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Abstract

The strongly generalized differentiability notion is used to study the fuzzy Aboodh transform formula
on the fuzzy nth-order differential in this paper. It is also employed in an analytic technique for fuzzy
fifth-order differential equations, and the related theorems and properties are demonstrated in detail.
Solving a few instances demonstrates the process.
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1. Introduction

In recent years, the field of fuzzy differential equations (FDEs) has exploded in popularity. Chang
and Zadeh [10] were the first for introducing the fuzzy derivative concepts, which was followed by
Dubios and Prade [11], who applied this extension principle but in their method. Puri and Ralescu
[20], Goetschel and Voxman [13] have addressed several ways. The concept of FDEs was used for
the analysis of fuzzy dynamical issues by Kandel [15] with Kandel and Byatt [16]. Kaleva [14],
Seikkala [21], Ouyang and Wu [19], Kloeden [17], and Menda [18], as well as other researchers, thor-
oughly investigated the FDE while the starting of value problem concept (Cauchy problem), see
Bede et al. 2006 [8]. Abbasbandy and Allahviranloo [1], 2004 [2]), Allahviranloo [5], and Ghanbari
[12] presented numerical methods for solving fuzzy differential equations. Bede and Gal [9] devel-
oped the term strongly generalized differentiable. Salahshour [22] investigated the existence and the
uniqueness theorem of solutions to nth-order fuzzy differential equations under nth-order generalized
differentiability. The H-derivative is defined for a smaller class of fuzzy valued functions than the
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strongly generalized derivative, thus fuzzy differential equations can have solutions with a dimin-
ishing length of support. As a result, we apply the concept of differentiability in this study. In
Allahviranloo and Barkhordari [4], Laplace transform method on fuzzy nth-order derivative solved
fuzzy 2th-order differential equations (FTDEs), equivalent fuzzy nth-order, boundary value issues and
partial differential equations as well.

2. Basic concepts

This section introduces several terminology keys and basic ideas.

Definition 2.1. [24] The mapping H : R → [0, 1] is fuzzy number if satisfies

i. H is upper semi-continuous.

ii. H is fuzzy convex, i.e., H(ςt+ (1− ς)t-) ≥ min{H(t),H(t-)}, forall t, t- ∈ R and ς ∈ [0, 1]

iii. H is normal i.e., ∃x0 ∈ R for which H(x) = 1.

iv. Supp H = {x ∈ R;H(x) > 0}, and cl(Supp(H)) is compact.

Definition 2.2. Let η and ζ are fuzzy numbers so the distance between fuzzy numbers is determined
by the Hausdorff, Γ : Rf ×Rf → [0,+∞], where Rf be all the fuzzy numbers set on R:

Γ(η, ζ) = supς∈[0,1]max
{
|η(ς)− ζ(ς)|, |η(ς)− ζ(ς)|

}
, where η = (η(ς)− η(ς)), ζ = (ζ(ς), ζ(ς)) and

(Rf ,Γ) is a complete metric space and the following characteristics are well known:

� Γ(η ⊕ ϑ, ζ ⊕ ϑ) = Γ(η, ζ),∀η, ζ, ϑ ∈ Rf .

� Γ(ς ⊙ η, κ⊙ ζ) = |ς|Γ(η, ζ), ∀η, ζ ∈ Rf , ς ∈ R.

� Γ(η ⊕ ϑ, ζ ⊕ ν) ≤ Γ(η, ζ) + Γ(ϑ, ν),∀η, ζ, ϑ, ν ∈ Rf .

Definition 2.3. [8] Assume that ψ, ϕ ∈ Rf .Where there is γ ∈ Rf such thatψ = ϕ + γ then ψ is
known the H-differential of ψ and ϕ and it is represented by ψ ⊖ ϕ.

Note that in this work, the sign ⊖ always meant the H-difference as well as ψ ⊖ ϕ ̸= ψ + (−1)ϕ .

Definition 2.4. [22] Let H(x) be a fuzzy valued function on [e, r]. Suppose that H(x, ς) and H(x, ς)
are improper Riemman-integrable on [e, r], then H(x) is an improper on [e, r],and

(
∫ r

e
H(y, ς)dy) = (

∫ r

e
H(y, ς)dy), (

∫ r

e
H(y, ς)dy) = (

∫ r

e
H(y, ς)dy)

3. Generalization of fuzzy aboodh transform

Theorem 3.1. [25] Let H(x) be a fuzzy valued function on [e,∞) embodied by H(x, ς)H(x, ς). For
any fixed ς ∈ [0, 1], let H(x, ς)H(x, ς) are Riemann-integrals on [e, r]. For every r ≥ e, if two positive
functions exist θ(ς) and θ(ς) such that

∫ r

0
|H(x, ς)|dx ≤ θ(ς) and

∫ r

0
|H(x, ς)|dx ≤ θ(ς), for every

r ≥ e, then H(x) is said to be improper fuzzy Riemann-Liouville integrals function on [e,∞), i.e.∫∞
0

H(x)dx = [
∫∞
0

H(x, ς),
∫∞
0

H(x, ς)dx]

Definition 3.2. [23] A function H : (e, r) → RF and x0 ∈ (e, r). We say that a mapping H is
strongly generalized differentiable of the nth order at x0. If H,H

′
,H(2), . . . ,H(s−1) have been strongly

generalized differentiable and there exists an element H(s)(x0) ∈ RF , ∀s = 1, 2, . . . , n.
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i. ∀τ > 0 sufficiently small, there exist H(s−1)(x0 + τ) ⊖ H(s−1)(x0),H(s−1)(x0) ⊖ H(s−1)(x0 − τ)

where lim
τ→0

H(s−1)(x0 + τ)⊖H(s−1)(x0)

τ
= lim

τ→0

H(s−1)(x0)⊖H(s−1)(x0 − τ)

τ
= H(s)(x0) or

ii. ∀τ > 0 sufficiently small, there exist H(s−1)(x0) ⊖ H(s−1)(x0 + τ),H(s−1)(x0 − τ) ⊖ H(s−1)(x0)

where lim
τ→0

H(s−1)(x0)⊖H(s−1)(x0 + τ)

−τ
= lim

τ→0

H(s−1)(x0 − τ)⊖H(s−1)(x0)

−τ
= H(s)(x0) or

iii. ∀τ > 0 sufficiently small, there exist H(s−1)(x0 + τ) ⊖ H(s−1)(x0),H(s−1)(x0 − τ) ⊖ H(s−1)(x0)

where lim
τ→0

H(s−1)(x0 + τ)⊖H(s−1)(x0)

τ
= lim

τ→0

H(s−1)(x0 − τ)⊖H(s−1)(x0)

−τ
= H(s)(x0) or

iv. ∀τ > 0 sufficiently small, there exist H(s−1)(x0) ⊖ H(s−1)(x0 + τ),H(s−1)(x0) ⊖ H(s−1)(x0 − τ)

where lim
τ→0

H(s−1)(x0)⊖H(s−1)(x0 + τ)

−τ
= lim

τ→0

H(s−1)(x0)⊖H(s−1)(x0 − τ)

τ
= H(s)(x0) or

Theorem 3.3. [7] LetH(x),H′
(x),H(2)(x),H(3)(x), . . . ,H(n−1)(x) are differentiable fuzzy-valued func-

tions. Moreover, we denote ς-cut representation of fuzzy-valued function H(x) such that:
H(x) = [H(x, ς),H(x, ς)] for each ς ∈ [0, 1]. Then

H(n)(x) =


[
H(n)(x, ς),H(n)

(x, ς)
]

if number of (ii)− differentiable is even,

[
H(n)

(x, ς),H(n)(x, ς)
]

if number of (ii)− differentiable is odd.

Theorem 3.4. [6] Let H(x) is the primitive of H′
(x) on [0,∞) and H(x) be an integrable fuzzy-

valued function. Then:

a. H(x) is (i)-differentiable and Â[H′
(x)] = sÂ[H(x)]⊖ 1

s
H(0).

b. H(x) is (ii)-differentiable and Â[H′
(x)] = (−1

s
H(0))⊖ (−sÂ[H(x)).

Theorem 3.5. [3] Let H(x)e−sx,H′
(x)e−sx and H′

(2)e−sx are continuous and integrable Riemann
functions on [0, infty) so H(x) is continuous fuzzy valued function. Thus:

a. If H(x) and H′
(x) are (i)-differentiable, then Â[H(2)(x)] = {s2Â[H(x)]⊖H(0)} ⊖ 1

s
H′

(0).

b. If H(x) is (i)-differentiable and H′
(x) is (ii)-differentiable, then

Â[H(2)(x)] = (−1

s
H′

(0))⊖ {−s2Â[H(x)]⊖ (−H(0))}.

c. If H(x) is (ii)-differentiable and H′
(x) is (i)-differentiable, then

Â[H(2)(x)] = {−H(0)⊖ (−s2Â[H(x)]} ⊖ 1

s
H′

(0).

d. If H(x) is (ii)-differentiable and H′
(x) is (ii)-differentiable, then

Â[H(2)(x)] = (−1

s
H′

(0))⊖ {(H(0))⊖ s2Â[H(x)]}.
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Theorem 3.6. Let H(x)e−sx,H′
(x)e−sx,H(2)(x)e−sx, . . . ,H(n−1)(x)e−sx are exist, continuous and

integrable Riemann functions on [0,∞) and H(x) is continuous fuzzy valued function. If H(s)(x)
is strongly generalized differentiable of the nth order such that, there exists an element H(s)(x0) ∈
RF ,∀s = 0, 1, . . . , n. Then fuzzy Aboodh transform of H(n)(x) is given by,

Â[H(n)(x)] = {{{. . . {
n∏

K=1

B(K)Â[H(x)]⊖
n∏

K=2

B(K)E(1)H(0)} ⊖
n∏

K=3

B(K)E(2)H′
(0)}

⊖
n∏

K=4

B(K)E(3)H(2)(0)} ⊖
n∏

K=5

B(K)E(4)H(3)(0)} ⊖ . . . } ⊖ B(n)E(n− 1)H(n−2)(0)} ⊖ E(n)H(n−1)(0)},

where

B(K) =

{
s ifH(k)bei− differentiable,

⊖(−s) ifH(k)beii− differentiable.
E(K) =


1

s
ifH(k)bei− differentiable,

⊖(
1

−s
) ifH(k)beii− differentiable.

Proof . Let n = 1, Â[H′
(x)] = B(1)Â[H(x)]⊖ E(1)H(0), where

B(K) =

{
s ifH(k)bei− differentiable,

⊖(−s) ifH(k)beii− differentiable.
E(K) =


1

s
ifH(k)bei− differentiable,

⊖(
1

−s
) ifH(k)beii− differentiable.

1. if H is (i)-differentiable then Â[H′
(x)] = sÂ[H(x)]⊖ 1

s
H(0).

2. if H is (i)-differentiable then Â[H′
(x)] = −1

s
H(0)⊖−sÂ[H(x)].

Suppose that n = K is true,

Â[H(K)(x)] = {{{. . . {
K∏
i=1

B(i)Â[H(x)]⊖
K∏
i=2

B(i)E(1)H(0)} ⊖
K∏
i=3

B(i)E(2)H′
(0)}

⊖
K∏
i=4

B(i)E(3)H(2)(0)} ⊖
K∏
i=5

B(i)E(4)H(3)(0)} ⊖ . . . } ⊖ B(K)E(K− 1)H(K−2)(0)} ⊖ E(K)H(K−1)(0).

Let n = K+ 1,

Â[H(K)(x)] = B(K+ 1)Â[H(K)(x)]⊖ E(K+ 1)H(K)(0)

= B(K+ 1){{{. . . {
K∏
i=1

B(i)Â[H(x)]⊖
K∏
i=2

B(i)E(1)H(0)} ⊖
K∏
i=3

B(i)E(2)H′
(0)}

⊖
K∏
i=4

B(i)E(3)H(2)(0)} ⊖
K∏
i=5

B(i)E(4)H(3)(0)} ⊖ . . . } ⊖ B(K)E(K− 1)H(K−2)(0)}

⊖ E(K)H(K−1)(0)} ⊖ E(K+ 1)H(K)(0) = {{{. . . {
K+1∏
i=1

B(i)Â[H(x)]⊖
K+1∏
i=2

B(i)E(1)H(0)}

⊖
K+1∏
i=3

B(i)E(2)H′
(0)} ⊖

K+1∏
i=4

B(i)E(3)H(2)(0)} ⊖
K+1∏
i=5

B(i)E(4)H(3)(0)} ⊖ . . . }

⊖ B(K+ 1)B(K)E(K− 1)H(K−2)(0)} ⊖ B(K+ 1)E(K)H(K−1)(0)⊖ E(K+ 1)H(K)(0).

□
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4. Illustrative example

Example: Consider the following fifth-order FIVP

H(5)(x) = β,H(0, ς) = H′
(0, ς),H(1)(0, ς),H(2)(0, ς),H(3)(0, ς),H(4)(0, ς) = (ς − 1, 1− ς)

β = (ς − 1, 1− ς), 0 ≤ ς ≤ .1

Solution: Apply fuzzy Aboodh transform on both sides, to get Â[H(5)(x)] = Â[β].

1. If H(x),H′
(x),H(2)(x),H(3)(x) and H(4)(x) are (i)-differentiable

Â[H(5)(x)] = {{{{s5Â[H(x)]⊖ s3H(0)} ⊖ s2H′
(0)} ⊖ sH(2)(0)} ⊖H(3)(0)} ⊖ 1

s
H(4)(0

{{{{s5Â[H(x)]⊖ s3H(0)} ⊖ s2H′
(0)} ⊖ sH(2)(0)} ⊖H(3)(0)} ⊖ 1

s
H(4)(0) = A[β]

s5Â[H(x, ς)]− s3H(0, ς)− s2H′
(0, ς)− sH(2)(0, ς)} −H(3)(0, ς)− 1

s
H(4)(0, ς) = A[β]

s5Â[H(x, ς)]− s3H(0, ς)− s2H
′

(0, ς)− sH(2)
(0, ς)} −H(3)

(0, ς)− 1

s
H(4)

(0, ς) = A[β]

s5Â[H(x, ς)]− s3(ς − 1)− s2(ς − 1)− s(ς − 1)} − (ς − 1)− 1

s
(ς − 1) =

(ς − 1)

s2

s5Â[H(x, ς)]− s3(1− ς)− s2(1− ς)− s(1− ς)} − (1− ς)− 1

s
(1− ς) =

(1− ς)

s2

H(x, k) = (ς − 1)(1 + x+
1

2
x2 +

1

6
x3 +

1

24
x4 +

1

120
x5).

H(x, k) = (1− ς)(1 + x+
1

2
x2 +

1

6
x3 +

1

24
x4 +

1

120
x5).

2. If H(x) is (i)-differentiable but H′
(x),H(2)(x),H(3)(x) and H(4)(x) are (ii)-differentiable

Â[H(5)(x)] = −1

s
H(4)(0)⊖

{
H(3)(0)⊖

{
−sH(2)(0)⊖

{
s2H′

(0)⊖
{
s5Â[H(x)]⊖ s3H(0)

}}}}
− 1

s
H(4)(0, ς)−H(3)(0, ς)− sH(2)(0, ς)− s2H′

(0, ς) + s5Â[H(x, ς)]− s3H(0, ς) = A[β]

− 1

s
H(4)(0, ς)−H(3)(0, ς)− sH(2)(0, ς)− s2H

′

(0, ς) + s5Â[H(x, ς)]− s3H(0, ς) = A[β]

H(x, k) = (ς − 1)(
1

120
x5 +

1

6
x3 + x+ 1) + (1− ς)(

1

2
x2 +

1

24
x4)

H(x, k) = (1− ς)(
1

120
x5 +

1

6
x3 + x+ 1) + (ς − 1)(

1

2
x2 +

1

24
x4).

3. If H′
(x) is (i)-differentiable but H(x),H(2)(x),H(3)(x) and H(4)(x) are (ii)-differentiable

Â[H(5)(x)] = −1

s
H(4)(0)⊖

{
H(3)(0)⊖

{
−sH(2)(0)⊖

{{
s3H(0)⊖ s5Â[H(x)]⊖

}
⊖−s2H′

(0)
}}}

− 1

s
H(4)(0, ς)−H(3)(0, ς)− sH(2)(0, ς)− s3H(0, ς) + s5Â[H(x, ς)]− s2H′(0, ς) = A[β]

− 1

s
H(4)(0, ς)−H(3)(0, ς)− sH(2)(0, ς)− s3H(0, ς) + s5Â[H(x, ς)]− s2H′

(0, ς) = A[β]

H(x, k) = (ς − 1)(
1

120
x5 +

1

6
x3 + x+ 1) + (1− ς)(

1

2
x2 +

1

24
x4)

H(x, k) = (1− ς)(
1

120
x5 +

1

6
x3 + x+ 1) + (ς − 1)(

1

2
x2 +

1

24
x4).
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4. If H(2)(x) is (i)-differentiable but H(x),H′
(x),H(3)(x),H(4)(x) are (ii)-differentiable.

Â[H(5)(x)] = −1

s
H(4)(0)⊖

{
H(3)(0)⊖

{{
−s2H′

(0)⊖
{
s3H(0)⊖ s5Â[H(x)]

}}
⊖ sH(2)(0)

}}
− 1

s
H(4)(0, ς)−H(3)(0, ς)− s2H′(0, ς)− s3H(0, ς) + s5Â[H(x, ς)]− sH2(0, ς) = A[β]

− 1

s
H(4)(0, ς)−H(3)(0, ς)− s2H′

(0, ς)− s3H(0, ς) + s5Â[H(x, ς)]− sH2(0, ς) = A[β]

H(x, k) = (ς − 1)(
1

120
x5 +

1

2
x2 + 1 +

1

6
x3) + (1− ς)(x+

1

24
x4)

H(x, k) = (1− ς)(
1

120
x5 +

1

2
x2 + 1 +

1

6
x3) + (ς − 1)(x+

1

24
x4).

5. If H(3)(x) is (i)-differentiable but H(x),H′
(x),H(2)(x),H(4)(x) are (ii)-differentiable.

Â[H(5)(x)] = −1

s
H(4)(0)⊖

{{
sH(2)(0)⊖

{
−s2H′

(0)⊖
{
s3H(0)⊖ s5Â[H(x)]

}}}
⊖−H(3)(0)

}
− 1

s
H(4)(0, ς)− sH(2)(0, ς)− s2H′(0, ς)− s3H(0, ς) + s5Â[H(x, ς)]−H(3)(0, ς) = A[β]

− 1

s
H(4)(0, ς)− sH(2)(0, ς)− s2H′

(0, ς)− s3H(0, ς) + s5Â[H(x, ς)]−H(3)(0, ς) = A[β]

H(x, k) = (ς − 1)(
1

120
x5 + 1 +

1

2
x2) + (1− ς)(

1

6
x3 + x+

1

24
x4)

H(x, k) = (1− ς)(
1

120
x5 + 1 +

1

2
x2) + (ς − 1)(

1

6
x3 + x+

1

24
x4).

Other case are solved by the same way.

5. Conclusion

This paper presents the general formula for the fuzzy Aboodh transform, which is used to solve
fuzzy nth-order differential equations and we explained the using of the concept of strongly generalized
differential equations. We used a fifth-order numerical example to demonstrate efficiency and quality
of the method.
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