
distributed channelin which SUs may experience a type of path loss or fading situations. Rayleigh
fading with probability density function is represented as

fgr(t) =
t

ηr
e
−
t2

2ηr , t ≥ 0 (4)

Representing the general test statistic produced at FC byT (Z), where Z = [z1, z2, . . . , zD] and the
pre-determined decisionthreshold by λ, the spectrum sensing with detection performance is generally
calculated by two indices: detection probability Pd and false alarm probability Pf are defined as
follows

Pd = Pr{T (Z) > λ|H1} and
Pf = Pr{T (Z) > λ|H0} (5)

respectively. The upper bound of the spectral efficiency is determined as Pf , where minimum spec-
trum utilization is resulted by Pf .

The transmission of data for secondary networks is mentioned as per equation (5). Let the time
spent when NSUs and FC sense the spectrum band cooperatively, be denoted by D/fs + Nτr and
length of one sub-frame duration by T , where fs represents samplingfrequency and τr represents
reporting time for a SU. Then, the time taken fordata transmission of each SU becomes T −D/fs −
Nτr. Since Pd takes near to 1 while Pf near to 0 and the totalthroughput of SUs under H1 is very
small, the total throughput of SUs can be estimated as:

E ≈ PH0(1− Pf )

(
1− D

fT
s

− Nτr
T

)
C0 (6)

where the probability that the spectrum is vacant is represented as PH0 and C0 represents the total
throughput of SUs under H0.

From equation 6, a maximization problem to enhance the totalthroughput of SUs over M sub-
frames, without initial sub-frame,is represented as

max (1− Pf )

(
1− D

fT
s

− Nτr
T

)
C0 (7)

This is subjected to

Pd ≥ P̄d (8)
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where Pd is target detection probability provided in CRFN and by using the same power of P, the
power transmitted by each is assumed for each sub-frame. Then, C0 isgiven by

N∑
m=1

log

(
1 + P |gm,m|2/

(
σ2
n +

N∑
i=1,̸=m

P |gi,m|2
))

(9)

with the complex channel gi,m between i-th SU and m-th secondary receiver and noise variance σ2
n.

4. Proposed methodology

If a SU reduces the view size to have more transmission time for data, it results in a reduction
in false alarm performance. This leads to a decrease in the total throughput of SUs as described in
equation 7. From the works of Liang et. al., [12], the sensing time allocation (STA) scheme which
determines the optimal view size of each SU for spectrum sensing, is calculated in reverse to the
measured number of SUs used for sensing. From an energy saving point of view, the SU consumes
a little amount of energy during acquisition of the PU’s signal and broadcasting the local sensing
information to the FC. Since the transmitting power of SU has been limited to be low value, the
total throughput is considerably affected by the utilized energy. For optimizing the energy utilized
for spectrum sensing, the broadcasting secondary user allocation (SUA) scheme as referred in [13] is
opted. The proposed scheme decides the optimal number of SUs and the view size used for sensing
in order to maximize the throughput performance. The goal of the system is to concurrently find
the number of SUs, L out of N, involved in sensing and the view size, K, to maximize the network
throughput satisfying target detection probability.

4.1. Problem methodology with RCOS based CSS

FC selects L broadcasting SUs using the local sensing information of all SUs at the initial sub-
frame. Each SU accumulates K observations. The remaining (N − L)SUs awaits the global sensing
decision from the FC to schedule their transmission of data. Here, the L sized set of SUs which help
to CSS is indicated by S and their transmission power would be P − ζ, where ζ indicates the power
using for broadcasting. Using the joint RA strategy, the maximization problem can be formulated
as

maxK,L,S (1− Pf )

(
1− K

fT
s

− τrL

T

)
C0{L} (10)

where

C0{L} =
∑
r∈S

log

(
1 +

(P − ζ)|gr,r|2

σ2
n +

∑
i∈S⧹r(P − ζ)|gi,r|2 +

∑
i/∈S⧹r P |gi,r|2

)

+
∑
r∈S

log

(
1 +

P |gr,r|2

σ2
n +

∑
i∈S(P − ζ)|gi,r|2 +

∑
i/∈S⧹r P |gi,r|2

)
(11)

In the Fusion Center it is necessary to use the ample CSS scheme, which leads to save more resources
than joint RA strategy with randomly selecting L reporting SUs. This will reduce the inconvenience
by satisfying the target detection performance in equation 10. From the case that the larger local
test statistics would have shown from the signal passed through a favorable network with a high
probability, the RCOS based CSS scheme is adopted which selects the L broadcasting SUs with large
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local test statistics. The probability distribution function and cumulative distribution function of
the local test statistics of the r-th SU under H1 are written as

fr(z;K) =

∫ ∞

0

ψ{z;K, t}fηr{t}dt and (12)

fm(z;K) =

∫ ∞

0

ψ{z;K, t}fηr{t}dt (13)

The ordering operation on the Nlocal sensing information {T{Xr}}Nr=1 creates the order statistics
{Tbr{Xbr}}Nr=1, where Tbr{Xbr} is the r-th order statistics in X. The global test statistics based on
RCOS is created by directly combining with equal weights as TRCOS =

∑N
r=N−L+1 Tbr{Xbr}. Then,

the detection probability in 4 can be obtained as

Pd = 1−
∮
A

fTbL
(zL)dz

= 1−
∫ λ

L

0

· · ·
∫ λ−

∑N−1
r=N−L+1 zr

zN−1

fTbL
(zL)dzN . . . dzN−L+1 (14)

where A = {zL : zN−L+1 + · · · + zN < λ, 0 < zN−L+1 < · · · < zN} is denoted as integral region and
the joint probability distribution function of {Tbr}Nr=N−L+1 is

fTbL
(zL) =

N !

(N − L)!

{
N∏

r=N−L+1

fn(zr; k)

}{
N∏

r=N−L+2

×Mr(zr; k)−Mr−1(zr−1; k)

}
MN−L+1(zN−L+1;K)

(15)

By substituting equation 15 in equation 14, the detection probability is mathematically obtained
andthe detection probability is declared using the function pd as Pd = pd(K,L, λ).

4.2. Maximization problem with constraint relaxation

Based on the case that the results of the problem in equation 10, would be optimal and sustains
equality in equation 8, as shown in [12], the problem in equation 10, can be represented only in terms
of the variables K and L. Likewise, by replacing fN−L+1(.) = · · · = fN(.) = φ{.} and MN−l+1(.) =
· · · = MN(.) = ϕ{·} with pdf φ{z;K} and cdf ϕ{z;K} of local test statistics χ2{N} [1] in equation
15, conclusively. The false alarm probability Pf of RCOS based CSS in equation 10, can be obtained
as

Pf
= 1−

∮
A

M !

(M − L)!

{
N∏

r=N−L+1

ϕ{zi;K}

}{
N∏

r=N−L+2

×ϕr(zj; k)− ϕ{zj−1; k}

}
ϕ{zN−L+1;K} (16)

Since the threshold λ is set to p−1
d {K,L, P̄d}, Pf derived in equation 15, can be expressed as

Pf = pfa{(K,L, p−1
d )(K,L, p̄d)} (17)

by introducing a function pfa . Here, the set of {K,L, λ} satisfyingPd = P̄dcan be mathematically
expressed. Finally, the maximization problem in equation 10, is rewritten as

max
(
1− pfa

(
(K,L, p−1

d )(K,L, p̄d)
))(

1− K

fT
s

− τrL

T

)
C0L (18)
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The optimal solution set K∗, L∗ is determined using the exhaustive search method, where K is an
integer number and L is also an integer number constrained to the interval [1, N ]. The best view size
and number of SUs employed for CSS that improves the overall throughput of SUs while satisfying
the target detection probability are determined by computing the reformulated issue in equation 18.

Note 1: When the overhead burden, and r, are very minimal, the joint RA approach logically
shows the same throughput as STA in equation (18). However, when f s grows, the joint RA strategy’s
throughput approaches that of SUA. In terms of the use of sensing-overhead resources, the proposed
joint RA strategy makes a general statement from the existing RA schemes.

Note 2: The combined RA problem employing the RCOS based CSS improves the throughput
performance as shown in Section V because the RCOS based CSS indicates local sensing information
from more trustworthy SUs.

5. Performance analysis

This section compares the performance of suggested joint RA tactics to established RA strategies,
such as STA and SUA. The performance is assessed in bit/s/Hz total throughput of SUs with different
sampling rates. frequencies fs, reporting times τr and power used ζ. Consider two dimensional CRFN
with α = 2 and target detection probability P̄d is set to 0.9. Assume that a sub- T is the frame
period, and P (H0) is the chance that the band is empty. The noise variance is 1, and the charged
power P at each SU is set to 0 dB for each sub-frame. When r = 0.1 ms,= 23 dB, and M = 10,
the throughput performance of STA, SUA, proposed joint RA with RS, and joint RA with RCOS is
plotted as a function of the average received SNR from PU with varied f s in Fig. 2. SUA is sensitive
tof s, i.e. for lowf s, whereas the STA scheme has less of an influence on the change off s.

Instead of using all of the SUs, the proposed technique makes proper use of the L number of SUs
for sensing. The SUA and the proposed scheme are sensitive to changes in or rthan the STA. When
and rare are virtually zero, the throughput performance of the proposed joint RA and STA methods
will be equal. CSS will consume less time and energy as a result of this. The proposed combined
RA scheme’s throughput will be similar to that of SUA during highf s, as noted in Note 1. In low
received SNR, the joint RA strategy with RCOS reduces the amount of resources used for CSS. The
improvement in joint RA performance with RCOS is depicted in Fig. 2.

The proposed approach maximises throughput performance, according to simulation results. In
addition, Fig 3 depicts the throughput performance of the proposed joint RA scheme with RS and
RCOS based on the number of sub-frames F + 1. Let fs = 2 MHz, r = 0.1 ms, and = 23dB be the
values. The joint RA plan with RS and RCOS makes utilisation of the reduced amount of resources
by jointly scheming the time and energy for high average obtained SNR from PU. An initial sub-frame
is used in the cooperative RA strategy with RCOS to monitor all of Sus’ local test statistics. As a
result, as the channel coherence time decreases, the throughput performance decreases. This results
in a smaller M+1. The joint RA strategy with RCOS shows a significant performance maximization
as the average received SNR from PU becomes low on account of the characteristic of RCOS based
CSS as referred in Note 2. The joint RA strategy with RCOS or RS is chosen with appropriate
channel coherence time and the average received SNR from PU. The proposed RA strategies is found
to yield enhanced throughput performance than STA and SUA of which performance is considerably
affected by fs, τr, ζ.

6. Conclusion

The analysis is used to generalise the traditional RA techniques for CRFN in [12] and [13] that
meet the target detection performance. The proposed joint RA strategy was designed to reduce the
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amount of time and energy spent on spectrum sensing, and its performance was compared to that of
existing strategies. However, taking account of the practical i.n.i.d. channel model, the RCOS based
CSS scheme which gives the criteria for selecting the set of broadcasting SUs. The ideal allocation
approach was mathematically determined using the exhaustive search method. The simulation results
reveal that the proposed combined RA scheme outperforms the existing RA schemes in terms of
spectrum efficiency. When a substantial amount of reporting time and energy is required, or when a
low sample frequency is used, the performance improvement becomes extremely significant.
Initial Subframe {M consecutive subframes}

Figure 1: The complete frame structure of CRFN
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Figure 2: Comparison of joint RA with RCOS, joint RA with RS, SUA and STA

Figure 3: Comparison of joint RA with RCOS and joint RA with RS
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