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Abstract

The unification process of Rough sets with Graphs is implemented in phenomenal applications in
all the fields of Engineering. With the rapid and exponential increase in the worldwide web, it is
necessary to organize the data. The major part of the data like google links, the social networks
can be represented in graphs. But in the case of uncertainty, the concepts of classical graph theory
cannot handle complex networks. For resolving these issues in 2006 Tong He introduced the concepts
of Rough Graphs. In this paper, we have introduced metric dimensions in Rough graphs along with
their Mathematical Properties.
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1. Introduction

The novel concepts of Rough set were introduced by the Mathematician and Computer scientist
from Poland named Zdzislaw Pawlak in earlier days of 1980. The well-known mathematical concepts
equivalence relation plays vital role in construction of Rough sets. It is represented by two crisp
sets called upper and lower approximation. The equivalence classes contained within the targeted
set which is to be approximated forms lower approximation and equivalence class contained the
set along with the boundary forms upper approximation. The non-empty difference between these
approximations forms Rough sets. Wojciech Zarko [11] introduced Variable Precision Rough set
model in 1991 for improving the data classification accuracy. He demonstrated that Pos(−X) =
Neg(X) and introduced β approximation.
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Xiuyi et al [6] developed Decision Theoretic Rough Set Model which is derived from several
probabilistic Rough set models. They demonstrated the partition for universal set with respect to
the decision attribute and introduced cost function based on states. The set of all states mentioned
that which objects are in the decision class of target set and its complements vice versa. Let S =
{α1, α2, α3, ..., αm} be m-finite states and A = {β1, β2, ..., βn} be n possible actions then the cost
function is defined by

C
(
βi

x

)
=

m∑
j=1

δ

(
βi

αj

)
p
(αj

x

)
.

The cost function for a given decision table is encountered by the summation value of positive,
negative and boundary region cost. The objective of DTRS (Decision theoretic Rough set) model is
to minimize the cost.

2. Terminologies of Rough Graphs

Definition 2.1. [Information System] Let I = (U,A) where contains finite set of objects and
be the set contains the attribute value of each object such that I : U → Va for every a ∈ A. Let us
consider any S ⊆ A with associated Indiscernibility Relation

SIND = {(x, y) ∈ U× U; ∀a ∈ S, a(x) = a(y)}

and [x]S is called equivalence classes of SIND. From this Lower and Upper approximation has been
framed for the target set X ⊆ S

S(X) = {x; [x]S ⊆ X} Lower Approximation of X

S(X) = {x; [x]S ∩X ̸= ϕ} Upper Approximation of X.

Definition 2.2. [Boundary Region] BND(X) = S(X)−S(X). The elements within the Bound-
ary region can neither be described in X nor be described out of X. The lower approximation is the
conservative approximation in which the elements are positively identified whereas upper approxima-
tion is liberally approximated in which the elements are possibly identified.

If BND(X) ̸= ϕ then the set X is Rough set otherwise it is Crisp. The level of approximation is
defined by the following expression

αS(X) =
S(X)

S(X)

which defines how much level of accuracy the Rough set approximates the target set.

The unifying concepts of Graph Theory with Rough sets is the existence of Rough Graphs which
was introduced by Tong He in 2006 [3]. In classical graph theory objects are identified as vertices and
relationship between objects are denoted through edges. In some cases, relations may or may not
be defined which is called uncertainty. For handling these type of uncertainty Tong He introduced
Rough Graph in 2006 and demonstrated its structure in the following definitions.

Definition 2.3. [(Tong He,2006 [3])] From the set of Universe of Discourse U = {e1, e2, ..., e|U |},R =
{r1, r2, ..., r|R|} is the attribute set on U, and R contains set of attributes(vertex) (vi, vj) where vi ∈ V
and vj ∈ V , V = {v1, v2, ..., vn}. Let E = ∪ek(vi, vj) is the edge set on U and Universal graph is
defined as U = (V,E).
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Table 1: Information System

Definition 2.4. [(Tong He,2006 [3])] For any attribute set R ⊆ R on E-the set of edges, which
can be partitioned into distinct equivalence class [e]R.

Definition 2.5. [(Tong He,2006 [3])] For any graph T = (W ,X ), where W ⊆ V,X ⊆ E, graph
T is called R- definable or exact graph if X = ∪[e]R otherwise it is undefinable or R-Rough graph.

Definition 2.6. [(Tong He,2006 [3])] For R-Rough graph, it is represented by two definable
graphs R(T ) = (W,R(X)), R(T ) = (W,R(X)) and its approximations are represented as follows

R(X) = {e ∈ E : [e]R ⊆ X} R Lower Approximated Graph of T

R(X) = {e ∈ E : [e]R ∩X ̸= ϕ} R Upper Approximated Graph of T.

The pair (R(T ), R(T )) is named as R-Rough graph. The set BNDR = R(X) − R(X) is the R
Boundary of Edge set X of T .

3. Construction of Rough Graphs

Many papers have been produced to draw Graphs based on Rough sets. This paper explains
about Rough graphs based on Neighborhood System with the following Information System.

In this example 1, 6 objects {S1, S2, S3, S4, S5, S6}, Conditional attributes: {In,Out, Change}
and Decision attribute: {Churn} Neighborhood of each attributes are defined as follows

N(S1) = {in, out}

N(S2) = {in, out}

N(S3) = {ϕ}

N(S4) = {Change}

N(S5) = {in, out}

N(S6) = {in}
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Figure 1:

Let A = {Churn} be the Decision Attribute. Then its upper and lower approximations are given by

N(A) = {S1, S2, S3, S4, S5, S6}

N(A) = {S4}

BND(A) = {S1, S2, S5, S6}

Positive Region = {S4}

Negative Region = {S3}

The Rough Graph for the above Information system is given by Figure 1.

4. Metric Dimension of a Graph

A metric dimension of a graph G(V,E) is represented as minimum cardinality of Resolving set
or Locating Set in which ∀vi, vj ∈ G have different representation. The extended concept of metric
dimension is implemented in Global Positioning System (GPS).

Definition 4.1. Let G = (V,E) be a graph and u, v ∈ V Slater introduced metric dimension in
1975 [9], later Harary and Melter [2] studied the concept of Resolving set in 1976 and it is defined
by the following.

A set W ⊆ V is known as Resolving Set if ∀u, v ∈ V there exists at least one r ∈ W such
that d(u, r) ̸= d(v, r). The Resolving set with smallest size(minimum cardinality) is called Metric
dimension and it is denoted as β(G).
The existence of Metric dimension is based on GPS where the location of any is calculated by the
distance between the satellites in its orbit. The space can be partitioned into equivalence classes based
on Euclidean Distance. Two points x, y ∈ W are belong to same equivalence class if d(x, z) = d(y, z).
The set W ⊂ R×R contains the independent points and each point has its own equivalence class.

Sooryanarayana [10] proved that the graph having metric dimension k cannot have k2k+1−(2k−1−
1)e as subgraph. Gary Chartrand et al [1] presented the sharp bounds of metric dimension for
unicyclic graphs. Jannesari [5] defined the metric dimension for lexicographic product graphs. They
proved that for any graph H represented through the connected graph G there exist the adjacency
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basis 2. The metric dimension of circulant graph dimCn(1, 2, 3) was demonstrated by Muhammad
Imran [4]. They defined the upper bounds for circulant graphs. Zehui Shao et al [8] defined the metric
dimension of generalized Petersen graphs P (n, k) for different values of n.

Prabha and Venugopal [7] introduced Fuzzy metric dimension in Fuzzy graphs. They differentiate
the vertices as active and inactive vertex. If the membership value of an arbitrary vertex vi is more
than zero then it is active otherwise it is inactive vertex. In their work they demonstrated fuzzy
shortest path and then identified fuzzy metric dimension. Also they exhibited fuzzy metric dimension
for fuzzy cycle.

In this paper we have introduced metric dimension in Rough Graphs. This concept has many
applications. For example navigation part of Robots is uncertain. In this scenario we can construct
Rough graph and predicts it path in decision making. Apart from that metric dimension in Rough
graphs will be useful in image processing and pattern recognition.

Theorem 4.2. Let K2,n be a Bipartite graph. Then the metric dimension for R-approximations are

β(R(X)) = 0

β(R(X)) =

{
2, when n = 1
n, when n ≥ 2

Proof . The equivalence relation R of K2,n = {(u1, u2), (v1, v2, ..., vn)}
The Low.App K2,n = {(u1, u2)} ⇒ Since it is Isolated vertex, metric dimension

β(R(X)) = 0

Upp.App K2,n = {G}

⇒The Resolving set will be {u1, vi, vi+2, ..., vi+(n−1)}
Hence metric dimension of β(R(X)) = n. □

Corollary 4.3. 1. Metric Dimension of K1,n is given by

β(R(X)) = 0

β(R(X)) =

{
2, when n = 2
n− 1, when n ≥ 3

2. In general Metric Dimension of Kn,n is given by

β(R(X)) = 0

β(R(X)) = 2(n− 1) when n ≥ 3

Example 4.4. For Complete Bipartite Rough Graph K2,4 (Fig.2,Table2)

R = {{u1, u2}, {v1, v2, v3, v4}}

X = {u1, u2, v3}
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Figure 2:

Table 2:
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Figure 3:

Table 3:

Figure 4:
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Table 4:

Figure 5:

Example 4.5. For Complete Bipartite Rough Graph K2,5 (Fig.3, Table3)

R = {{u1, u2}, {v1, v2, v3, v4, v5}}

X = {u1, u2, v4}

Example 4.6. For Star Rough Graph K1,3 (Fig.4,Table4)

R = {{u1}, {v1, v2, v3}}

X = {u1, v1}

Example 4.7. For Star Rough Graph K1,5 (Fig.5,Table5)

R = {{u1}, {v1, v2, v3, v4, v5}}

X = {u1, v3}

Example 4.8. For Complete Bipartite Rough Graph K3,3 (Fig.6,Table6)

R = {{u1, u2, u3}, {v1, v2, v3}}

X = {u1, u2, u3, v3}

Figure 6:
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Table 5:
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Table 6:
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Figure 7:

Table 7:

Theorem 4.9. If Cn be a Rough Cycle, then

β(R(X)) = 0

β(R(X)) = 2when n ≥ 4

Example 4.10. For Cyclic Rough Graph C6 (Fig.7,Table7)

R = {{u1, u3, u5}, {u2, u4, u6}}

X = {u1, u2, u3, u5}

Theorem 4.11. If Kn be a Complete Rough graph, then

β(R(X)) = 0

β(R(X)) =

{
2, when n ≥ 4
1, when n = 1

Theorem 4.12. If Ln be a ladder graph. Then β(R(X)) = 0 and β(R(X)) = 2.

Proof . Let Ln be a ladder graph, where n ≥ 2. The equivalence classes of Ln are {un, un+3, un+4, ...}
and {un+1, un+2, un+5, ...}, n = 1. Since Low.Apprx(Ln) = ϕ, Upp.Apprx(Ln) = G,

β(R(X)) = 0, and β(R(X)) = 2.

□
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Figure 8: L8

Table 8:
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Figure 9: L8

Table 9:

Example 4.13. (Fig.8,Table8)

R = {{u1, u4, u5, u8, u9, u12, u13, u16}, {u2, u3, u4, u6, u7, u10, u11, u14, u15}}
X = {u1, u2, u3, u4, u5}
R(X) = ϕ, R(X) = L8

β(R(Ln)) = 2

Theorem 4.14. If Hn be a Helm rough graph. Then β(R(X)) = 0 and β(R(X)) = 3.

Example 4.15. (Fig.9,Table9)

R = {{u1, u4, u5, u8, u9}, {u2, u3, u6, u7}}
X = {u1, u2, u3}

R(X) = 0 R(X) = H4,

Therefore,
β(R(H4)) = 3.

5. Conclusion

This paper clearly demonstrated the concepts of Metric Dimension in different types of Rough
graphs with counter Examples. The construction of Metric dimension in uncertain cases will be used
in Network optimization. We can predict the minimum number of required machines to be placed
through metric dimension value and it can extend to Robot Navigation and Pattern Recognition.
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