
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,918 |
تعداد دریافت فایل اصل مقاله | 7,656,375 |
Refinements of Hermite-Hadamard inequality for $F_h$-convex functions on time scales | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 189، دوره 13، شماره 1، خرداد 2022، صفحه 2279-2292 اصل مقاله (425.69 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.5928 | ||
نویسندگان | ||
Fagbemigun Opeyemi* ؛ Adesanmi MOGBADEMU | ||
Research Group in Mathematics and Applications, Department of Mathematics, University of Lagos, Lagos, Nigeria | ||
تاریخ دریافت: 26 مهر 1400، تاریخ بازنگری: 17 آبان 1400، تاریخ پذیرش: 10 آذر 1400 | ||
چکیده | ||
In this paper, new improvements, refinements and extensions to show that an $F_h$-convex function on time scales satisfies Hermite-Hadamard inequality is given in several directions. Examples and applications are as well provided to further support the results obtained. | ||
کلیدواژهها | ||
$F_h$-convex؛ Hermite-Hadamard؛ Time scales؛ Dynamic model | ||
مراجع | ||
[1] M. Bohner, and A. Peterson, Dynamic equations on time scales: An introduction with applications, Boston, Birkhauser, 2001. [2] P.S. Bullen, Error estimates for some elementary quadrature rules, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 602-633 (1978) 97–103. [3] C. Dinu, Convex functions on time scales, Ann. Univ. Craiova, Math. Comp. Sci. Ser. 35 (2008) 87–96. [4] C. Dinu, Hermite-Hadamard inequality on time scales, J. Inequal. Appl. 2008 (2008) Article ID 287947. [5] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University (Amended version), 2002. [6] B.O. Fagbemigun and A.A. Mogbademu, Hermite-Hadamard inequality for diamond-Fh-convex function on coordinates, Palestine J. Math. 9(2) (2020) 1–11. [7] B.O. Fagbemigun, A.A. Mogbademu and J.O. Olaleru, Diamond-ϕh dynamics on time scales with an application to economics, Int. J. Non-linear Anal. Appl. 11(1) (2020) 277–290. [8] B.O. Fagbemigun and A.A. Mogbademu, Some classes of convex functions on time scales, Facta Univ. Ser. Maths. Inform. 35(1) (2020) 11–28. [9] B.O. Fagbemigun and A.A. Mogbademu, Inequalities on time scales via diamond-Fh integral, Adv. Inequal. Appl. 2021(2) (2021) 1–13. [10] B.O. Fagbemigun, A.A. Mogbademu and J.O. Olaleru, Integral inequalities of Hermite-Hadamard type for a certain class of convex functions on time scales, Honam Math. J. (2021)(To Appear). [11] A.El. Farissi, Simple proof and refinement of Hermite-Hadamard inequality, J. Math. Inequal. 4(3) (2010) 365–369. [13] S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math. 18 (1990) 18–56. [14] M.A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory 2 (2007) 126–131. [15] P.O. Olanipekun, A.A. Mogbademu and S.S. Dragomir, Hermite-Hadamard type inequalities for a new class of harmonically Convex functions, Note Math. 38(1) (2018) 23–34. [16] B.O. Omotoyinbo, A.A. Mogbademu and P.O. Olanipekun, Integral inequalities of Hermite-Hadamard type for λ − MT-convex functions, J. Math. Sci. Appl. 4(2) (2016) 14–22. [17] J. Sandor, ´ Some integral inequalities, El. Math. 43 (1988) 177–180. [18] Q. Sheng, M. Fadag, J. Henderson and J.M. Davis, An exploration of combined dynamic derivatives on time scales and their applications, Nonlinear Anal. Real World Appl. 7(3) (2006) 395–413. [19] F.H. Wong, W.C. Lian, C.C. Yeh and R.L. Liang, Hermite-Hadamard’s inequality on time scales, Int. J. Artific. Life Res. 2(3) (2011) 51–58. | ||
آمار تعداد مشاهده مقاله: 15,672 تعداد دریافت فایل اصل مقاله: 360 |