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Abstract

In this paper, we introduce the notion of probabilistic valued measures as a generalization of non-
negative measures and construct the corresponding Lp spaces, for distributions p > ε0. It is also
shown that if the distribution p satisfies p ≥ ε1 then, as in the classical case, these spaces are complete
probabilistic normed spaces.
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1. Introduction

The idea of Probabilistic Normed spaces, briefly PN spaces, was introduced by Šerstnev in 1963
in [7] and [8], who replaced R+, the set of all non-negative real numbers, with the elements of ∆+,
certain subset of extended distribution functions, as the target space of the norm function. These
spaces and their related notions were then studied by many authors among which we may refer to
[1], [3], [5], [9], [10] and the text [6]. There is also a generalization of this notion introduced in [2].
However, in this paper we consider probabilistic normed spaces still in the sence of Šerstnev. Using
his idea, we introduce here the notion of probabilistic valued measures and corresponding Lp spaces
for a distribution function p. The title of the paper arises from the fact that, not only the measure
and the exponent p have probabilistic natures, but also the elements of the spaces Lp, introduced in
the last section, are functions with values in a certain probabilistic normed space.

We first recall some definitions and notations. Let ∆ be the set of all extended distribution
functions, i.e. the set of all non-decreasing and left-continuous functions F : R → [0, 1], and let
D ⊂ ∆ be the set of all F ∈ ∆ with inf F (R) = 0 and supF (R) = 1.
The set [−∞,+∞] can be embedded in ∆ by the map r 7→ εr, where εr = χ(r,+∞) for r ∈ R and
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ε−∞ = χR and ε+∞ = χ∅. Here χA denotes the characteristic function of a set A.
There is a metric on ∆, known as Levy metric, which for every F,G ∈ ∆ is defined as follows

dL(F,G) = inf{h > 0|F (t− h)− h ≤ G(t) ≤ F (t+ h) + h for all t ∈ R}

One can define a partial ordering on ∆ by reverse point-wise ordering of the real valued functions.
Hence, for F,G ∈ ∆, we say F ≤ G if F (t) ≥ G(t) for all t ∈ R. According to this order, the
non-negative elements of ∆, denoted by ∆+, is defined equal to the set {F ∈ ∆|ε0 ≤ F}. We also
let D+ ⊂ D be defined equal to ∆+ ∩D.
A triangle function is a map τ : ∆+ × ∆+ → ∆+ that is associative, commutative, non-decreasing
in each variable and with ε0 as identity. The most famous triangle functions are those defined by
t-norms. A t-norm is a binary operation T : [0, 1] × [0, 1] → [0, 1] that is associative, commutative,
non-decreasing in each variable and with 1 as identity. The most important t-norm is Min defined
for a, b ∈ [0, 1] by Min(a, b) = min{a, b}. The importance of this t-norm will become clear in the next
section. Corresponding to a t-norm T , the map τT : ∆+ × ∆+ → ∆+ defined for every F,G ∈ ∆+

and t ∈ R by

τT (F,G)(t) := sup{T (F (r), G(s))|r + s = t}

is a triangle function. In the definition of a PN space, we need also the multiplications of elements
of ∆+ by non-negative real numbers. More generally, for F ∈ ∆ and r ∈ R+, we denote by r · F the
distribution function defined by r · F (t) = F (t/r), if r 6= 0. If r = 0 then r · F is defined equal to ε0.
We are now ready to give the definition of a PN space that was introduced by Šerstnev in 1963.

Definition 1.1. Let X be a real vector space and τ be a triangle function. A map ‖ · ‖ : X → ∆+

is called a probabilistic norm on X if it satisfy the following properties

1. ‖x‖ = ε0 if and only if x = 0,

2. ‖rx‖ = |r| · ‖x‖ for r ∈ R and x ∈ X,

3. ‖x+ y‖ ≤ τ(‖x‖, ‖y‖) for x, y ∈ X.

In this case (X, τ, ‖ · ‖) is called a probabilistic normed space or briefly a PN space.

Let (X, τ, ‖ · ‖) be a PN space. For x ∈ X and r ≥ 0, if B(x, r) is defined as follows

B(x, r) := {y ∈ X|dL(‖x− y‖, ε0) < r}

then the family {B(x, r)|x ∈ X, r > 0} forms a basis for a topology on X which is called the strong
topology corresponding to the probabilistic norm ‖ · ‖.

In the next section, we first recall one of the important properties of the t-norm Min. Then
substitute ∆ with a new class of functions, which will appear to be more flexible, and then translate
the operations and order on ∆ in this new class. We will also introduce a certain PN space which
plays a central roll in defining the probabilistic Lp spaces. In the last section, we introduce the
concept of probabilistic valued measures and integrals which will lead us to probabilistic Lp spaces,
with p ∈ D+, a distribution function between ε1 and ε∞.

2. Some Preliminaries

Let τT be the triangle function corresponding to a t-norm T . One of the most important relations
which is needed in this paper is

(α + β) · F = τT (α · F, β · F ), (2.1)
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for α, β ∈ R+ and F ∈ ∆+. It is easily seen that this equality holds if T = Min. The converse has
also been proved to be true in [4], i.e.

Theorem 2.1. Let T : [0, 1] × [0, 1] → [0, 1] be a continuous t-norm. Then the relation (2.1) is
satisfied for all F ∈ ∆+ and α, β ∈ R+ if and only if T equals the t-norm Min.

In the remaining of this paper, we use F ⊕ G instead of τMin(F,G), for F,G ∈ ∆+. Hence, for
distribution functions F,G ∈ ∆+, the distribution function F ⊕G : (−∞,+∞)→ [0, 1] is defined by

F ⊕G(t) = sup{min(F (r), G(s)) | r + s = t}, ∀t ∈ R

Let V be the set of all functions f : (0, 1) → [−∞,+∞]. For F ∈ ∆, let F̂ ∈ V be defined, for all
a ∈ (0, 1), by

F̂ (a) :=

{
supF−1((0, a)) F−1((0, a)) 6= ∅,
−∞ F−1((0, a)) = ∅.

It is easily seen that, for each F ∈ ∆, F̂ is a non-decreasing left continuous function on (0, 1). Also
the following relations are true for all t ∈ R and a ∈ (0, 1).

F̂ (a) < t ⇒ a ≤ F (t) (2.2)

t < F̂ (a) ⇒ F (t) < a (2.3)

F (t) < a ⇒ t ≤ F̂ (a) (2.4)

Moreover, F (F̂ (a)) ≤ a and F̂ (F (t)) ≤ t. From these relations one may characterize the finite values

of F̂ as follows. For a ∈ (0, 1) and t0 ∈ R, F̂ (a) = t0 if and only if

∀ε > 0, F (t0 − ε) < a and F (t0 + ε) ≥ a

For f ∈ V , suppose f̃ : (−∞,+∞)→ [0, 1] is defined as follows.

f̃(t) =

{
sup f−1((−∞, t)) f−1((−∞, t)) 6= ∅,
0 f−1((−∞, t)) = ∅.

It is easily verified that f̃ ∈ ∆, for all f ∈ V , and that if f ∈ V is non-decreasing and left continuous
then

∀ε > 0, f(f̃(t)− ε) < t and f(f̃(t) + ε) ≥ t

for all t ∈ R.

Lemma 2.2. The map ̂ : ∆ → V , given by F 7→ F̂ , is one to one. Moreover, (F̂ )̃ = F , for all
F ∈ ∆.

Proof . For F ∈ ∆, it is shown that (F̂ )̃ = F which proves also the first assertion. We denote F̂

by f , and show that f̃ = F . Let t0 ∈ R. As it was mentioned above,

∀ε > 0, f(f̃(t0)− ε) < t0

or F̂ (f̃(t0)− ε) < t0. Hence, by (2.2),

f̃(t0)− ε ≤ F (t0)
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Since this is true for all ε > 0, we have f̃(t0) ≤ F (t0). Conversely, for each ε > 0,

t0 − ε < t0 ≤ f(f̃(t0) + ε) = F̂ (f̃(t0) + ε)

Therefore, by (2.3), F (t0 − ε) < f̃(t0) + ε. Using the left continuity of F , we have

F (t0) = lim
ε→0+

F (t0 − ε) ≤ lim
ε→0+

(
f̃(t0) + ε

)
= f̃(t0)

which completes the proof. �
Let ∆̂ := {F̂ | F ∈ ∆}. As we have seen the map̂: ∆→ ∆̂ ⊂ V is a one to one and on to map

with the inverse˜: ∆̂→ ∆. As the following lemma proves, ∆̂ comprises all elements of V which are
non-decreasing and left continuous.

Lemma 2.3. Let f ∈ V be a non-decreasing and left continuous function. Then there exists (a

unique) F ∈ ∆ for which F̂ = f .

Proof . Let F := f̃ . Then F ∈ ∆. We show that F̂ = f . For a0 ∈ (0, 1) and each t ∈ R
with t < F̂ (a0), by (2.3), we have F (t) < a0 or f̃(t) < a0. Thus t ≤ f(a0). Since this is true

for all t < F̂ (a0), we obtain the inequality F̂ (a0) ≤ f(a0). If F̂ (a0) < f(a0) then for t0 ∈ R with

F̂ (a0) < t0 < f(a0), by left continuity of f , there exists b < a0 such that t0 < f(b). Hence

F (t0) = f̃(t0) ≤ b < a0

which, by (2.4), implies that t0 ≤ F̂ (t0) which contradicts the choice of t0. Thus F̂ (a0) = f(a0), for
all a ∈ (0, 1). �

By Lemmas 2.2 and 2.3, the map ̂ defines a one to one correspondence between the set ∆ and
the set of all non-decreasing left continuous functions f : (0, 1)→ [−∞,+∞], i.e. ∆̂. In the following

two lemmas, we consider the order and operations on the set ∆̂ which correspond to those on ∆.

Lemma 2.4. For F,G ∈ ∆, F ≤ G if and only if F̂ (a) ≤ Ĝ(a), for all a ∈ (0, 1), i.e. the

corresponding order on ∆̂ is simply the natural order on the (extended) real valued functions.

Proof . Let F,G ∈ ∆ and suppose F ≤ G. Hence, according to the order defined on the set ∆,
F (t) ≥ G(t) for all t ∈ R. Therefore, for each a ∈ (0, 1),

F̂ (a) = sup{t ∈ R | F (t) < a}
≤ sup{t ∈ R | G(t) < a} = Ĝ(a)

Conversely, suppose F̂ ≤ Ĝ and F � G. Then there exists t ∈ R such that F (t) < G(t). By
left continuity of G there exists s < t such that F (t) < G(s) ≤ G(t). Hence for a ∈ (0, 1) with

F (t) < a < G(s), we have Ĝ(a) ≤ s < t ≤ F̂ (a) which contradicts the assumption. �

Lemma 2.5. Let F,G ∈ ∆ and λ ∈ [0,∞). Then ̂(F ⊕G) = F̂ + Ĝ and (̂λ · F ) = λF̂ .

Proof . For F,G ∈ ∆ and a ∈ (0, 1), we denote F̂ (a) and Ĝ(a), respectively, by Fa and Ga. By
(2.2) and (2.3), we have F (Fa + ε), G(Ga + ε) ∈ [a, 1] and F (Fa − ε), G(Ga − ε) ∈ [0, a), for each
ε > 0, and

F ⊕G (Fa +Ga − 2ε)

= sup{min(F (Fa − ε− u), G(Ga − ε+ u)) | u ∈ R}
≤ max(F (Fa − ε), G(Ga − ε)) < a
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And

F ⊕G (Fa +Ga + 2ε)

= sup{min(F (Fa + ε− u), G(Ga + ε+ u)) | u ∈ R}
≥ min(F (Fa + ε), G(Ga + ε)) ≥ a

Hence ̂(F ⊕G)(a) = Fa +Ga = F̂ (a) + Ĝ(a).
For λ ∈ (0,∞),

(̂λ · F )(a) = {t ∈ [−∞,+∞] | (λ · F )(t) < a}
= {t ∈ [−∞,+∞] | F (t/λ) < a}

= {λt ∈ [−∞,+∞] | F (t) < a} = λF̂ (a)

Therefore, (̂λ · F ) = λF̂ . �

Let (X, τMin, ‖ · ‖) be a PN space. If the composite map X
‖·‖−→ ∆+ −̂→ ∆̂ is still denoted by the

same notation ‖ · ‖ then, by the previous two lemmas, the map ‖ · ‖ : X → ∆̂ satisfies the following
relations.

1. ‖x‖ = 0 if and only if x = 0,

2. ‖rx‖ = |r| ‖x‖ for r ∈ R and x ∈ X,

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for x, y ∈ X,

where all the operations are understood to be point-wise. The converse is also true, i.e. if a map

‖ · ‖ : X → ∆̂ satisfies the above three conditions and, for each x ∈ X the map (‖x‖̃) : R→ [0, 1] is
again denoted by ‖x‖, then (X, τMin, ‖ · ‖) is a PN space.

As it will be seen, the set ∆̂ provides us with more facilities. Hence our aim will be to replace
the set ∆ with this new set of functions. According to these consideration, from now on, whenever
we talk about a PN space we mean a vector space X and a map ‖ · ‖ : X → ∆̂+ which satisfies
conditions (1)-(3) above. As it is known, the strong topology of a PN space is metrizable. In order
to obtain the structure of this metric in this new language, we need the following two lemmas.

Lemma 2.6. For F ∈ ∆+,

dL(F, ε0) =

{
inf{h ∈ (0, 1) | F̂ (1− h) < h} if this set is non-empty,

1 otherwise.

Proof . According to the definition of the Levy metric, for each F ∈ ∆+ we have

dL(F, ε0) = inf{h > 0 | F (t− h)− h ≤ ε0(t) ≤ F (t+ h) + h, ∀t ∈ R}
= inf{h > 0 | ε0(t) ≤ F (t+ h) + h, ∀t > 0}
= inf{h > 0 | 1 ≤ F (t+ h) + h, ∀t > 0}
= inf{h > 0 | 1− h ≤ F (t), ∀t > h} ≤ 1

If dL(F, ε0) = 1 then for each t < 1, F (t) = 0 from which it follows that F̂ (a) ≥ 1, for each a ∈ (0, 1).

Therefore, {h ∈ (0, 1) | F̂ (1− h) < h} = ∅.
Now suppose this set is non-empty and therefore dL(F, ε0) < 1. In this case, for r ∈ (0, 1) with

r > inf{h ∈ (0, 1) | F̂ (1− h) < h} there exists h0 < r such that F̂ (1− h0) < h0. Hence by (2.2),

1− r < 1− h0 ≤ F (h0) ≤ F (r) ≤ F (t)
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for all t > r. Therefore, dL(F, ε0) ≤ r. By arbitrariness of r > 0, we have dL(F, ε0) ≤ inf{h > 0 |
F̂ (1− h) < h}.

Conversely, if r > 0 satisfies r > dL(F, ε0) then there exists h0 < r with 1 − h0 ≤ F (t), for all
t > h0. By (2.3),

F̂ (1− h0) ≤ t

Since this is true for all t > h0, we have F̂ (1− h0) ≤ h0. Without loss of generality, we may assume

that F̂ (1− h0) < h0. Thus

inf{h > 0 | F̂ (1− h) < h} ≤ h0 < r

from which it follows that inf{h > 0 | F̂ (1− h) < h} ≤ dL(F, ε0). �

Lemma 2.7. Let F,G ∈ ∆+.

(i) If F ≤ G then dL(F, ε0) ≤ dL(G, ε0).

(ii) dL(F ⊕G, ε0) ≤ dL(F, ε0) + dL(G, ε0).

Proof . Part (i) follows easily from the definition of the order on the set ∆ and the previous lemma.
To prove part (ii), let F,G ∈ ∆+. If dL(F, ε0) + dL(G, ε0) ≥ 1 then clearly dL(F ⊕ G, ε0) ≤

dL(F, ε0) + dL(G, ε0). So suppose dL(F, ε0) + dL(G, ε0) < 1. For ε > 0 with ε < 1 − (dL(F, ε0) +
dL(G, ε0)), there are h1 < dL(F, ε0) + ε

2
and h2 < dL(G, ε0) + ε

2
such that

F̂ (1− h1) < h1 and Ĝ(1− h2) < h2

Therefore,

F̂ (1− (h1 + h2)) + Ĝ(1− (h1 + h2)) ≤ F̂ (1− h1) + Ĝ(1− h2) < h1 + h2

from which, using Lemmas 2.5 and 2.6, it follows that

dL(F ⊕G, ε0) = inf{h ∈ (0, 1) | F̂ ⊕G(1− h) < h}
= inf{h ∈ (0, 1) | (F̂ + Ĝ)(1− h) < h}
≤ h1 + h2 < dL(F, ε0) + dL(G, ε0) + ε

Since ε > 0 was arbitrary, the result is obtained. �
As a direct application of the previous lemma, we obtain the structure of the metric which induces

the strong topology of a PN space.

Corollary 2.8. Let X be a real vector space and ‖ · ‖ : X → ∆̂+ be a probabilistic norm on it. If
d : X ×X → R+ is defined, for all x, y ∈ X, by

d(x, y) =

{
inf{h ∈ (0, 1) | ‖x− y‖(1− h) < h} if this set is non-empty,

1 otherwise.

then d is a metric on X which induces the strong topology of the PN space (X, ‖ · ‖).
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We recall that V is the set of all functions f : (0, 1)→ [−∞,+∞]. Clearly V itself is not a vector
space. However, it contains a vector space which will play a crucial roll in this paper. For f ∈ V , let
|f |sup : (0, 1)→ [0,+∞] be defined by

∀a ∈ (0, 1), |f |sup(a) = sup{|f(c)| | c ∈ (0, a)}

It is easily seen that |f |sup is a non-decreasing and left continuous function on (0, 1), i.e. |f |sup ∈ ∆̂+,
for each f ∈ V . Let Vsup ⊂ V be defined as follows.

Vsup := {f ∈ V | |f |sup ∈ D̂+}

Note that D+ ⊂ ∆+ is the set of all distribution functions F : R → [0, 1] with F (0) = 0 and

limt→+∞ F (t) = 1. Therefore, D̂+ ⊂ ∆̂ comprises all non-decreasing left continuous finite valued
functions f : (0, 1)→ [0,+∞). Therefore, each element of Vsup is a finite valued function on (0, 1).

Proposition 2.9. The pair (Vsup, | · |sup) is a complete PN space, i.e. every Cauchy sequence in this
PN space converges.

Proof . The fact that | · |sup : Vsup → D̂+ ⊂ ∆̂+ is a probabilistic norm on Vsup is easily proved.
According to Corollary 2.8, the function dsup : Vsup × Vsup → [0,+∞) given, for all f, g ∈ Vsup, by

dsup(f, g) = inf{h ∈ (0, 1) | |f − g|sup(1− h) < h} (2.5)

if this set in non-empty, and dsup(f, g) = 1 otherwise, is a metric which induces the strong topology
of the PN space (Vsup, | · |sup).

Suppose (fn)n∈N is a Cauchy sequence in this PN space. Hence for each ε > 0 there exists N ∈ N
such that

dsup(fn, fm) = inf{h ∈ (0, 1) | |fn − fm|sup(1− h) < h} < ε

for all m,n ≥ N . Now for a ∈ (0, 1), we choose ε > 0 with ε < 1− a. Then there exists N ∈ N and
h < ε such that

|fn − fm|sup(1− h) < h

for all m,n ≥ N . Since h < ε < 1− a we have a < 1− h. Hence, for all m,n ≥ N and all c ∈ (0, a),

|fn(c)− fm(c)| ≤ sup{|fn(c)− fm(c)| | c ∈ (0, a)}
= |fn − fm|sup(a) ≤ |fn − fm|sup(1− h) < h < ε

i.e. the sequence (fn)n∈N is uniformly Cauchy on (0, a), for each a ∈ (0, 1). Thus there is a function
f : (0, 1) → R such that fn → f , uniformly on the interval (0, a), for each a ∈ (0, 1). Using this
uniform convergence, it is now easily seen that f ∈ Vsup and that dsup(fn, f)→ 0. �

Remark 2.10. The definition of the metric dsup, introduced in the proof of the previous proposition,

can be extended to ∆̂+. Hence for f, g ∈ ∆̂+ we define dsup(f, g) as in (2.5), with the convention

that ∞−∞ := 0. As in the above proof, it is seen that a sequence (fn)n∈N in ∆̂+ converges, under

this metric, to some f ∈ ∆̂+ if and only if this sequence converges uniformly on the interval (0, a) to
f , for each a ∈ (0, 1).



Totally probabilistic Lp spaces4 (2013) No. 2,78-88 85

3. Probabilistic Lp spaces

In this section, we first define the notion of a probabilistic valued measure. It should be noted
that in [4], the authors have defined a similar notion which extends the finite valued measures.
As it is seen, the concept of probabilistic valued measure, defined in this paper, is an extention of
a non-negative measure (not necessarily finite) to its probabilistic case. Moreover, the concept of
probabilistic Lp spaces introduced here differs, in principle, with those in [4]. The differences arise,
firstly because of the different topologies on the target spaces of probabilistic valued measures here
and in [4], and secondly, as we will see, the exponent p in this paper is chosen itself to have a
probabilistic nature.

Let (Ω,Σ) be a measurable space, i.e. Ω be a non-empty set and Σ be a σ-algebra of its subsets.

Definition 3.1. A set valued function µ : Σ → ∆̂+ is called a probabilistic valued measure, if
µ(∅) = 0 and

µ(
⋃
n∈N

An) =
∑
n∈N

µ(An)

for all disjoint countable family {An | n ∈ N} ∈ Σ. Here the convergence of the series is understood

to be in the metric space (∆̂+, dsup).

Let µ be a probabilistic valued measure on the measurable space (Ω,Σ). If for each a ∈ (0, 1), the
set function µa : Σ→ [0,+∞] is defined by µa(A) := µ(A)(a), then, according to Remark 2.10, µa is
a non-negative measure on (Ω,Σ). Moreover, for all a, b ∈ (0, 1) with a < b, µa(A) ≤ µb(A), for all
A ∈ Σ.

For a function φ : Ω→ V and a ∈ (0, 1), let φa : Ω→ [−∞,+∞] be defined for all ω ∈ Ω, by

φa(ω) := φ(ω)(a)

Suppose MΩ denotes the set of all measurable functions on Ω with values in [−∞,+∞] and let MΩ,V

be defined as follows.

MΩ,V := {φ : Ω→ V | ∀a ∈ (0, 1), φa ∈MΩ}

For a function φ : Ω→ V , we let |φ| : Ω→ V be defined as

∀ω ∈ Ω, |φ|(ω) := |φ(ω)|,

where | · | : V → V is defined for each f : (0, 1)→ [−∞,+∞] in the natural manner. Finally, we call
φ : Ω→ V non-negative if φ(ω) : (0, 1)→ [−∞,+∞] is a non-negative function, for each ω ∈ Ω.

Definition 3.2. Let µ be a probabilistic valued measure on the measurable space (Ω,Σ). For a non-

negative function φ ∈ MΩ,V , the integral of φ with respect to µ on Ω, denoted by

∫
Ω

φ dµ, is defined

as an element of V as follows.

∀a ∈ (0, 1), (

∫
Ω

φ dµ)(a) :=

∫
Ω

φa dµa

A function φ ∈MΩ,V is called integrable if

∫
Ω

|φ| dµ ∈ Vsup.
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For a function φ ∈ MΩ,V , it is clear that |φ| is a non-negative element of MΩ,V . Moreover, for

each p ∈ D̂+, the function |φ|p : Ω→ V defined for each ω ∈ Ω and a ∈ (0, 1) as

|φ|p(ω)(a) := |φ(ω)(a)|p(a) = |φa(ω)|p(a)

belongs also to MΩ,V .

Definition 3.3. Let µ be a probabilistic valued measure on (Ω,Σ). For p ∈ D̂+, the set Lp(Ω, µ) is
defined as follows.

Lp(Ω, µ) := {φ ∈MΩ,V |
∫

Ω

|φ|p dµ ∈ Vsup}

Since Vsup consists of finite valued functions on (0, 1), a function φ ∈MΩ,V belongs to Lp(Ω, µ) if and
only if for each a ∈ (0, 1),

(

∫
Ω

|φ|p dµ)(a) =

∫
Ω

|φa|p(a) dµa < +∞

i.e. if and only if φa ∈ Lp(a)(Ω, µa), for each a ∈ (0, 1). Hence each φa : Ω → [−∞,+∞] is µa-a.e.
finite on Ω. Therefore, for φ and ψ in Lp(Ω, µ), φ + ψ is definable as a function from Ω to V and,
using the linear structure of Lp(a)(Ω, µa), belongs to Lp(Ω, µ). It follows that Lp(Ω, µ) is a linear
space. As in the classical theory, it is necessary to indentify all φ in this space which are almost
everywhere identical. Hence we define a relation ∼ on Lp(Ω, µ) as follows. For φ, ψ ∈ Lp(Ω, µ), we

say φ ∼ ψ if

∫
Ω

|φ − ψ|p dµ = 0, the constant function 0 on (0, 1). It is easily seen that ∼ is an

equivalence relation. We denote the set of all equivalent classes still by Lp(Ω, µ).

Theorem 3.4. Let p ∈ D̂+ satisfies p ≥ 1. If ‖ · ‖p : Lp(Ω, µ)→ D̂+ ⊂ ∆̂+ is defined by

∀φ ∈ Lp(Ω, µ), ‖φ‖p :=
∣∣∣(∫

Ω

|φ|pdµ)
1
p

∣∣∣
sup

then (Lp(Ω, µ), µ) is a PN space.

Proof . For φ ∈ Lp(Ω, µ) suppose ‖φ‖p = 0. Then, as an element of Vsup, (

∫
Ω

|φ|p dµ)
1
p = 0. Hence∫

Ω

|φ|p dµ = 0. Therefore, according to the equivalence relation defined above, φ = 0 ∈ Lp(Ω, µ).

For φ, ψ ∈ Lp(Ω, µ) and for each a ∈ (0, 1), by the triangle inequality of the norm in the normed
space Lp(a)(Ω, µa),

(

∫
Ω

|φa + ψa|p(a)dµa)
1

p(a) ≤ (

∫
Ω

|φa|p(a)dµa)
1

p(a) + (

∫
Ω

|ψa|p(a)dµa)
1

p(a)

Hence, as elements of Vsup,

(

∫
Ω

|φ+ ψ|pdµ)
1
p ≤ (

∫
Ω

|φ|pdµ)
1
p + (

∫
Ω

|ψ|pdµ)
1
p

therefore,

‖φ+ ψ‖p =
∣∣∣(∫

Ω

|φ+ ψ|pdµ)
1
p

∣∣∣
sup
≤

∣∣∣(∫
Ω

|φ|pdµ)
1
p + (

∫
Ω

|ψ|pdµ)
1
p

∣∣∣
sup

≤
∣∣∣(∫

Ω

|φ|pdµ)
1
p

∣∣∣
sup

+
∣∣∣(∫

Ω

|ψ|pdµ)
1
p

∣∣∣
sup

= ‖φ‖p + ‖ψ‖p
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the relation ‖λφ‖p = |λ| ‖φ‖p, for λ ∈ R and φ ∈ Lp(Ω, µ), is obtained easily. �
As our last theorem, we prove the completeness of this PN space.

Theorem 3.5. For p ∈ D̂+ with p ≥ 1, the PN space (Lp(Ωµ), ‖ · ‖p) is complete.

Proof . Let (φn)n∈N be a Cauchy sequence in (Lp(Ω, µ), ‖ · ‖p). Hence for each ε > 0

∃N ∈ N, ∀m,n ≥ N, d(φn, φm) < ε, (3.1)

where

d(φn, φm) = inf{h ∈ (0, 1) | ‖φn − φm‖p(1− h) < h}.

For each a ∈ (0, 1), we choose b ∈ (0, 1) with a < b. For 0 < ε < 1− b, by (3.1), there exists N ∈ N
such that for all m,n ≥ N , d(φn, φm) < ε. Hence there is h < ε with ‖φn − φm‖p(1− h) < h. Using
the relations 0 < h < ε < 1− b, we have b < 1− h, from which it follows that

‖φn − φm‖p(b) ≤ ‖φn − φm‖p(1− h) < h < ε

and consequently,

sup
c∈(0,b)

(

∫
Ω

|φn − φm|p dµ)
1
p (c) < ε.

Since a < b, we obtain

(

∫
Ω

|φn − φm|p dµ)
1
p (a) = (

∫
Ω

|φn,a − φm,a|p(a) dµ)
1

p(a) < ε,

for all m,n ≥ N . Therefore, for each a ∈ (0, 1), the sequence (φn,a)n∈N is a Cauchy sequence in
the Banach space Lp(a)(Ω, µa), hence convergent, i.e. for each a ∈ (0, 1) there exists a function
φ(a) ∈ Lp(a)(Ω, µa) such that ‖φn,a − φ(a)‖Lp(a)(Ω,µa) → 0. Let φ : Ω→ V be defined as follows.

∀ω ∈ Ω, ∀a ∈ (0, 1), φ(ω)(a) := φ(a)(ω)

Clearly, φa = φ(a) ∈ MΩ, for all a ∈ (0, 1). Hence φ ∈ MΩ,V . On the other hand, since for each
a ∈ (0, 1), φa = φ(a) ∈ Lp(a)(Ω, µa), we have φ ∈ Lp(Ω, µ). It remains to show that d(φn.φ)→ 0.

For ε > 0, using (3.1) once more, there exists N such that d(φn, φm) = inf{h ∈ (0, 1) | ‖φn −
φm‖p(1 − h) < h} < ε, for all m,n ≥ N . Therefore, there is h0 < ε with ‖φn − φm‖p(1 − h0) < h0,
from which it follows that ‖φn,c − φm,c‖Lp(c)(Ω,µc) < h0, for all c ∈ (0, 1 − h0). Using the fact that

φm,c → φc in Lp(c)(Ω, µc), we have

‖φn,c − φc‖Lp(c)(Ω,µc) ≤ h0,

for all c ∈ (0, 1− h0) and n ≥ N . Thus

‖φn − φ‖p(1− h0) = sup
c∈(0,1−h0)

‖φn,c − φc‖Lp(c)(Ω,µc) ≤ h0.

Hence for each h ∈ (h0, ε),

‖φn − φ‖p(1− h) ≤ ‖φn − φ‖p(1− h0) ≤ h0 < h < ε

Therefore, d(φn, φ) < ε, for all n ≥ N . �
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[8] A.N. Šerstnev, Best approximation problems in random normed spaces, Dokl. Akad. Nauk. SSSR, 149 (1963)

539-542.
[9] C. Sempi, A Short and partial history of probabilistic normed spaces, Mediterr. J. Math. 3 (2006) 283-300.

[10] M. Shams and S.M. Vaezpour, Best approximations on probabilistic normed spaces, Chaos, Solitons and Fractals,
41 (2009) 1661-1667.


	Introduction
	Some Preliminaries
	Probabilistic Lp spaces

