N
MA

Design and implementation of the 6-DoF robotic
manipulator using robot operating system

B. Vinod®, B. Bindu?, G. N. Koushik Karan®, V. E. Jayanth Akash®, S. Dinesh Kumar®

aFaculty at Department of Robotics and Automation, PSG College of Technology, India
bDepartment of Robotics and Automation Engineering, PSG College of Engineering, India

(Communicated by Madjid Eshaghi Gordji)

Abstract

Material handling robots are replacing human workers in most of the manufacturing shop floors.
Robot operating system is an open-source framework that enables visualization and implements
various complex robots and their functions. A 6-DoF robotic manipulator with a gripper is designed
to perform the pick and place operations. The aim is to integrate the designed robot with the robot
operating system. The integrated system is then visualized and controlled using a gazebo and RViz
to perform pick and place operations.

Keywords: Robotic manipulator, Pick and place, Robot operating systems, Motion planning

1. Introduction

A. Robotic manipulator

A robotic manipulator consists of one fixed end and one free end to perform the specific assigned
task. Robots that are specific to industry perform various tasks such as picking and placing which
are similar to the operations of a human arm. Pick and place robots used in modern manufacturing
scenarios handle repetitive tasks while freeing up human workers to focus on more complex work
[12]. Typically mounted on a fixed stand, pick and place robots are positioned to access different
areas to perform the task.

Email addresses: bvinod172@gmail.com (B. Vinod), bindu_psg@gmail.com (B. Bindu),
koushikkaran6@gmail.com (G. N. Koushik Karan), akashjayanth14@gmail.com (V. E. Jayanth Akash),
dinesh.s@gmail.com (S. Dinesh Kumar)

Received: August 2021 Accepted: November 2021

http://dx.doi.org/10.22075/ijnaa.2021.5882

1754 Vinod, Bindu, Koushik Karan, Akash, Kumar

B. Robot operating system

The Robot Operating System which is commonly called ROS is an open-source framework that
provides easy integration of components into the robot. ROS is a meta operating system that usually
works upon some other operating system that generally is Ubuntu Linux. ROS provides services like
an operating system that include low-level device control, hardware abstraction, implementation of
commonly-used functionality, package management, and message-passing between processes. ROS is
written in C'++, Python, and Lisp. ROS is designed as a loosely coupled system in which a process is
called a node. ROS provides a variety of tools to visualize and record data, create scripts automating
complex configuration and setup processes, and easily navigate the ROS package structures [10]. The
addition of these tools greatly increases the capabilities of systems using ROS by simplifying and
providing solutions to several common robotics development problems. Important concepts of ROS
are nodes, topics, master, service, messages, parameter server.

Gazebo is an open-source 3D robotics simulator. With a gazebo, it is possible to create a 3D
scenario with robots, obstacles, and many other objects. By using a gazebo, it is possible to test
the robot in difficult or dangerous scenarios without any harm to the robot. The gazebo provides
realistic rendering of environments such as high-quality lighting, shadows, and textures. Gazebo is
the actual real-world simulator that will allow the developer to set up an environment and simulate
the robot. In gazebo, it is possible to create a world with the help of building a model editor inbuilt
in the gazebo and use it in the project.

RViz is a 3D visualization software tool in Robot operating system for robot applications. With
the help of the RViz tool developer can visualize what the robot is doing and seeing. This is the view
of how the robot sees the environment. With the help of RViz developers can debug or reconstruct or
reframe the method for the desired result. RViz allows the user to view the simulated robot model,
sensor information from the sensors of the robot [6]. If an actual robot is communicating with a
workstation that is running RViz, it will display the robot’s current configuration on the virtual
model. ROS topics will be displayed as live representations based on the sensor data published by
any cameras, [R sensors, and laser scanners that are part of the robot’s system. This can be useful
to develop and debug.

Movelt! is the state-of-the-art software for the manipulation of robots. The basic function of the
Movelt! system is to provide the trajectories for the robotic manipulator and to put the end effector
in a particular place. It incorporates the latest technologies in manipulation, motion planning,
kinematics, control, 3D perception, and navigation. It provides a platform for the development
of advanced robotics applications, evaluating new robot designs, and building integrated robotics
products. Movelt! is open-source software for manipulation and has been used on over 65 different
robots which are widely used. Movelt! allows its users to import their robots and configure the
kinematics of the robots [3].

2. Methodology

The design and implementation of 6-DoF robotic manipulator using ROS have various steps as
represented in figure

Design and implementation of the 6-DoF robotic manipulator using robot operating system 1755

| | Converting the

| CAD design of .)
the robotic arm CAD design to
| LURDF

——

W

| Configuring the | Launching the
URDF file with —>| model with
Moveit | gazebo and Rviz

——

— \Lllr —
: Motion planning : Object grasping
and pointto +—> and object

| point motion | relocation

Figure 1: Process flowchart

The first step involves the CAD design of the robotic manipulator with a gripper in SolidWorks
software. The CAD model is converted then into a URDF model. The URDF file is then configured
using Movelt! to implement motion planning and other complex functions. Once the package for
Movelt! is created the robot model is further launched using gazebo and RViz. Motion planning is
then implemented and then point-to-point motion using the pose data is executed using move_group.
In gazebo, objects are created and gazebo plugins are added to pick the objects. Further, a python
file is executed which picks the objects from the desired pose to the destination.

A. CAD design of the robotic arm

The used model is designed using SolidWorks. Each link of the robot has been designed individ-
ually and assembled. The collision model is also generated in SolidWorks. The collision model is a
lightweight model of the robot without textures. This is to reduce the computational requirement
for simulating and controlling the robot [1J.

B. Conwverting the CAD design to URDF

The model which has been designed in SolidWorks needs to be converted to the format of URDF.
This is done using an add-in called SW2URDF. After installing the add-in, export as URDF will be
available in the File menu of SolidWorks. There are three stages involved in the conversion [5]. The
first stage is to link the parts of the model and to select the reference geometry and the joint type.
A tree structure of the model will be generated. The second stage of the export process is to define
the joint properties like the coordinate reference for the joints can be configured and the joint limits
can be defined in this stage. The third stage is the link properties stage where the inertial matrix is
to be checked for availability. If not, the process needs to be repeated. The colour of the links can
also be changed at this stage. The conversion process is completed and the model will be exported
as a URDF file.

1756 Vinod, Bindu, Koushik Karan, Akash, Kumar

C. Configuring the URDF file with Movelt!
A workspace is created and a folder named src is made. The converted URDF file is put into the

src folder and the package is built. The Movelt! setup assistant as shown in figure [2] is launched and
the URDF file is loaded into it. The preview of the model will appear on the screen.

_ Movelt] Setup Assistant

-H.-ll:-olln-l R 7 LV i e R R e [Tl S | e e
b L Pid CTy] Wl e & il Pt Ty

Figure 2: Movelt! setup assistant

In the Movelt! setup, collision matrix is generated with low sampling density. In the planning
groups section, a group name is defined and the kinematic solver used is ‘kdl_kinematics_plugin /KDL
KinematicsPlugin’ and then the joints are added. The defined joints are revolute as specified in the
SolidWorks export process. The links and joints are defined for the robotic manipulator, a planning
group has been defined for the arm and then another planning group is to be defined for the gripper,
similarly, the links and joints are defined in this group. In the robot poses section, a predefined set
of values for each joint can be set. These values are used during the motion planning. The robot
poses can be distinguishably set for the arm and the gripper. Link 6 which is the end-effector is set
as the parent link for the gripper. The passive joints section is left empty. Under the ROS control

section, the controller type is set as ‘position_contollers/JointTrajectoryController’ and similarly, a
controller is set for the gripper.

w Generate Configuration Files
IR o T By it Y T MR Ll
L il b i-l.“-l""lh-’r hﬂwdri P Tl i gl Sl Pl | il P b
[N 1 Sagrd
e Coafigaraticn Faisgs Sive Futh

e T T e e e e L]
Chmrankey B SURey LT B R dreitey 4 sl daerpe latwiet ey
]

BT i e

[— [R]

Y - iy s g
T
B o g
v 1ol ol e Al
o Tyl ey red
e e T
B
'

=
..-'n-:. e, EAACTOR.

Figure 3: Movelt! package generation

The definition of the planning groups and the ROS controllers is completed. In the simulation
section, the necessary URDF file is generated and that data is transferred to the main URDF file.

Design and implementation of the 6-DoF robotic manipulator using robot operating system 1757

The final step under Movelt! is the generation of the package. The required file name is provided to
the configuration package save path which generates the package necessary for motion planning as
shown in figure

D. Launching the model with gazebo and RViz

The package generated by the Movelt! setup contains two folders the config and the launch. The
launch files contain the necessary files to open RViz and Gazebo [9]. To launch the required files
we need to add the joint_state_controller in the ros_controller.launch file. The motion planning is
performed by launching the gazebo, RViz, and the move_group planner. The gazebo launch file is to
spawn the model developed into a simulation world as shown in figure 4 and the first visual output
of the robot is seen [7]. This is as per the designed CAD model.

Figure 4: Robot launched in gazebo

The colour combination of the model can be defined in SolidWorks or can be customized in the
URDF file. Further objects can be added and surroundings can be changed if required. To operate
with RViz move_group planner file is launched. The RViz launch file is launched, the fixed frame in
RViz is changed to base_link and the robot model is added. The added object in gazebo can also be
added here.

E. Motion planning and point to point motion

The move_group planner launch file is responsible for the motion planning. In RViz, motion
planning is added and loaded. Now, as provided in the Movelt! setup the planning group contains
two sections the arm and the gripper which will enable motions to be planned for the arm and the
gripper. The pre-defined planning is done with the robot poses defined in the Movelt! setup. Once,
the initial state and the final state have been defined, the path can be planned. Similarly, manual
planning is possible through the joints tab. The planned path is visualized in RViz. The planning
is monitored and the feedback is obtained in the move_group planner terminal. Then the execute
command is implemented in RViz as shown in figure 5 and the planned path is executed in gazebo.

1758 Vinod, Bindu, Koushik Karan, Akash, Kumar

Costext Paweng Maspelstion Soone Objects | Sooen - +
aaaaa [Optioes

Platwit Comal Plarning Teme 1t &

— Flarwning dibermgty: i 2
Fan Rigein AT MR vinkscity Sosling: 108 C

Fimsr 514 b4 P Bpaad: 11754 il T FE2ERTTIIA el Bapaad H1.43 Eszerarasal

Figure 5: Motion planning

The planning group is then changed to the gripper which contains two states, open and close. These
are used to grab and release the object. This commences the motion planning.

To combine one or more planning motions a code is run interfacing all these components. In the
Movelt! config file a new folder is created called scripts which contains the necessary coding to move
the end-effector from one point to other. The desired positions and orientations are planned and
executed.

Figure 6: Code for point-to-point movement

The position and orientation include translation and rotation in RPY angle as shown in figure 6.
The code contains several functions to implement point-to-point movement and the main function
is the inverse kinematic function which gives the position of each joint. The current position and
orientation and the final position and orientation of the end-effector are provided to the code by the
corresponding topic. The points in which the end-effector needs to move are also given to the code
which is planned. The inverse kinematic function generates the joint angles for all the joints and is
then executed [I1]. The same process is carried out for different poses and the poses are updated in
the main code. The code is then executed to move from one point to another.

Design and implementation of the 6-DoF robotic manipulator using robot operating system 1759

F. Object grasping and object relocation

The gazebo is first launched and the desired object is created, then this world is saved. The RViz
file is launched, the robot model and the motion planning are added, then saved. A launch file is
created which includes the newly made files of gazebo, RViz, and move_group planner. Similarly,
various objects can be designed based on the requirement. The Movelt! configuration can be edited
to add various robot poses for the motion planner. The predefined poses include ‘pick pose’, ‘after
pick pose’, ‘place pose’, ‘after place pose’, and ‘home pose’. The arm reaches the object and the
gripper grasps it. When attempted to lift the object, it slips from the gripper.

<gazebo>
<plugin name="gazebo_ros_control" filename="1ibgazebo_ros_control.so">
<robotNamespace>/</robotNamespace>
</plugin>
</gazebo>
<gazebo>
<plugin name="gazebo_grasp_fix" filename="1ibgazebo_grasp_fix.so">
<arm>
<arm_name>arm</arm_name>
<palm_link>link6</palm_link>
<gripper_link>fingeri</gripper_link>
<gripper_link>finger2</gripper_link>
</arm>
<forces_angle_tolerance>100</forces_angle_tolerance>
<update_rate>4</update_rate>
<grip_count_threshold>4</grip_count_threshold>
<max_grip_count>8</max_grip_count>

<release_tolerance>0.005</release_tolerance>
<disable_collisions_on_attach>false</disable_collisions_on_attach>
<contact_topic>__default_topic__</contact_topic>

</plugin>

</gazebo>|

Figure 7: Gazebo grasp plugin

This is because the URDF file does not contain the gazebo grasp plugin and other parameters as
shown in figure 7. These are added to the URDF file and the pick and place operation is resumed [8].
The predefined poses are then planned and executed. The addition of gazebo grasp plugin ensures
that the robotic arm grasps and relocates the object as shown in figure

Figure 8: Gazebo grasp plugin

3. Conclusion

The CAD model of a 6-DoF robotic manipulator was successfully designed and implemented on
Robot Operating System using Movelt!. Also, the pick and place operation using motion planning
was implemented.

1760 Vinod, Bindu, Koushik Karan, Akash, Kumar

4. Future scope

The implemented 6-DoF robotic manipulator can be integrated with a vision system that can be

used for vision augmented robot feeding [2] and can be used for vision-based sorting applications.
The major industrial applications are fast packaging and fast assembly [4].

References

[1]

[12]

N. Bratovanov, Robot modeling, motion simulation, and off-line programming based on solidWorks API, Third
IEEE Int. Conf. Robotic Comput. 2019.

A. Candeias, T. Rhodes, M. Marques and M. Veloso, Vision augmented robot feeding, Proc. European Conf.
Computer Vision (ECCV) Workshops (2018) pp. 50-65.

S. Chitta, Movelt!: An Introduction, Robot Operat. Syst. (2016) 3-27.

A. Farooqi, N.B. Yusoff and L.S. Chung, Automatic pick-and-place packaging system with vacuum lifter, IOP
Conf. Ser. Materials Sci. Engin. 697 (1) (2019) pp. 012008.

S. Hernandez-Mendez, C. Maldonado-Mendez, A. Marin-Hernandez, H.V. Rios-Figueroa, H. Vazquez-Leal and
E.R. Palacios-Hernandez, Design and implementation of a robotic arm using ROS and Movelt!, IEEE Int. Autumn
Meeting on Power, Electronics and Computing (ROPEC) 2017.

H.R. Kam, S.H. Lee, T. Park and C.H. Kim, RViz: a toolkit for real domain data visualization, Telecommun.
Syst. 60(2) (2015) 337-345.

N. Koenig and A. Howard, Design and use paradigms for gazebo, an open-source multi-robot simulator, IEEE/RSJ
Int. Conf. Intell. Robots Syst. (IROS) (IEEE Cat. No.04CH37566), 2004.

E. Mingo Hoffman, S. Traversaro, A. Rocchi, M. Ferrati, A. Settimi, F. Romano and N.G. Tsagarakis, Yarp
Based Plugins for Gazebo Simulator, Lecture Notes in Computer Science, 2014.

S. Putz, T. Wiemann and J. Hertzberg, Tools for visualizing, annotating, and storing triangle meshes in ROS
and RViz, European Conf. Mobile Robots 2019.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler and A.Y. Ng, ROS: an open-source
robot operating system, ICRA Workshop on Open Source Software 3 (2) (2009).

A.D. Souza, S. Vijayakumar and S. Schaal, Learning inverse kinematics, IEEE/RSJ International Conference
on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the Next Millennium (Cat.
No.01CH37180). 2001.

Y. Zhang, B.K. Chen, X. Liu and Yu Sun, Autonomous robotic pick-and-place of microobjects, IEEE Trans.
Robot. 26(1) (2010) 200-207.

	Introduction
	Methodology
	Conclusion
	Future scope

