
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,972 |
تعداد دریافت فایل اصل مقاله | 7,656,409 |
The fractional moments of shifted power law distribution by Caputo definition | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 197، دوره 13، شماره 1، خرداد 2022، صفحه 2379-2383 اصل مقاله (307.69 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.5935 | ||
نویسنده | ||
Rifaat Saad Abdul-Jabbar* | ||
Department of Mathematics, College of Science, University of Anbar, Iraq | ||
تاریخ دریافت: 12 آبان 1400، تاریخ بازنگری: 01 دی 1400، تاریخ پذیرش: 08 دی 1400 | ||
چکیده | ||
In this paper, the shifted power low distribution is studied in the direction of Fractioned moment. This type of distribution is a generalization for standard power low distributions. In this study, the fractional definition of Caputo is used to generalize the fractional moments of the maintained type of distribution to get a closed useful form. | ||
کلیدواژهها | ||
Fractional moment؛ Caputo definition؛ Shifted power law distribution functions؛ Fourier transform | ||
مراجع | ||
[1] R. Abdul-Jabbar, Caputo definition for finding fractional moments of power law distribution functions, Int. J. Nonlinear Anal. Appl. 13(1) (2022) 1131–1136. [2] K.B. Oldham and J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, New York, Academic, 1974. [3] K. Singh, R. Saxena and S. Kumar, Caputo-based fractional derivative in fractional Fourier transform domain, IEEE J. Emerg. Selected Topics in Circ. Syst. 3(3) (2013) 330–337. [4] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014) 65–70. [5] I.B. Bapna and N. Mathur, Application of fractional calculus in statistics, Int. J. Contemp. Math. Sci. 7(18) (2012) 849–856. [6] B. Yu, X. Jiang and H. Qi, An inverse problem to estimate an unknown order of a Riemann–Liouville fractional derivative for a fractional Stokes’ first problem for a heated generalized second grade fluid, Acta Mech. Sin. 31(2) (2015) 153-–161. [7] G. Cottone and M. Di paola, On the use of fractional calculus for the probabilistic characterization of random variables, Probabil. Egineer. Mech. Phys. A 389 (2010) 909—920. | ||
آمار تعداد مشاهده مقاله: 15,724 تعداد دریافت فایل اصل مقاله: 324 |