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The buckling and nonlinear free vibration problems of functionally graded porous 

(FGP) micro-beam resting on an elastic foundation are presented through the nonlocal 

strain gradient theory (NSGT) and the Euler-Bernoulli beam theory (EBT) with the von-

Kármán’s geometrical nonlinearity. The micro-beam is made up of metal and ceramic 

in which the material properties are assumed to be varied continuously in the thickness 

direction through a simple exponential law. Two porosity distribution models, 

including even and uneven distributions, are considered. The governing equation of 

motion is derived by employing Hamilton’s principle. The analytical expressions of the 

critical buckling force and nonlinear frequency of the FGP micro-beam with simply 

supported (S-S) boundary conditions (BCs) are obtained by utilizing the Galerkin 

technique and the equivalent linearization method (ELM). The reliability of the 

obtained results has been checked. Effects of the power-law index, the porosity 

distribution factor, the length-thickness ratio, the material length scale parameter 

(MLSP), the nonlocal parameter (NP), and the coefficients of the elastic foundation on 

the buckling and nonlinear free vibration responses of the FGP micro-beam are 

investigated and discussed in this work. 

1. Introduction 

By combining materials into a uniform 
volume, functionally graded (FG) materials 
showed prominent advantages compared with 
the traditional composite materials. Nowadays, 
FG materials are widely used in many fields, 
especially in aerospace engineering, nuclear 
engineering, biomedical engineering, and optical 
engineering [1-3]. Fallah and Aghdam [4] 
investigated the post-buckling and nonlinear free 
vibration behaviors of FG beams on nonlinear 
elastic foundations. Using various higher-order 
shear deformation beam theories, Thai and Vo [5] 
presented the analysis of the linear free vibration 
and bending responses of FG beams.   The multi-
scale method was applied by Yan et al. [6] to 
study the stability of an axially moving FG beam 
with time-dependent velocity. In manufacturing 
FG materials, it is difficult to avoid the 
appearance of micro-voids or pores inside the FG 
materials. The existence of pores reduces the 
weight but increases the ability to absorb the 

energy of FG materials [7, 8]. Therefore, the 
influence of porosity on the mechanical behavior 
of FG structures needs to be studied in detail. 
Wattanasakulpong and Chaikittiratana [9] first 
studied the influence of porosity on the vibration 
behavior of beams. In this work, the authors 
introduced two models of porosity distribution in 
FG materials, including even and uneven 
distributions. They found that the frequencies of 
the beam were reduced by increasing the 
porosity volume fraction. Akbaş [10] presented 
the geometrically nonlinear analysis of FGP 
Timoshenko beams using the finite element 
method in conjunction with the Newton-Raphson 
method. The nonlinear vibration behavior of a S-
S axially FG Euler-Bernoulli beam subjected to a 
moving harmonic force was examined by 
Alimoradzadeh et al. [11] using the Galerkin 
technique and the variational method. Besides 
analyzing the mechanical behavior of FG beams, 
the static and dynamic analysis of FG plates has 
also been reported by several authors [12-18]. 
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Because of the applications of micro-/nano- 
sized structures in micro-/nano-
electromechanical systems, many scientists are 
interested in analyzing the mechanical behaviors 
of these structures. The classical elasticity theory 
(CET) without the length scale parameters (LSPs) 
is not suitable for modeling micro-/nano- sized 
structures. Several higher-order theories of 
elasticity containing the LSPs have been 
introduced to model the micro-/nano- sized 
structures, such as the nonlocal elasticity theory 
(NET) [19, 20] the strain gradient theory (SGT) 
[21-25]. To date, some versions of the SGT have 
been proposed, for example, the modified strain 
gradient theory (MSGT) [26] and the modified 
couple stress theory (MCST) [27]. Size-
dependent behaviors of micro-/nano- sized 
structures can be observed in two different 
directions using the NET and the SGT. A stiffness 
softening effect can be observed by using the NET 
[19, 20], while a stiffness hardening effect can be 
observed by utilizing the SGT [21-25] and its 
versions [26, 27]. Some works presented the 
static and dynamic analysis of micro-and nano-
beams reported based on these above higher-
order elasticity theories [28-40]. In addition, Hou 
et al. [41] investigated the buckling and bending 
behaviors of  FG micro-cylindrical imperfect 
beams using the MCST. Based on the MCST and 
EBT, the nonlinear free vibration response of the 
FG non-uniform micro-tube was studied by 
Huang et al. [42] utilizing the homotopy 
perturbation and the differential quadrature 
methods. The semi-analytical solutions for the 
nonlinear and linear forced vibration problems of 
FG non-uniform cylindrical micro-beams based 
on the EBT and MCST were carried out by Xu et 
al. [43] by applying the differential quadrature 
method. 

Recently, both the NET and the SGT were 
combined in a generalized higher-order elasticity 
theory, the NSGT; this elasticity theory was 
proposed by Lim et al. [44]. The NSGT considered 
that the stress is a sum of the non-gradient 
nonlocal stress and higher-order gradient stress. 
In the framework of the NSGT, depending on the 
relationship between the NP and MLSP, the 
micro-/nano-sized structures arise the stiffness 
softening effect or stiffness hardening effect [45-
49]. Many works related to the bending, stability, 
and vibration analysis of the FG micro-/nano-
structures were reported by using the NSGT. The 
nonlinear vibration behavior of FG Euler-
Bernoulli nano-beams was investigated by 
Şimşek [50], utilizing the novel Hamiltonian 
approach. The bending, buckling, and vibration 
behaviors of viscoelastic FG curved Euler-
Bernoulli nano-beam resting on an elastic 
foundation were investigated by Allam and 
Radwan [51]. Nonlinear vibration behavior of an 

electrostatic FG Euler-Bernoulli nano-resonator 
taking into account the effect of surface stress 
was investigated by Esfahani et al. [52]. The 
nonlinear vibration behavior of FG nano-beams 
was studied by Hieu et al. [53] utilizing the NSGT 
considering thickness effect. The nonlinear 
vibration and stability characteristics of FGP 
Euler-Bernoulli micro-beams under electrostatic 
force were examined by Dang and Do [54]. Dang 
et al. [55] investigated the stability and nonlinear 
vibration behaviors of  FG nano-tubes conveying 
fluid. The effect of magnetic field on the nonlinear 
vibration of electrostatically actuated FG micro-
beam was reported by Hieu et al. [56]. Tang and 
Qing [57] studied the buckling and free vibration 
behaviors of the FG Timoshenko beam using the 
Laplace transform method. The forced vibration 
behavior of laminated FG graphene platelet-
reinforced composite micro-beams under 
external harmonic forces was investigated by Wu 
et al. [58] using the refined hyperbolic shear 
deformation beam theory. Esen et al. [59] 
examined the dynamical behavior of  FG nano-
beam reinforced by carbon nanotubes subjected 
to a moving point load. Moreover, recently, the 
effects of magnetic and thermal fields on FG 
Timoshenko nano-beam buckling and free 
vibration behaviors were examined by Esen et al. 
[60]. 

The influence of porosity on the mechanical 
behavior of FG micro-beams is an important topic 
that needs to be studied. The novelty of this work 
is to present the analytical analysis for the 
buckling and nonlinear free vibration problems 
of the FGP micro-beam resting on the elastic 
foundation based on the NSGT and the EBT for 
the first time. The micro-beam is composed of a 
mixture of metal and ceramic, in which the 
material properties are assumed to change 
continuously in the direction of thickness 
according to the simple exponential law. Two 
porosity distribution models, including even and 
uneven distributions, are examined to consider 
the porosity effect. Hamilton’s principle is 
applied to establish the governing equation of 
motion. The analytical expressions of the critical 
buckling force and nonlinear frequency of the 
FGP micro-beam with S-S BCs are carried out. 
Numerical illustrations are performed to check 
the accuracy and evaluate the impact of some 
important parameters on the nonlinear free 
vibration and stability behaviors of the micro-
beam. 

2. Model and Formulations 

2.1. Modeling of the FGP Micro-beam 

A model of an FGP micro-beam resting on an 
elastic foundation is considered in Fig. 1. The FGP 
micro-beam has the length L, width b, and height 
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h. A Winkler–Pasternak type elastic foundation 
with two layers is considered, including the 
Winkler layer with foundation coefficient kL and 
the Pasternak layer with foundation coefficient 
kS. The micro-beam is composed of metal and 
ceramic with porosity distribution. The material 
properties of the micro-beam are assumed to 
vary in the thickness direction according to the 
simple exponential law. In this work, two kinds of 
porosity distributions, including even and 
uneven distribution, are considered (see Fig. 2). 
The material properties, Young’s modulus 𝐸(𝑧), 
and the mass density 𝜌(𝑧), can be estimated by 
[9]: 

𝐸(𝑧) = (𝐸𝑐 − 𝐸𝑚) (
𝑧

ℎ
+
1

2
)
𝑘

+ 𝐸𝑚 −
𝛿

2
(𝐸𝑐 + 𝐸𝑚) (1) 

𝜌(𝑧) = (𝜌𝑐 − 𝜌𝑚) (
𝑧

ℎ
+
1

2
)
𝑘

+ 𝜌𝑚 −
𝛿

2
(𝜌𝑐 + 𝜌𝑚) (2) 

for the even porosity distribution (or FGM-I), and 
[9]: 

𝐸(𝑧) = (𝐸𝑐 − 𝐸𝑚) (
𝑧

ℎ
+
1

2
)
𝑘

+ 𝐸𝑚 

               −
𝛿

2
(𝐸𝑐 + 𝐸𝑚) (1 −

2|𝑧|

ℎ
) 

(3) 

𝜌(𝑧) = (𝜌𝑐 − 𝜌𝑚) (
𝑧

ℎ
+
1

2
)
𝑘

+ 𝜌𝑚 

             −
𝛿

2
(𝜌𝑐 + 𝜌𝑚) (1 −

2|𝑧|

ℎ
) 

(4) 

For the uneven porosity distribution (FGM-II). 
In the above equations, subscripts “c” and “m” 
represent ceramic and metal phases, 
respectively; k (0 ≤ 𝑘 < ∞) is the power-law 
index which governs the change of the volume 
fraction of ceramic and metal phases; 𝑧 is the 
thickness coordinate from the geometry middle 
surface of the FGP micro-beam, and 𝛿 (0 ≤ 𝛿 ≪
1) refers to the porosity distribution factor. When 
𝛿 = 0 (without porosity), the FGP micro-beam 
becomes the perfect FG micro-beam. It is noted 
that the perfect FG micro-beam becomes a fully 
ceramic micro-beam if k is equal to zero and 
nearly a metal micro-beam for a very large value 
of k. 

 
Fig. 1. Modeling of a FGP micro-beam resting on an elastic 

foundation 

 
Fig. 2. Porosity distribution models: (a) even porosity 

distribution (FGM-I), (b) uneven porosity  
distribution (FGM-II) 

As can see from Fig. 2, the FGM-I model has 
porosities uniformly distributed over the micro-
beam’s cross-section. At the same time, the FGM-
II model has porosities spreading mostly around 
the middle area of the micro-beam’s cross-
section, and the amount of porosity decreases 
linearly to zero at the upper and lower surfaces of 
the micro-beam’s cross-section.  

2.2. The NSGT 

The total stress of the FGP micro-beam based 
on the NSGT is defined as [44]: 

𝑡𝑥𝑥 = 𝜎𝑥𝑥 −
𝜕𝜎𝑥𝑥

(1)

𝜕𝑥
 (5) 

where 𝜎𝑥𝑥and 𝜎𝑥𝑥
(1)

 are the nonlocal stress and 

the higher-order nonlocal stress, respectively, 
these stresses are functions of the classical strain 

(𝜀𝑥𝑥) and the strain gradient (𝜀𝑥𝑥,𝑥) [44]: 

𝜎𝑥𝑥 = ∫ 𝐸(𝑧)𝛼0(𝑥, 𝑥′, 𝑒0𝑎)𝜀𝑥𝑥
′ (𝑥′)𝑑𝑥′

𝐿

0

 (6) 

𝜎𝑥𝑥
(1)

= 𝑙𝑚
2 ∫ 𝐸(𝑧)𝛼1(𝑥, 𝑥′, 𝑒1𝑎)𝜀𝑥𝑥,𝑥

′ (𝑥′)𝑑𝑥′
𝐿

0

 (7) 

in which, 𝑙𝑚 is the MLSP which describes the 

effect of strain gradient stress field; 𝑒0𝑎 and 𝑒1𝑎 
are the two NPs describing the effect of the 

nonlocal stress field; 𝛼0 and 𝛼1 are the two 
nonlocal kernel functions defined by Eringen [19, 
20].  
For one dimensional problem, the general 
nonlocal strain gradient constitutive equation 
takes a form [44]: 

[1 − (𝑒0𝑎)
2𝛻2][1 − (𝑒1𝑎)

2𝛻2]𝑡𝑥𝑥 

      = 𝐸(𝑧)[1 − (𝑒1𝑎)
2𝛻2]𝜀𝑥𝑥  

          −𝐸(𝑧)𝑙𝑚
2 [1 − (𝑒0𝑎)

2𝛻2]𝛻2𝜀𝑥𝑥 

(8) 

where 𝛻2 =
𝜕2

𝜕𝑥2
 is the Laplace operator. When 

considering 𝑒0 = 𝑒1 = 𝑒, Eq. (8) is reduced to: 

[1 − (𝑒𝑎)2𝛻2]𝑡𝑥𝑥 = [𝐸(𝑧) − 𝐸(𝑧)𝑙𝑚
2 𝛻2]𝜀𝑥𝑥  (9) 

The nonlocal constitutive equations for the 
NET [19, 20] and the SGT [25] can be recovered 
from Eq. (9) by letting  𝑙𝑚 = 0 and 𝑒𝑎 = 0, 
respectively. 
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2.3. The Governing Equation for the FGP 
Micro-beam  

According to the EBT and the von-Kármán’s 
geometrical nonlinearity, the nonzero strain of 
the FGP micro-beam is [46, 48, 50]: 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
+
1

2
(
𝜕𝑤

𝜕𝑥
)
2

− 𝑧
𝜕2𝑤

𝜕𝑥2
 (10) 

where u and w represent the axial and transverse 
displacements of any point on the geometry 
middle surface of the FGP micro-beam, 
respectively. The virtual strain energy of the FGP 
micro-beam based on the NSGT is given as [46, 
48, 50]: 

𝛿𝑈 = ∫ (𝜎𝑥𝑥𝛿𝜀𝑥𝑥 + 𝜎𝑥𝑥
(1)
𝛿𝜀𝑥𝑥,𝑥)

𝑉

𝑑𝑉 (11) 

Combination of Eqs. (10) and (11), leads to: 

𝛿𝑈 = ∫ ∫ {𝑡𝑥𝑥𝛿 [
𝜕𝑢

𝜕𝑥
+
1

2
(
𝜕𝑤

𝜕𝑥
)
2

]
𝐴

𝐿

0

− 𝑡𝑥𝑥𝑧𝛿 (
𝜕2𝑤

𝜕𝑥2
)} 𝑑𝐴𝑑𝑥 

       +∫ {𝜎𝑥𝑥
(1)
𝛿 [
𝜕𝑢

𝜕𝑥
+
1

2
(
𝜕𝑤

𝜕𝑥
)
2

]
𝐴

− 𝜎𝑥𝑥
(1)
𝑧𝛿 (

𝜕2𝑤

𝜕𝑥2
)} 𝑑𝐴|

0

𝐿

 

= ∫ ∫ {𝑡𝑥𝑥 [
𝜕𝛿𝑢

𝜕𝑥
+
𝜕𝑤

𝜕𝑥

𝜕𝛿𝑤

𝜕𝑥
]

𝐴

𝐿

0

− 𝑡𝑥𝑥𝑧
𝜕2𝛿𝑤

𝜕𝑥2
} 𝑑𝐴𝑑𝑥 

     +∫ {𝜎𝑥𝑥
(1)
[𝛿 (

𝜕𝑢

𝜕𝑥
) +

𝜕𝑤

𝜕𝑥
𝛿 (
𝜕𝑤

𝜕𝑥
)]

𝐴

− 𝜎𝑥𝑥
(1)
𝑧𝛿 (

𝜕2𝑤

𝜕𝑥2
)} 𝑑𝐴|

0

𝐿

 

= ∫ {𝑁𝑥𝑥
(1)
[
𝜕𝛿𝑢

𝜕𝑥
+
𝜕𝑤

𝜕𝑥

𝜕𝛿𝑤

𝜕𝑥
] − 𝑀𝑥𝑥

(1) 𝜕
2𝛿𝑤

𝜕𝑥2
}

𝐿

0

𝑑𝑥 

    + {𝑁𝑥𝑥
(2)
[𝛿 (

𝜕𝑢

𝜕𝑥
) +

𝜕𝑤

𝜕𝑥
𝛿 (
𝜕𝑤

𝜕𝑥
)]

− 𝑀𝑥𝑥
(2)
𝛿 (

𝜕2𝑤

𝜕𝑥2
)}|

0

𝐿

 

= [𝑁𝑥𝑥
(1)
𝛿𝑢]|

0

𝐿
−∫

𝜕𝑁𝑥𝑥
(1)

𝜕𝑥
𝛿𝑢

𝐿

0

𝑑𝑥

+ [𝑁𝑥𝑥
(1) 𝜕𝑤

𝜕𝑥
𝛿𝑤]|

0

𝐿

 

   −∫
𝜕

𝜕𝑥
[𝑁𝑥𝑥

(1) 𝜕𝑤

𝜕𝑥
] 𝛿𝑤

𝐿

0

𝑑𝑥 − [𝑀𝑥𝑥
(1)
𝛿 (
𝜕𝑤

𝜕𝑥
)]|

0

𝐿

 

   + [
𝜕𝑀𝑥𝑥

(1)

𝜕𝑥
𝛿𝑤]|

0

𝐿

−∫
𝜕2𝑀𝑥𝑥

(1)

𝜕𝑥2
𝛿𝑤

𝐿

0

𝑑𝑥 

   +{𝑁𝑥𝑥
(2)
[𝛿 (

𝜕𝑢

𝜕𝑥
) +

𝜕𝑤

𝜕𝑥
𝛿 (
𝜕𝑤

𝜕𝑥
)]

− 𝑀𝑥𝑥
(2)
𝛿 (

𝜕2𝑤

𝜕𝑥2
)}|

0

𝐿

 

(12) 

where 𝑁𝑥𝑥
(1)

 denotes the axial force resultant, 𝑀𝑥𝑥
(1) 

denotes the bending moment resultant, 𝑁𝑥𝑥
(2)

 
indicates the non-classical axial force, and 𝑀𝑥𝑥

(2)
 is 

the non-classical moment; these quantities are 
defined as: 

𝑁𝑥𝑥
(1)

= ∫𝑡𝑥𝑥𝑑𝐴
𝐴

, 𝑀𝑥𝑥
(1)

= ∫𝑧𝑡𝑥𝑥𝑑𝐴
𝐴

, 

𝑁𝑥𝑥
(2)

= ∫𝜎𝑥𝑥
(2)
𝑑𝐴

𝐴

, 𝑀𝑥𝑥
(2)

= ∫𝑧𝜎𝑥𝑥
(2)
𝑑𝐴

𝐴

 

(13) 

herein, 𝐴 = 𝑏 ×h. The axial force resultant and 
the bending moment resultant are expressed as, 
respectively: 

(1 − (𝑒𝑎)2𝛻2)𝑁𝑥𝑥
(1)

= 

(1 − 𝑙𝑚
2 𝛻2)𝐴𝑥𝑥 (

𝜕𝑢

𝜕𝑥
+
1

2
(
𝜕𝑤

𝜕𝑥
)
2

) 
(14) 

(1 − (𝑒𝑎)2𝛻2)𝑀𝑥𝑥
(1)

= −𝐷𝑥𝑥(1 − 𝑙𝑚
2 𝛻2)

𝜕2𝑤

𝜕𝑥2
 (15) 

where 

𝐴𝑥𝑥 = ∫ 𝐸(𝑧)𝑑𝐴
𝐴

,          𝐷𝑥𝑥 = ∫ 𝐸(𝑧)𝑧2𝑑𝐴
𝐴

 (16) 

The virtual kinetic energy of the FGP micro-
beam is given as [48]: 

𝐾𝑒 = ∫ ∫ 𝜌(𝑧)
𝜕𝑢1
𝜕𝑡𝐴

𝐿

0

𝛿 (
𝜕𝑢1
𝜕𝑡

)𝑑𝐴𝑑𝑥 

      +∫ ∫ 𝜌(𝑧)
𝜕𝑢3
𝜕𝑡𝐴

𝐿

0

𝛿 (
𝜕𝑢3
𝜕𝑡

) 𝑑𝐴𝑑𝑥 

      ≈ ∫ 𝑚0

𝐿

0

𝜕𝑢

𝜕𝑡
𝛿 (
𝜕𝑢

𝜕𝑡
) 𝑑𝑥 + ∫ 𝑚0

𝐿

0

𝜕𝑤

𝜕𝑡
𝛿 (
𝜕𝑤

𝜕𝑡
) 𝑑𝑥 

      +∫ 𝑚2

𝐿

0

𝜕2𝑤

𝜕𝑡𝜕𝑥
𝛿 (

𝜕2𝑤

𝜕𝑡𝜕𝑥
)𝑑𝑥 

(17) 

where: 

𝑚0 = ∫ 𝜌(𝑧)𝑑𝐴
𝐴

,           𝑚2 = ∫ 𝜌(𝑧)𝑧2𝑑𝐴
𝐴

 (18) 

The virtual external work caused by the 
transverse distributed force 𝑞(𝑥, 𝑡) and the 
elastic foundation reaction 𝑞𝑒(𝑥, 𝑡) = −𝑘𝐿𝑤 +

𝑘𝑆
𝜕2𝑤

𝜕𝑥2
 can be calculated by: 

𝛿𝑊 = ∫ (𝑞𝛿𝑤 + 𝑞𝑒𝛿𝑤)𝑑𝑥
𝐿

0

 

         = ∫ [𝑞𝛿𝑤 + (−𝑘𝐿𝑤 + 𝑘𝑆
𝜕2𝑤

𝜕𝑥2
)𝛿𝑤] 𝑑𝑥

𝐿

0

 

(19) 

To get the motion equation, Hamilton’s 
principle is employed [46-50]: 

∫ (𝛿𝐾𝑒 − 𝛿𝑈 + 𝛿𝑊)
𝑡

0

𝑑𝑡 = 0 (20) 

Substituting Eqs. (12), (17), and (19) into Eq. 
(20), the following equations can be achieved: 
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𝛿𝑢:    
𝜕𝑁𝑥𝑥

(1)

𝜕𝑥
− 𝑚0

𝜕2𝑢

𝜕𝑡2
= 0 (21) 

𝛿𝑤:   
𝜕2𝑀𝑥𝑥

(1)

𝜕𝑥2
+
𝜕

𝜕𝑥
[𝑁𝑥𝑥

(1) 𝜕𝑤

𝜕𝑥
] + 𝑞 − 𝑘𝐿𝑤 + 𝑘𝑠

𝜕2𝑤

𝜕𝑥2
 

          −𝑚0

𝜕2𝑤

𝜕𝑡2
+𝑚2

𝜕4𝑤

𝜕𝑡2𝜕𝑥2
= 0 

(22) 

and BCs at x = 0 and x = L: 

𝛿𝑢:               𝑁𝑥𝑥
(1)

= 0    or     𝑢 = 0, (23) 

𝛿 (
𝜕𝑢

𝜕𝑥
):      𝑁𝑥𝑥

(2)
= 0   or   

𝜕𝑢

𝜕𝑥
= 0, (24) 

𝛿𝑤:             
𝜕𝑀𝑥𝑥

(1)

𝜕𝑥
+ 𝑁𝑥𝑥

(1) 𝜕𝑤

𝜕𝑥
= 0   or    𝑤 = 0, (25) 

𝛿 (
𝜕𝑤

𝜕𝑥
):    𝑀𝑥𝑥

(1)
− 𝑁𝑥𝑥

(2) 𝜕𝑤

𝜕𝑥
= 0       or   

𝜕𝑤

𝜕𝑥
= 0, (26) 

𝛿 (
𝜕2𝑤

𝜕𝑥2
):  𝑀𝑥𝑥

(2)
= 0     or     

𝜕2𝑤

𝜕𝑥2
= 0 (27) 

From Eqs. (14), (15), (21), and (22), the 
expressions of the axial force and bending 
moment resultants can be obtained as: 

𝑁𝑥𝑥
(1)

= 𝐴𝑥𝑥 (1 − 𝑙𝑚
2
𝜕2

𝜕𝑥2
) [
𝜕𝑢

𝜕𝑥
+
1

2
(
𝜕𝑤

𝜕𝑥
)
2

] 

         +(𝑒𝑎)2𝑚0

𝜕3𝑢

𝜕𝑥𝜕𝑡2
, 

(28) 

𝑀𝑥𝑥
(1)

= −𝐷𝑥𝑥 (1 − 𝑙𝑚
2
𝜕2

𝜕𝑥2
)
𝜕2𝑤

𝜕𝑥2
  

+(𝑒𝑎)2

[
 
 
 
 
 
 𝑚0

𝜕2𝑤

𝜕𝑡2
−𝑚2

𝜕4𝑤

𝜕𝑡2𝜕𝑥2

−
𝜕

𝜕𝑥
(𝑁𝑥𝑥

(1) 𝜕𝑤

𝜕𝑥
) + 𝑘𝐿𝑤

−𝑘𝑆
𝜕2𝑤

𝜕𝑥2
− 𝑞 ]

 
 
 
 
 
 

 

(29) 

Therefore, the equations of motion for the 
FGP micro-beam can be obtained by putting Eqs. 
(28) and (29) into Eqs. (14) and (15) as: 

𝐴𝑥𝑥
𝜕

𝜕𝑥
{(1 − 𝑙𝑚

2
𝜕2

𝜕𝑥2
) [
𝜕𝑢

𝜕𝑥
+
1

2
(
𝜕𝑤

𝜕𝑥
)
2

]} 

−𝑚0

𝜕2

𝜕𝑡2
[1 − (𝑒𝑎)2

𝜕2𝑤

𝜕𝑥2
] = 0, 

(30) 

−𝐷𝑥𝑥 (1 − 𝑙𝑚
2
𝜕2

𝜕𝑥2
)
𝜕4𝑤

𝜕𝑥4
+
𝜕

𝜕𝑥
(𝑁𝑥𝑥

(1) 𝜕𝑤

𝜕𝑥
) 

−(𝑒𝑎)2
𝜕3

𝜕𝑥3
(𝑁𝑥𝑥

(1) 𝜕𝑤

𝜕𝑥
) − 𝑚0

𝜕2

𝜕𝑡2
[𝑤 − (𝑒𝑎)2

𝜕2𝑤

𝜕𝑥2
] 

+𝑚2

𝜕4

𝜕𝑡2𝜕𝑥2
[𝑤 − (𝑒𝑎)2

𝜕2𝑤

𝜕𝑥2
] 

−𝑘𝐿 [𝑤 − (𝑒𝑎)2
𝜕2𝑤

𝜕𝑥2
] + 𝑘𝑆

𝜕2

𝜕𝑥2
[𝑤 − (𝑒𝑎)2

𝜕2𝑤

𝜕𝑥2
] 

+ [𝑞 − (𝑒𝑎)2
𝜕2𝑞

𝜕𝑥2
] = 0 

(31) 

The following result can be obtained if the 
axial inertia terms in Eq. (30) are neglected: 

𝐴𝑥𝑥 (1 − 𝑙𝑚
2
𝜕2

𝜕𝑥2
) [
𝜕𝑢

𝜕𝑥
+
1

2
(
𝜕𝑤

𝜕𝑥
)
2

] = 𝐶, (32) 

where C is the integral constant which can be 
determined by the following BCs: 

𝑢(𝐿) = −
𝑃0𝐿

𝐴𝑥𝑥
, 𝑢(0) =

𝜕2𝑢

𝜕𝑥2
|
𝑥=𝐿

=
𝜕2𝑢

𝜕𝑥2
|
𝑥=0

= 0, (33) 

in which, P0 is the initial compressive axial force. 
Employing the BCs (33) and integrating both 
sides of Eq. (32) from 0 to L, it can be obtained: 

𝐶 = −𝑃0 +
𝐴𝑥𝑥
2𝐿

∫ (
𝜕𝑤

𝜕𝑥
)
2𝐿

0

𝑑𝑥 

        −
𝐴𝑥𝑥
𝐿
𝑙𝑚
2 ∫ [

𝜕𝑤

𝜕𝑥

𝜕3𝑤

𝜕𝑥3
+ (

𝜕2𝑤

𝜕𝑥2
)

2

]
𝐿

0

𝑑𝑥. 

(34) 

From Eqs. (28), (32), and (34), the expression 
of the axial force resultant can be derived as: 

𝑁𝑥𝑥
(1) = −𝑃0 +

𝐴𝑥𝑥
2𝐿

∫ (
𝜕𝑤

𝜕𝑥
)
2𝐿

0

𝑑𝑥 

              −
𝐴𝑥𝑥
𝐿
𝑙𝑚
2 ∫ [

𝜕𝑤

𝜕𝑥

𝜕3𝑤

𝜕𝑥3
+ (

𝜕2𝑤

𝜕𝑥2
)

2

]
𝐿

0

𝑑𝑥. 

(35) 

Now, substituting Eq. (35) into Eq. (31), the 
motion equation of the FGP micro-beam in terms 
of the transverse displacement (w) based on the 
NSGT can be derived as: 

{𝑃0 −
𝐴𝑥𝑥
2𝐿

∫ (
𝜕𝑤

𝜕𝑥
)
2𝐿

0

𝑑𝑥} [
𝜕2𝑤

𝜕𝑥2
− (𝑒𝑎)2

𝜕4𝑤

𝜕𝑥4
] + 

{
𝐴𝑥𝑥
𝐿
𝑙𝑚
2 ∫ [

𝜕𝑤

𝜕𝑥

𝜕3𝑤

𝜕𝑥3
+ (

𝜕2𝑤

𝜕𝑥2
)

2

]
𝐿

0

𝑑𝑥} 

× [
𝜕2𝑤

𝜕𝑥2
− (𝑒𝑎)2

𝜕4𝑤

𝜕𝑥4
] + 𝐷𝑥𝑥 (1 − 𝑙𝑚

2
𝜕2

𝜕𝑥2
)
𝜕4𝑤

𝜕𝑥4
 

+𝑚0

𝜕2

𝜕𝑡2
[𝑤 − (𝑒𝑎)2

𝜕2𝑤

𝜕𝑥2
] 

−𝑚2

𝜕4

𝜕𝑡2𝜕𝑥2
[𝑤 − (𝑒𝑎)2

𝜕2𝑤

𝜕𝑥2
] 

+𝑘𝐿 [𝑤 − (𝑒𝑎)2
𝜕2𝑤

𝜕𝑥2
] − 𝑘𝑆

𝜕2

𝜕𝑥2
[𝑤 − (𝑒𝑎)2

𝜕2𝑤

𝜕𝑥2
] 

= [𝑞 − (𝑒𝑎)2
𝜕2𝑞

𝜕𝑥2
]. 

(36) 

For the S-S FGP micro-beam, the classical and 
nonclassical BCs at 𝑥 = 0 and 𝑥 = 𝐿 can be 
expressed as [48]: 

𝑤 = 0,
𝜕2𝑤

𝜕𝑥2
= 0,

𝜕4𝑤

𝜕𝑥4
= 0. (37) 

which was investigated by Şimşek [50].  

Without considering the elastic foundation 
(𝑘𝐿 = 𝑘𝑆 = 0) and the influence of the axial 
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compressive force (𝑃0 = 0), and the second mass 
moment of inertia are ignored (𝑚2 = 0), Eq. (36) 
is reduced to: 

{−
𝐴𝑥𝑥
2𝐿

∫ (
𝜕𝑤

𝜕𝑥
)
2𝐿

0

𝑑𝑥} [
𝜕2𝑤

𝜕𝑥2
− (𝑒𝑎)2

𝜕4𝑤

𝜕𝑥4
] 

+ {
𝐴𝑥𝑥
𝐿
𝑙𝑚
2 ∫ [

𝜕𝑤

𝜕𝑥

𝜕3𝑤

𝜕𝑥3
+ (

𝜕2𝑤

𝜕𝑥2
)

2

]
𝐿

0

𝑑𝑥} 

× [
𝜕2𝑤

𝜕𝑥2
− (𝑒𝑎)2

𝜕4𝑤

𝜕𝑥4
] + 𝐷𝑥𝑥 (1 − 𝑙𝑚

2
𝜕2

𝜕𝑥2
)
𝜕4𝑤

𝜕𝑥4
 

+𝑚0

𝜕2

𝜕𝑡2
[𝑤 − (𝑒𝑎)2

𝜕2𝑤

𝜕𝑥2
] = [𝑞 − (𝑒𝑎)2

𝜕2𝑞

𝜕𝑥2
]. 

(38) 

For the homogeneous micro-beam, i.e.𝐷𝑥𝑥 =
𝐸𝐼, 𝐴𝑥𝑥 = 𝐸𝐴 , 𝑚0 = 𝜌𝐴

 
and 𝑚2 = 𝜌𝐼, Eq. (36) 

becomes: 

{𝑃0 −
𝐸𝐴

2𝐿
∫ (

𝜕𝑤

𝜕𝑥
)
2𝐿

0

𝑑𝑥} [
𝜕2𝑤

𝜕𝑥2
− (𝑒𝑎)2

𝜕4𝑤

𝜕𝑥4
] 

+ {
𝐸𝐴

𝐿
𝑙𝑚
2 ∫ [

𝜕𝑤

𝜕𝑥

𝜕3𝑤

𝜕𝑥3
+ (

𝜕2𝑤

𝜕𝑥2
)

2

]
𝐿

0

𝑑𝑥} 

× [
𝜕2𝑤

𝜕𝑥2
− (𝑒𝑎)2

𝜕4𝑤

𝜕𝑥4
] + 𝐸𝐼 (1 − 𝑙𝑚

2
𝜕2

𝜕𝑥2
)
𝜕4𝑤

𝜕𝑥4
 

+𝜌𝐴
𝜕2

𝜕𝑡2
[𝑤 − (𝑒𝑎)2

𝜕2𝑤

𝜕𝑥2
] 

−𝜌𝐼
𝜕4

𝜕𝑡2𝜕𝑥2
[𝑤 − (𝑒𝑎)2

𝜕2𝑤

𝜕𝑥2
] 

+𝑘𝐿 [𝑤 − (𝑒𝑎)2
𝜕2𝑤

𝜕𝑥2
] 

−𝑘𝑃
𝜕2

𝜕𝑥2
[𝑤 − (𝑒𝑎)2

𝜕2𝑤

𝜕𝑥2
] = [𝑞 − (𝑒𝑎)2

𝜕2𝑞

𝜕𝑥2
]. 

(39) 

which was studied by Dang [46]. 

For the convenience of calculations, the 
dimensionless variables are introduced as 
follows: 

𝑥̄ =
𝑥

𝐿
, 𝑤̄ =

𝑤

𝐿
, 𝑡̄ = 𝑡√

𝐸𝑚ℎ
2

𝜌𝑚𝐿
4 , 𝛼 =

𝑒𝑎

𝐿
, 

𝛽 =
𝑙𝑚
𝐿
,    𝛾 =

𝐿

ℎ
, 𝑃 =

𝑃0𝐿
2

𝐸𝑚𝑏ℎ
3
, 𝐾𝐿 =

𝑘𝐿𝐿
4

𝐸𝑚𝑏ℎ
3
, 

𝐾𝑃 =
𝑘𝑆𝐿

2

𝐸𝑚𝑏ℎ
3 , 𝑞̄ =

𝑞𝐿3

𝐸𝑚𝑏ℎ
3 , 𝑧̄ =

𝑧

ℎ
, 𝑐̄ =

𝑐

ℎ
. 

(40) 

Using Eq. (40), the motion equation of the FGP 
micro-beam can be rewritten in the following 
dimensionless form: 

{𝑃 −
𝐴̄𝑥𝑥
2
𝛾2∫ (

𝜕𝑤̄

𝜕𝑥̄
)
21

0

𝑑𝑥̄} [
𝜕2𝑤̄

𝜕𝑥̄2
− 𝛼2

𝜕4𝑤̄

𝜕𝑥̄4
] 

+ {𝐴̄𝑥𝑥𝛽
2𝛾2∫ [

𝜕𝑤̄

𝜕𝑥̄

𝜕3𝑤̄

𝜕𝑥̄3
+ (

𝜕2𝑤̄

𝜕𝑥̄2
)

2

]
1

0

𝑑𝑥̄} 

× [
𝜕2𝑤̄

𝜕𝑥̄2
− 𝛼2

𝜕4𝑤̄

𝜕𝑥̄4
] + 𝐷̄𝑥𝑥 (1 − 𝛽2

𝜕2

𝜕𝑥̄2
)
𝜕4𝑤̄

𝜕𝑥̄4
 

+𝑚̄0 [
𝜕2𝑤̄

𝜕𝑡̄2
− 𝛼2

𝜕4𝑤̄

𝜕𝑡̄2𝜕𝑥̄2
] 

−𝑚̄2

1

𝛾2
[
𝜕4𝑤̄

𝜕𝑡̄2𝜕𝑥̄2
− 𝛼2

𝜕6𝑤̄

𝜕𝑡̄2𝜕𝑥̄4
] 

+𝐾𝐿 [𝑤̄ − 𝛼2
𝜕2𝑤̄

𝜕𝑥̄2
] − 𝐾𝑆 [

𝜕2𝑤̄

𝜕𝑥̄2
− 𝛼2

𝜕4𝑤̄

𝜕𝑥̄4
] 

= [𝑞̄ − 𝛼2
𝜕2𝑞̄

𝜕𝑥̄2
]. 

(41) 

Where 

𝐴̄𝑥𝑥 = ∫
𝐸(𝑧̄)

𝐸𝑚

1/2

−1/2

𝑑𝑧̄,   𝐷̄𝑥𝑥 = ∫
𝐸(𝑧̄)

𝐸𝑚

1
2

−
1
2

𝑧̄2𝑑𝑧̄, 

𝑚̄0 = ∫
𝜌(𝑧̄)

𝜌𝑚

1
2

−
1
2

𝑑𝑧̄, 𝑚̄2 = ∫
𝜌(𝑧̄)

𝜌𝑚

1/2

−1/2

𝑧̄2𝑑𝑧̄ 

(42) 

Thus, the classical and nonclassical BCs at   
𝑥̄ = 0and  𝑥̄ = 1 becomes: 

𝑤̄ = 0,
𝜕2𝑤̄

𝜕𝑥̄2
= 0,            

𝜕4𝑤̄

𝜕𝑥̄4
= 0 (43) 

3. Solution Procedure 

3.1. Buckling Analysis  

For buckling analysis, ignoring the terms 
related to time and the transverse distributed 
force in Eq. (41), the equation for buckling 
analysis can be achieved as: 

{𝑃 −
𝐴̄𝑥𝑥
2
𝛾2∫ (

𝜕𝑤̄

𝜕𝑥̄
)
21

0

𝑑𝑥̄} [
𝜕2𝑤̄

𝜕𝑥̄2
− 𝛼2

𝜕4𝑤̄

𝜕𝑥̄4
] 

+ {𝐴̄𝑥𝑥𝛽
2𝛾2∫ [

𝜕𝑤̄

𝜕𝑥̄

𝜕3𝑤̄

𝜕𝑥̄3
+ (

𝜕2𝑤̄

𝜕𝑥̄2
)

2

]
1

0

𝑑𝑥̄} 

× [
𝜕2𝑤̄

𝜕𝑥̄2
− 𝛼2

𝜕4𝑤̄

𝜕𝑥̄4
] + 𝐷̄𝑥𝑥 (1 − 𝛽2

𝜕2

𝜕𝑥̄2
)
𝜕4𝑤̄

𝜕𝑥̄4
 

+𝐾𝐿 [𝑤̄ − 𝛼2
𝜕2𝑤̄

𝜕𝑥̄2
] − 𝐾𝑆 [

𝜕2𝑤̄

𝜕𝑥̄2
− 𝛼2

𝜕4𝑤̄

𝜕𝑥̄4
] = 0. 

(44) 

With S-S BCs, the solution of Eq. (44) can be 
assumed as: 

𝑤̄ = ∑𝑊𝑛 𝑠𝑖𝑛( 𝑛𝜋𝑥̄)

∞

𝑛=1

 (45) 
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where n denotes the number of half-waves, 
substituting the solution (45) into Eq. (44), leads 
to: 

𝑊̄𝑛
2 = −

4𝐷̄𝑥𝑥𝑐2

𝐴̄𝑥𝑥𝛾
2𝑐1

+
4𝑃

𝐴̄𝑥𝑥𝛾
2𝜆2

 

             −
4𝐾𝐿

𝐴̄𝑥𝑥𝛾
2𝜆4

−
4𝐾𝑆

𝐴̄𝑥𝑥𝛾
2𝜆2

 

(46) 

in which 

𝑐1 = 1 + 𝛼2𝜆2; 𝑐2 = 1 + 𝛽2𝜆2, 𝜆 = 𝑛𝜋 (47) 

By letting 𝑊̄𝑛 = 0 in Eq. (46), the 
dimensionless critical buckling force can be 
achieved as: 

𝑃𝑐𝑟 =
𝐷̄𝑥𝑥𝜆

2𝑐2
𝑐1

+
𝐾𝐿
𝜆2
+ 𝐾𝑆 (48) 

Considering Eqs. (40) and (42), the physical 
form of the critical buckling force can be achieved 
as: 

(𝑃0)𝑐𝑟 =
𝐷𝑥𝑥𝜆

2𝑐2
𝐿2𝑐1

+
𝑘𝐿
𝜆2
+ 𝑘𝑆  

=
𝐷𝑥𝑥(𝑛𝜋)

2(1 + 𝛽2𝑛2𝜋2)

𝐿2(1 + 𝛼2𝑛2𝜋2)
+

𝑘𝐿
(𝑛𝜋)2

+ 𝑘𝑆  

(49) 

For the homogeneous micro-beam and 
without the elastic foundation, the critical 
buckling force becomes: 

(𝑃0)𝑐𝑟 =
𝐸𝐼(𝑛𝜋)2(1 + 𝛽2𝑛2𝜋2)

𝐿2(1 + 𝛼2𝑛2𝜋2)
 (50) 

which is the same as a result achieved by Li and 
Hu [47]. For the classical homogeneous micro-
beam, the critical buckling force (50) reduces to: 

(𝑃0)𝑐𝑟 =
𝐸𝐼(𝑛𝜋)2

𝐿2
 (51) 

It can be observed that the dimensionless 
MLSP (β) increases the critical buckling force, 
while the dimensionless NP (α) decreases the 
critical buckling force. The elastic foundation 
coefficients lead to an increase in the critical 
buckling force. 

3.2. Nonlinear Vibration Analysis 

For free nonlinear vibration analysis, letting 
𝑃 = 0 and 𝑞̄0, Eq. (41) becomes: 

{−
𝐴̄𝑥𝑥
2
𝛾2∫ (

𝜕𝑤̄

𝜕𝑥̄
)
21

0

𝑑𝑥̄} [
𝜕2𝑤̄

𝜕𝑥̄2
− 𝛼2

𝜕4𝑤̄

𝜕𝑥̄4
] 

+ {𝐴̄𝑥𝑥𝛽
2𝛾2∫ [

𝜕𝑤̄

𝜕𝑥̄

𝜕3𝑤̄

𝜕𝑥̄3
+ (

𝜕2𝑤̄

𝜕𝑥̄2
)

2

]
1

0

𝑑𝑥̄} 

× [
𝜕2𝑤̄

𝜕𝑥̄2
− 𝛼2

𝜕4𝑤̄

𝜕𝑥̄4
] + 𝐷̄𝑥𝑥 (1 − 𝛽2

𝜕2

𝜕𝑥̄2
)
𝜕4𝑤̄

𝜕𝑥̄4
 

+𝑚̄0 [
𝜕2𝑤̄

𝜕𝑡̄2
− 𝛼2

𝜕4𝑤̄

𝜕𝑡̄2𝜕𝑥̄2
] 

−𝑚̄2

1

𝛾2
[
𝜕4𝑤̄

𝜕𝑡̄2𝜕𝑥̄2
− 𝛼2

𝜕6𝑤̄

𝜕𝑡̄2𝜕𝑥̄4
] 

+𝐾𝐿 [𝑤̄ − 𝛼2
𝜕2𝑤̄

𝜕𝑥̄2
] − 𝐾𝑆 [

𝜕2𝑤̄

𝜕𝑥̄2
− 𝛼2

𝜕4𝑤̄

𝜕𝑥̄4
] = 0. 

(52) 

which is the nonlinear partial differential 
equation (PDE); the exact solution of this 
equation is very difficult to find. Therefore, the 
approximate solution is an effective choice. First, 
the Galerkin technique will be applied to convert 
the nonlinear PDE (52) into the nonlinear 
ordinary differential equation (ODE). To apply 
the Galerkin technique, the solution of the 
nonlinear PDE (52) is assumed to have the form: 

𝑤̄(𝑥̄, 𝑡̄) = 𝑄(𝑡̄)𝜙(𝑥̄) (53) 

where, the time-dependent function 𝑄(𝑡̄) needs 
to be found, the shape function 𝜙(𝑥̄) is chosen so 
that the solution (53) satisfies the  BCs (43). For 
the S-S FGP micro-beam, the shape function can 
be chosen as follows [46, 50]: 

𝜙(𝑥̄) = 𝑠𝑖𝑛 𝜋 𝑥̄ (54) 

Now, applying the Galerkin technique to the 
nonlinear PDE (52), the following nonlinear ODE 
can be obtained: 

𝑄̈(𝑡̄) + 𝛾1𝑄(𝑡̄) + 𝛾2𝑄
3(𝑡̄) = 0 (55) 

where: 

𝛾1 =
[
 
 
 
 𝐷̄𝑥𝑥 ∫ 𝜙(4)𝜙𝑑𝑥̄ − 𝛽2𝐷̄𝑥𝑥 ∫ 𝜙(6)𝜙𝑑𝑥̄

1

0

1

0

+𝐾𝐿 (∫ 𝜙2𝑑𝑥̄ − 𝛼2 ∫ 𝜙′′𝜙𝑑𝑥̄
1

0

1

0
)

−𝐾𝑆 (∫ 𝜙′′𝜙𝑑𝑥̄ − 𝛼2 ∫ 𝜙(4)𝜙𝑑𝑥̄
1

0

1

0
) ]

 
 
 
 

[
𝑚̄0 (∫ 𝜙2𝑑𝑥̄ − 𝛼2 ∫ 𝜙′′𝜙𝑑𝑥̄

1

0

1

0
)

−
𝑚̄2

𝛾2
(∫ 𝜙′′𝜙𝑑𝑥̄ − 𝛼2 ∫ 𝜙(4)𝜙𝑑𝑥̄

1

0

1

0
)
]

 
(56) 

𝛾2 = 

{
 
 

 
 

𝐴̄𝑥𝑥𝛾
2

[
 
 
 
 −
1
2∫

(𝜙′)2𝑑𝑥̄
1

0

+𝛽2 ∫ 𝜙′𝜙(3)𝑑𝑥̄
1

0

+𝛽2 ∫ (𝜙′′)2𝑑𝑥̄
1

0 ]
 
 
 
 

(∫
𝜙′′𝜙𝑑𝑥̄

−𝛼2 ∫ 𝜙(4)𝜙𝑑𝑥̄
1

0

1

0
)

}
 
 

 
 

[
𝑚̄0 (∫ 𝜙2𝑑𝑥̄ − 𝛼2 ∫ 𝜙′′𝜙𝑑𝑥̄

1

0

1

0
)

−
𝑚̄2

𝛾2
(∫ 𝜙′′𝜙𝑑𝑥̄ − 𝛼2 ∫ 𝜙(4)𝜙𝑑𝑥̄

1

0

1

0
)
]

 

(57) 

Eq. (55) is the nonlinear ODE which is 
assumed to satisfy the following initial 
conditions: 

𝑄(0) = 𝑄0, 𝑄̇(0) = 0 (58) 

where 𝑄0 = 𝑤̄𝑚𝑎𝑥  is the dimensionless 
vibrational amplitude of the FGP micro-beam.  

It can see that Eq. (55) is the cubic-Duffing 
nonlinear oscillator which can be solved by many 
different analytical methods [61]. In this section, 
the ELM and a weighted averaging value [62-64] 
will be used to find the approximate analytical 
solution of Eq. (55). According to the ELM, the 
replacement of nonlinear equation (55) by a 
linear equation is performed, in which the 
weighted averaging value is employed to 
estimate the coefficients of the linear equation. 
Accordingly, the amplitude-frequency 
relationship of the FGP micro-beam can be 
achieved as:  
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𝜔𝑁𝐿 = √𝛾1 + 0.72𝛾2𝑄0
2 (59) 

Using the shape function in Eq. (54), the 
integrals in Eqs. (56) and (57) can be calculated 
as: 

∫ 𝜙2𝑑𝑥̄
1

0

=
1

2
;∫ 𝜙′′𝜙𝑑𝑥̄

1

0

= −
𝜋2

2
; 

∫ (𝜙′)2𝑑𝑥̄
1

0

=
𝜋2

2
;∫ (𝜙′′)2𝑑𝑥̄

1

0

=
𝜋4

2
; 

∫ 𝜙′𝜙
(3)
𝑑𝑥̄

1

0

= −
𝜋4

2
;∫ 𝜙(4)𝜙𝑑𝑥̄

1

0

=
𝜋4

2
; 

∫ 𝜙(6)𝜙𝑑𝑥̄
1

0

= −
𝜋6

2
. 

(60) 

Substituting the results in Eq. (60) into Eqs. 
(56) and (58); and then replacing the obtained 
results into Eq. (59), the expression of nonlinear 
frequency of the FGP micro-beam can be achieved 
as follows: 

𝜔𝑁𝐿 =

√
  
  
  
  
  
  
  
  
  
  
  
 

[
 
 
 
 
 
 

𝐷̄𝑥𝑥𝜋
4(1 + 𝜋2𝛽2)

(1 + 𝜋2𝛼2) (𝑚̄0 +
𝑚̄2𝜋

2

𝛾2
)

+
𝐾𝐿

(𝑚̄0 +
𝑚̄2𝜋

2

𝛾2
)
+

𝐾𝑆𝜋
2

(𝑚̄0 +
𝑚̄2𝜋

2

𝛾2
)
]
 
 
 
 
 
 

+0.72 [
𝐴̄𝑥𝑥𝜋

4𝛾2

4 (𝑚̄0 +
𝑚̄2𝜋

2

𝛾2
)
]𝑄0

2

 (61) 

The linear frequency of the FGP micro-beam 
can be obtained from the nonlinear frequency 
(61) by letting 𝑄0 as: 

𝜔𝐿 =

√
  
  
  
  
  
  
 

[
 
 
 
 
 
 

𝐷̄𝑥𝑥𝜋
4(1 + 𝜋2𝛽2)

(1 + 𝜋2𝛼2) (𝑚̄0 +
𝑚̄2𝜋

2

𝛾2
)

+
𝐾𝐿

(𝑚̄0 +
𝑚̄2𝜋

2

𝛾2
)
+

𝐾𝑆𝜋
2

(𝑚̄0 +
𝑚̄2𝜋

2

𝛾2
)
]
 
 
 
 
 
 

 (62) 

The elastic foundation coefficients ( and ) lead 
to an increase in the FGP micro-beam 
frequencies. The FGP micro-beam frequencies 
increase by increasing the dimensionless MLSP 
(𝛽) or decreasing the value of the dimensionless 
NP (𝛼). 

4. Numerical Results 

To verify the accuracy of present results and 
predict the buckling and free vibration behaviors 
of the FGP micro-beam, a micro-beam composed 
of Aluminum (Al-metal) and Alumina (Alumina 
Al2O3-ceramic) is considered. Table 1 shows the 
material properties of Al and Al2O3. 

For the classical perfect FG beam, the present 
results are compared with those obtained by Thai 
and Vo [5]. The comparison is shown in Table 2. 
A very good agreement between the obtained 
linear frequency and the one achieved by Thai 
and Vo [5] can be observed in Table 2. 

Table 1 The material properties of Al and Al2O3 

Materials E (GPa) ρ (kg/m3) 

Al 𝐸𝑚 = 70 𝜌𝑚 = 2702 

Al2O3 𝐸𝑐 = 380  𝜌𝑐 = 3960  

Table 2 The dimensionless linear frequencies  
of the FG beam 

k 
L/h=5  L/h=20 

Ref. [5] Present  Ref. [5] Present 

0 5.3953 5.3953  5.4777 5.4777 

0.5 4.5931 4.5932  4.6641 4.6641 

1 4.1484 4.1485  4.2163 4.2163 

2 3.7793 3.7796  3.8472 3.8472 

5 3.5949 3.5952  3.6628 3.6628 

10 3.4921 3.4923  3.5547 3.5547 

4.1. Buckling 

To study the buckling response of the FGP 
micro-beam, the critical buckling force ratio (𝑅𝑐𝑟) 
and the scale ratio (𝜒) are defined as follows: 

𝑅𝑐𝑟 =
𝑃𝑐𝑟

(𝑃𝑐𝑟)𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙
, 𝜒 =

𝛼

𝛽
=
𝑒𝑎

𝑙𝑚
 (63) 

where (𝑃𝑐𝑟)𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙  is the dimensionless classical 
critical buckling force of the full metal micro-
beam. 

The effects of the dimensionless MLSP 𝛽 and 
the dimensionless NP 𝛼 on the critical buckling 
force ratio 𝑅𝑐𝑟 of the FGP micro-beam are 
presented in Fig. 3. It can be seen that the classical 
results (𝜒 = 0 and 𝛼 = 0 ) are equal to the NSG 
results if 𝜒 = 1. If 𝜒 < 1 (i.e.,𝛼 < 𝛽), the critical 
buckling force ratio increases as the 
dimensionless MLSP increases. The critical 
buckling force ratio decreases as the 
dimensionless MLSP increases if 𝜒 > 1 (i.e., 𝛼 >
𝛽). The obtained result is suited to the result 
obtained by Dang [46], Li, and Hu [47]. Employing 
the NSGT, the FGP micro-beam exert the 
softening and hardening effects corresponding to 
𝜒 > 1 and 𝜒 < 1, respectively. 

The effect of the power-law index k on the 
buckling behavior of the FGP micro-beam is 
presented in Fig. 4. It can be observed that k has 

the effect of decreasing the value of 𝑃𝑐𝑟 . The FGP 
micro-beam will be more flexible as k increases; 

this leads to a decrease 𝑃𝑐𝑟 . As can see from this 
figure, the critical buckling forces of the FGM-II 
micro-beam are always larger than those of the 
FGM-I micro-beam. This result can be explained 
as follows: with porosities distributed mainly in 
the middle surface of the micro-beam’s cross-
section and the amount of porosity seeming to 
decrease linearly to zero at the upper and lower 
surfaces of the micro-beam’s cross-section, the 
FGM-II micro-beam have a greater stiffness than 
the FGM-I micro-beam.  
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Fig. 3. The variation of Rcr to 𝜒 for some values of β 

 
Fig. 4. Variation of Pcr to k with 𝛿 = 0.01, 𝛼 = 0.01, 

0.01, = 𝐾𝐿 = 5 and 𝐾𝑆 = 10. 

 

Fig. 5. Variation of Pcr to δ 

Fig. 5 reveals the influence of the porosity 
distribution factor δ on the variation of the 
dimensionless critical buckling force 𝑃𝑐𝑟 . The 
critical buckling force 𝑃𝑐𝑟  decreases linearly when 
the porosity distribution factor 𝛿 increases. The 
fact the stiffness of FGP micro-beams reduces by 
increasing the porosity distribution factor, and 
thus, the critical buckling force decreases. The 
critical buckling forces of the FGM-I micro-beam 
are always smaller than those of the FGM-II 
micro-beam (it is the same as Fig. 4).  

 

 

Fig. 6. Variation of Pcr to KL (a) and KS (b) 

The effects of the elastic foundation 
coefficients on the variation of the critical 
buckling force of the FGP micro-beam can be seen 
in Fig. 6. The coefficients of the elastic foundation 

lead to an increase in the value 𝑃𝑐𝑟 . This result is 
completely consistent because the elastic 
foundation enhances the stiffness of the FGP 
micro-beam. 

4.2. Nonlinear Vibration  

To observe the effects of the dimensionless 
MLSP and NP on the nonlinear free vibration 
behavior of the FGP micro-beam, Fig. 7 shows the 
variation of the nonlinear frequency 𝜔𝑁𝐿 to the 
scale ratio 𝜒 = 𝑒𝑎/𝑙𝑚 for some values of the 
dimensionless MLSP 𝛽. The nonlinear 
frequencies of the FGP classical micro-beams (i. 
e.,𝛼 = 𝛽 = 0) are equal to those of the FGP NSG 
micro-beams if 𝜒 = 1 (namely,𝛼 = 𝛽). It can also 
be observed that the scale ratio 𝜒 leads to a 
decrease of the value of 𝜔𝑁𝐿 . It is a fact that 𝜔𝑁𝐿 
decreases when the dimensionless NP increases 
due to the softening effect observed in the NET. If 
𝜒 < 1 (namely, 𝛼 < 𝛽), the dimensionless MLSP 
has the effect of increasing the value of 𝜔𝑁𝐿 . This 
means that the MLSP makes the hardening effect 
as in the SGT. If 𝜒 > 1 (namely, 𝛼 > 𝛽), the MLSP 
has the effect of decreasing the value of 𝜔𝑁𝐿; 
again, the softening effect can be observed. 

The effect of the power-law index k on the 
variation of 𝜔𝑁𝐿 can be observed in Fig. 8. It can 
be seen that k has an interesting impact on the 
vibration behavior of the FGP micro-beam. This 
figure indicates that 𝜔𝑁𝐿 increases strongly with 
small values of k (𝑘 ≤ 5) and decreases slowly 
with larger values of k. 
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Fig. 7. Variation of 𝜔𝑁𝐿 to 𝜒 for some values β 

 

Fig. 8. Variation of 𝜔𝑁𝐿 to k 

 

Fig. 9. Variation of the nonlinear frequency 𝜔𝑁𝐿 to the 
porosity distribution factor δ  

Fig. 9 shows the effect of δ on the variation of 

𝜔𝑁𝐿 of the FGP micro-beam. It can be concluded 
that 𝜔𝑁𝐿 decreases when δ increases. When the 
value of δ increases from 0.04 to 0.08, the 
nonlinear frequency reduces about 1.52% for 
FGM-II microbeams and 3.28% for FGM-I 
microbeams. The nonlinear frequencies of the 
FGM-II micro-beams are always larger than those 
of the FGM-I micro-beams. This result can be 
explained as the stiffness of the FGM-II 
microbeam is larger than that of the FGM-I 
microbeam. This result completely agrees with 
the results obtained by Wattanasakulpong and  
Chaikittiratana [9], Dang and Do [54]. 

 

Fig. 10. Variation of the nonlinear frequency 𝜔𝑁𝐿  
to the length-thickness ratio L/h 

 

Fig. 11. Variation of frequencies ω to Q0  
 for some values of KL  

 

Fig. 12. Variation of frequencies ω to Q0  
for some values of KS 
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The effect of the length-thickness ratio L/h on 
the variation of 𝜔𝑁𝐿 is shown in Fig. 10. From this 

figure, it can be concluded that 𝜔𝑁𝐿increase 
when the length-thickness ratio increases. This 
result is consistent with those obtained by Thai 
and Vo [5], Dang [46]. 

Figures 11 and 12 show the variations of the 
frequencies (ω) of the FGP micro-beam to the 
dimensionless Winkler parameter KL and the 
dimensionless Pasternak parameter KS, 
respectively. The elastic foundation makes the 
FGP micro-beam stiffer, so the frequencies of the 
FGP micro-beam increase as the coefficients of 
the elastic foundation increase. Also, these 
figures increase when the dimensionless initial 
amplitude increases. When considering the effect 
of geometrical nonlinearity, the micro-beam’s 
frequency increases rapidly as the initial 
amplitude increases. 

5. Conclusion 

The EBT is developed based on the NSGT to 
investigate the buckling and nonlinear free 
vibration problems of the imperfect FG micro-
beam with porosities resting on an elastic 
foundation. The analytical expressions of the 
critical buckling force and the nonlinear 
frequency of the S-S FGP micro-beam are 
obtained using the Galerkin technique and the 
ELM. Numerical illustrations are performed, 
through which the accuracy of the results is 
verified, and the impact of some important 
parameters on the micro-beam’s behavior is 
evaluated. Some points can be concluded as 
follows: 
• An increase of the power-law index k leads to 

a reduction of the critical buckling force, 
while k has an interesting effect on the 
variation of the nonlinear frequency of the 
micro-beam. 

• When𝑒𝑎 < 𝑙𝑚 , the MLSP leads to an increase 
of both the critical buckling force and the 
nonlinear frequency. Moreover, on the other 

hand when 𝑒𝑎 > 𝑙𝑚, the MLSP reduces the 
critical buckling force and the nonlinear 
frequency. 

• The length-thickness ratio leads to an 
increase in the value of the nonlinear 
frequency. 

• The elastic foundation makes the FGP micro-
beam stiffer, and consequently, both the 
critical buckling force and the nonlinear 
frequency increase as increasing the 
coefficients of the elastic foundation. 
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