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In the present paper, for the first time, the contact problem of a rigid cylindrical indenter 

and a laminated composite beam is solved using an assumed contact stress approach. 

Results are presented for contact force - contact length relation and contact stresses. Then, 

the results of the analysis are generalized to determine the low velocity impact response. 

The close agreement observed between the present results and those which existed in the 

literature, confirms the validity and the accuracy of the present analysis. Performing a 

parametric study, the effects of some important parameters on the indentation and the 

low velocity impact responses of the composite beam are investigated and discussed. The 

results reveal that the lay-up [90/90 90/90] gives the maximum contact length and the 

minimum contact pressure, but, conversely, the lay-up [0/0/0/0] produces the minimum 

contact length and the maximum contact pressure. The results of the present research can 

be of great importance in the design and application of layered composite beams. 

1. Introduction 

Composite structures are widely used in 
aircraft or vehicle bodies. During work or repair, 
rigid objects such as stones, tools, ... may strike 
these structures. The damages of these impacts in 
composite structures are more than those of 
metal structures. These impacts cause internal 
damages such as the delamination of the 
composite layers. Because the deformations are 
in the elastic (linear) range, the outer surface of 
the structure does not reveal these damages [1]. 
Hence, before composite structures can 
effectively be designed and used, it is essential 
that their behavior against static and dynamic 
loading be properly identified. 

Apetre et al. [2] investigated the low velocity 
impact response of a sandwich beam with an FGM 
core. The projectile was a rigid cylinder and the 
impact was applied vertically. In their study, the 
core had variable Young modulus along with the 
thickness and the Poisson's ratio was constant. 
To solve the problem, static contact and impact 
response combination were employed as a 

simple dynamic solution based on quasi-static 
behavior, using a nonlinear mass and spring 
model, and the problem was solved by combining 
the Fourier series and Glerkin's principle. The 
results show that the contact stiffness of the 
beam with FGM core increases the contact stress 
in the vicinity of the contact zone. The value of the 
corresponding maximum strains for the 
maximum impact load is significantly reduced, 
due to the FG material. For a better comparison, 
the FGM core thickness was chosen so that the 
bending stiffness is equivalent to a beam with a 
homogeneous core and the results showed the 
better function of the FGM core, and the damages 
were significantly reduced. 

Liu et al. [3] presented an impact theory 
model at the center of a sandwich beam for 
predicting the dynamic response. The core of the 
beam was thick and its strength was also low. In 
their research, two beams with medium and low 
strength cores were used and the beams were 
modeled based on two principles of Euler-
Bernoulli and Galerkin and the responses of 
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impacts were compared. By the impact, the 
contact area of the projectile and the beam 
deformed plastically and the other side of the 
beam experienced elastic vibration. The results 
indicated that the dynamic response of the 
sandwich beam is highly sensitive to the core 
strength, the rate of the mass change, the 
geometric size variations, and the projectile 
velocity. The results of the theoretical analysis 
were in good agreement with the finite element 
simulations. 

Ghazifard et al. [4] presented the results of a 
study by finite element analysis on energy 
absorption characteristics of hollow and foam-
filled thin-walled structures subjected to quasi-
static crushing load. It was observed that the 
energy absorption and initial peak force are 
influenced by foam density. 

The classic theory of contact mechanics is the 
Hertzian mechanics' theory [5, 6]. In 1882, Hertz 
solved the problem of contacting two rigid bodies 
with curved surfaces. Hertz, based on the 
similarity of the linear elasticity equations with 
static electricity equations, guessed that the 
contact area should be elliptical. The response 
form can be found proportional to the 
dimensionless parameters, by dimensional 
analysis. This analysis shows that the contact 
area is related to the vertical force of the contact. 
But Hertz's theory provides a closed form precise 
analytical result. The classical contact theory 
ignores the friction and the cohesion effects of the 
contact surfaces. The theory of contact mechanics 
for composite structures is the expansion of the 
contact theories for the homogeneous structures, 
which these theories themselves have been 
derived from the expansion of Hertzian classical 
theory of contact mechanics. 

Abrate [7, 8] in two comprehensive papers, 
had a complete review of impact dynamics and 
the response of composite structures to impact 
load, as well as how to study the start and growth 
of damage, the reduction of residual strength, and 
failure modes. As the deformation is important 
near the impact zone, the impact problem needs 
to be modeled and solved by an appropriate 
method in order to obtain strain, stress, 
displacement, and impact force versus time. This 
issue was first examined by Timoshenko. In this 
research, an isotropic beam with a determined 
length under impact loading was studied. He 
modeled the corresponding structure as a classic 
beam, ignoring the effects of shear deformation 
and rotary inertia. He also used Hertz law for the 
impact between the beam and the sphere and 
obtained deflection and curvature of the beam at 
the impact point in terms of an infinite series of 
vertical vibrational modes. The impact force was 

calculated step by step with the solution of the 
integral equation [9]. 

In order to easily solve the impact problem, 
many researches consider the load to be 
concentrated. For example, in order to simplify 
the solution of the mathematical equations, Mittal 
[10], assumed that the dynamic load of the impact 
to be concentrated. In this case, it is clear that the 
curvatures and the strains tend to infinity and 
become very large. Therefore, it is necessary to 
consider the contact force to be distributed over 
the contact surface. If the impactor and the target 
are isotropic, the contact area will be circular. 

Ivañez et al. [11] presented an analytical study 
of the low velocity impact response of a sandwich 
beam. In this study, dimensional analysis was 
performed to identify key parameters that affect 
the dynamic response of the beam. For 
determining the effects of dimensionless 
parameters on the contact force and the contact 
time factors, the predicted results were in good 
agreement with the experimental data for the 
maximum contact force, contact time, and contact 
force-time curve. It was observed that the 
parameters global stiffness, local stiffness, and 
impact velocity have the highest effect on the 
maximum force and the contact time. 

Mines et al. [12] studied the sandwich 
composite beam behavior under impact loading 
and static loading, with different face sheets and 
with two types of cores. They examined the 
different modes of damages in each case and 
compared them. 

Many previous, both empirical and analytical, 
studies have shown the relationship and 
similarity of static contact problems to the 
behavior of low velocity impact [13-17]. In this 
context, the main issue is that due to the 
negligible and non-deductible effects of wave 
propagation in low velocity impact, contact force 
– contact length and contact force – indentation 
depth relationships for static and dynamic 
problems are almost the same. Also, the stresses 
are similar in the vicinity of the contact area, 
which is why the same damage models are 
created in quasi-static and dynamic impact 
phenomena [15]. Therefore, the tolerance of 
damages due to impacts can be characterized by 
either static indentation tests or static contact 
analytical studies. 

In the present paper firstly, the problem of 
contact between a rigid cylindrical indenter and a 
layered composite beam is analytically solved 
using an assumed contact stress approach. Then, 
the results of the analysis are extended to 
determine the low velocity impact response. Also, 
by conducting a parametric study, the effects of 
some key parameters on the indentation and the 
low velocity impact responses of the composite 
beam are studied. 
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2. Problem Statement 

The problem of contacting a beam and an 
indenter is schematically shown in Fig. 1. The 
length of the beam is assumed L and its thickness 
h. Boundary conditions are considered as simple 
support. According to this figure, the considered 
composite beam is subjected to a smooth 
cylindrical indenter with the radius R at the 
center of its lower surface. 

The goal is extracting the relationship 
between the contact force F and the contact 
length 2b, determining the stress field distributed 
in the beam for the known contact force, and also 
using the indentation analysis results to obtain 
the response of the low velocity impact problem. 

 
Fig. 1. Composite beam subjected to a rigid indenter 

3. Problem Formulation 

3.1. Indentation Analysis 

The governing equations of motion are as the 
following two equations of equilibrium [18]: 

𝜕𝜎𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑧

𝜕𝑧
= 0,        

𝜕𝜎𝑧𝑧

𝜕𝑧
+

𝜕𝜏𝑥𝑧

𝜕𝑥
= 0 (1) 

Often the multi-layers are typically thin and 
follow the plane stress state. By ignoring σ22, the 
governing elastic equation for the k-th layer of an 
orthotropic multi-layer is [19]: 

{

𝜎1

𝜎3

𝜎5

} = [

𝑄11 𝑄13 0
𝑄13 𝑄33 0

0 0 𝑄55

] {

𝜀1

𝜀3

𝜀5

} (2) 

where, 𝑄𝑖𝑗
(𝑘)

, is the lamina stiffness, σi, stress 

components, and εi the strain components. 𝑄𝑖𝑗
(𝑘)

 is 

related to the mechanical properties of materials 
using the following equations [19]: 

𝑄11
𝑘 =

𝐸1
𝑘

1 − 𝜈11
𝑘 𝜈31

𝑘 , 𝑄13
𝑘 =

𝜈13
𝑘 𝐸1

𝑘

1 − 𝜈13
𝑘 𝜈31

𝑘  

𝑄33
𝑘 =

𝐸3
𝑘

1 − 𝜈13
𝑘 𝜈31

𝑘 , 𝑄55
𝑘 = 𝐺13

𝑘  

(3) 

The transformed stress-strain relations of an 
orthotropic lamina in the plane stress state are 
[19]: 

{

𝜎𝑥𝑥

𝜎𝑧𝑧

𝜎𝑥𝑧

} = [

𝑄̄11 𝑄̄13 0

𝑄̄13 𝑄̄33 0

0 0 𝑄̄55

] {

𝜀𝑥𝑥

𝜀𝑦𝑦

𝛾𝑥𝑧

} (4) 

The strain-displacement equations are as 
follows [19]: 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
,   𝜀zz =

𝜕𝑤

𝜕𝑧
,      𝛾𝑥𝑧 =

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
 (5) 

By replacing equations (4) in (1) and using 
equations (5), the governing differential 
equations of the problem are obtained as follows: 

𝜕

𝜕𝑥
(𝑄̄11

𝜕𝑢

𝜕𝑥
+ 𝑄̄13

𝜕𝑤

𝜕𝑧
) + 

𝜕

𝜕𝑧
(𝑄̄55

𝜕𝑢

𝜕𝑧
+ 𝑄̄55

𝜕𝑤

𝜕𝑥
) = 0,  

𝜕

𝜕𝑥
(𝑄̄55

𝜕𝑢

𝜕𝑧
+ 𝑄̄55

𝜕𝑤

𝜕𝑥
) + 

𝜕

𝜕𝑧
(𝑄̄13

𝜕𝑢

𝜕𝑥
+ 𝑄̄33

𝜕𝑤

𝜕𝑧
) = 0 

(6) 

According to Fig. 1, the boundary conditions 
at the ends of the beam (at 𝑥 = 0 and 𝑥 = 𝐿) are: 

𝑤(0, 𝑧) = 𝑤(𝐿, 𝑧) = 0,    

𝜎𝑥𝑥(0, 𝑧) = 𝜎𝑥𝑥(𝐿, 𝑧) = 0 
(7) 

The stress at the top surface of the beam is 
zero: 

𝜎𝑧𝑧(𝑥, ℎ) = 𝜏𝑥𝑧(𝑥, ℎ) = 0 (8) 

At the lower surface of the beam, where the 
impact also occurs, the boundary conditions are 
slightly more complicated. At the bottom surface, 
the shear stress 𝜏𝑥𝑧 is zero and the normal stress 
𝜎𝑧𝑧  vanishes outside the contact zone, but in the 
contact zone, the displacement profile conforms 
to the shape of the rigid indenter. These 
boundary conditions can be written as: 

𝜏𝑥𝑧(𝑥, 0) = 0 (9) 

𝜎𝑧𝑧(𝑥, 0) = 0 ,                 |𝜒| > 𝑏   (10) 

𝜒 = x-L/2 (11) 

𝑤(𝑥, 0) = 𝛥 −
𝜒2

2𝑅
,         |𝜒| ≤ 𝑏 (12) 

where, |𝜒| > 𝑏 is outside the contact region, |𝜒| ≤
𝑏 within the contact region, 𝛥 the indenter 
displacement, and 2b the contact length. 

It is worth mentioning that to simplify the 
investigation of the contact problem, the variable 

𝜒 = 𝑥 −
𝐿

2
 is introduced. Accordingly, the point 

𝜒 = 0 implies the center of the beam. As shown in 
Eq. (12), the indenter profile in the contact region 
is approximated as a parabola which is legal 
when the half contact length b is much smaller 
than the indenter radius R. 

The contact problem is analyzed using the 
assumed contact stress approach. The contact 
stresses are assumed as [18]: 
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𝑝𝑧(𝑥) = − 𝜎𝑧𝑧(𝑥, 0) = ∑ 𝑝𝑖𝜑𝑖(𝑥)

𝑁

𝑖=1

,   |𝜒| ≤ 𝑏 (13) 

where φi’s are known functions of x and pi are 
constants that must be determined to satisfy the 

condition given in Eq. (12). Since ∆= 𝑤(
𝐿

2
, 0), the 

contact conditions in the contact area can then be 
written as: 

𝑤(
𝐿

2
, 0) −  𝑤(𝑥, 0) =

𝜒2

2𝑅
,                  |𝜒| ≤ 𝑏 (14) 

In order to determine the values of pi it is 
assumed that the contact condition to be satisfied 
in M points x = xj on the contact surface. 

𝑤 (
𝐿

2
, 0) −  𝑤(𝑥𝑗 , 0) =

𝜒𝑗
2

2𝑅
,            |𝜒𝑗| ≤ 𝑏  

(𝑗 = 1, 𝑀;  𝑀 ≥ 𝑁) 

(15) 

where 𝜒𝑗 = 𝑥𝑗 − 𝐿 2⁄  the deflection of the beam at 

the contact surface can be written by the linear 
combination of the unknown compression 
coefficients Pi as: 

∑(𝑐0𝑖 − 𝑐𝑗𝑖)𝑝𝑖

𝑁

𝑖=1

=
𝜒𝑗

2

2𝑅
,      (𝑗 = 1, 𝑀;  𝑀 ≥ 𝑁) (16) 

where 𝑐0i is the central displacement 𝑤(
𝐿

2
, 0) and 

cji is the displacement 𝑤(𝑥𝑗 , 0) at xj due to unit pi. 

By solving the system of linear equations (16), 
one can obtain the values of pi. 

Here, the displacement fields 𝑢(𝑥, 𝑧) and 

𝑤(𝑥, 𝑧) are determined. The problem is solved for 

the state 𝑝z(x) = qnsinξx, where 𝜉 =
nπx

L
. To this 

end, the displacements are assumed as: 

𝑢(𝑥, 𝑧) = 𝑈(𝑧) 𝑐𝑜𝑠 𝜉 𝑥 

𝑤(𝑥, 𝑧) = 𝑊(𝑧) 𝑠𝑖𝑛 𝜉 𝑥 
(17) 

Substituting the above displacements in the 
governing differential Eq. (6) a pair of ordinary 
differential equations (ODEs) for 𝑈(𝑧) and 𝑊(𝑧) 
is obtained for which the following solution 
forms are considered: 

𝑈(𝑍) = ∑ 𝑎𝑖𝑒𝛼𝑖𝑧

4

𝑖=1

,        𝑊(𝑍) = ∑ 𝑏𝑖𝑒
𝛼𝑖𝑧

4

𝑖=1

 (18) 

where 𝛼i is the roots of the characteristic 
equation of the corresponding ordinary 
differential equations. The arbitrary constants 𝑎i 
and 𝑏i are solved using the stress boundary 
conditions on the top surface of the beam given 
by Eq. (8) and stress boundary conditions on the 
bottom of the beam given as the followings: 

𝜏𝑧𝑥(𝑥, 0) = 0 

𝜎𝑧𝑧(𝑥, 0) = −𝑝𝑧(𝑥) = −𝑞𝑛 𝑠𝑖𝑛 𝜉 𝑥 
(19) 

After calculating the constants 𝑎i and 𝑏i the 
displacement fields u and w are completely 
determined. Then, the strains and stresses at any 
point can be calculated using the strain-
displacement and stress-strain relations. 
According to the assumed contact stress 
distribution method [20, 21], the contact is 
approximated as Hertzian contact (elliptical 
contact stress distribution) and a one-term 
function for Eq. (13) is used as [18]: 

𝑝𝑧(𝑥) = 𝑝𝑚√1 − (
𝜒

𝑏
)2,              |𝜒| < 𝑏 (20) 

where 𝑝𝑚 is the peak contact stress which is the 
only unknown. Then, to determine 𝑝𝑚, Eq. (16) 
takes the following form: 

𝑝𝑚(𝑐0 − 𝑐𝑗) =
𝜒𝑗

2

2𝑅
,      (𝑗 = 1, 𝑀;  𝑀 ≥ 𝑁) (21) 

where 𝑐0 is the displacement 𝑤 at the center (𝑥 =
𝐿

2
, 𝑧 = 0) and 𝑐j are the displacements 𝑤 at 𝑥j due 

to the distribution of the elliptical contact load 
with 𝑝m = 1. The least square error solution of 
the above equation is obtained as: 

𝑝𝑚 =
1

𝑀
∑

𝜒𝑗
2

2𝑅(𝑐0 − 𝑐𝑗)

𝑀

𝑗=1

 (22) 

𝑝𝑧 can be considered as a Fourier series of the 
form: 

𝑝𝑧(𝑥) = ∑ 𝑞𝑛 𝑠𝑖𝑛
𝑛𝜋

𝐿

∞

𝑛=1

𝑥 (23) 

in which the Fourier coefficients are: 

𝑞𝑛 =
2

𝐿
∫ 𝑝𝑧(𝑥) 𝑠𝑖𝑛

𝑛𝜋𝑥

𝐿
𝑑𝑥

𝐿

0

 (24) 

For the Hertzian contact stress in the above 
equation, the Fourier series coefficients can be as: 

𝑞𝑛 =
2𝑝𝑚

𝐿
∫ √1 − (

𝜒

𝑏
)

2

sin
𝑛𝜋𝑥

𝐿
𝑑𝑥

𝐿

0

 

=
2(−1)

𝑛−1

2 𝑝𝑚

𝐿
∫ √1 − (

𝜒

𝑏
)

2+𝑏

−𝑏

cos
𝑛𝜋𝜒

𝐿
𝑑𝜒 

=
2(−1)

𝑛−1

2 𝑝𝑚

𝑛
𝐽1(

𝑛𝜋𝑏

𝐿
) 

(25) 

where 𝐽1 is the first kind Bessel function. In the 
above calculations, the following equation is 
used: 

∫ √𝑐2 − 𝑥2 𝑐𝑜𝑠 𝜉 𝑥
𝑐

−𝑐

𝑑𝑥 =
𝜋𝑐

𝜉
𝐽1(𝑐𝜉) (26) 
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3.2. Low Velocity Impact Response 

The first step in solving the low velocity 
impact problem is to achieve the contact force 
history. As explained in the previous sections, 
many of the past empirical and analytical studies 
have shown the relation and similarity between 
static contact problems and low velocity impact 
problems. Here, this fact is used to simplify the 
low velocity impact analysis of the composite 
beam. The maximum impact force can be related 
to the initial impact energy as: 

𝑈 =
1

2
𝑚𝑖𝑣𝑖

2 =
1

2

𝐹𝑚
2

𝑘𝑏

 (27) 

where 𝑚𝑖  and 𝑣𝑖  are the mass and velocity of the 
impactor, respectively, 𝐹𝑚 is the maximum 
impact force and 𝑘𝑏 is the bending stiffness of the 
beam in the case where a concentrated load is 
applied to its center. In the above energy relation, 
the strain energy due to the local indentation 
near the contact is ignored. The bending stiffness 
of the composite beam is obtained as the 
following [22]: 

𝐾𝑏 =
48𝐷11

∗

𝐿3
 (28) 

where 𝐷11
∗  is the reduced stiffness. 

4. Results 

In this section, firstly, the validity of the 
present analytical modeling is verified. Then, the 
influences of some key parameters on the 
indentation and the low velocity impact 
responses of the composite beam are studied. 

The geometrical and mechanical properties of 
the considered beam are presented in Table 1. 
Also, unless otherwise stated, it is assumed that 
the lay-up of the composite beam is 
[90/90/90/90], the impact velocity is 10 m/s and 
the impactor diameter is 20 mm. 

Table 2 shows the kinetic energy of the 
impactor at different times. Also, in Table 3, the 
impact force versus displacement results are 
presented.  

Table 1. Geometrical and mechanical properties  
of the considered beam 

length L 0.1 (m) 

ply thickness h 0.002 (m) 

modulus of elasticity 

Exx 24.51 (GPa) 

Eyy 7.77 (GPa) 

Ezz 7.77 (GPa) 

shear modulus 
Gxy 3.34 (GPa) 

Gxz 3.34 (GPa) 

Poisson's ratio 
ʋxy 0.078 

ʋxz 0.078 

As it is seen, there are good agreements 
between the results obtained from the present 
research and the results of Ref. [23] which verify 
the validity and the accuracy of the present 
analysis. 

For lay-up [0/90/0/90] and different values 
of ply thickness contact force versus indentation 
curves and distribution of contact pressure 
curves are illustrated in Figs. 2 and 3 respectively. 
As it can be observed, increasing the ply 
thickness, increases the contact force as well as 
the contact pressure, while it decreases the 
indentation and also the contact length. 

Table 2. Kinetic energy and shear strain values  
at different times 

kinetic energy (J) 
time (𝜇𝑠) error 

percentage 
present 
work 

Ref. [23] 

6 7.19 7.65 0 

6 7.15 7.63 50 

6 6.73 7.16 100 

6.5 5.79 6.19 150 

6 4.61 4.91 200 

6 3.17 3.37 250 

5.5 3.08 3.26 300 

Table 3. Impact force vs. displacement 

force (kN) 
displacement 
(mm) error 

percentage 

Ref. 
[23] 

present 
work 

12 1.263 1.109 0.1 

1.5 2.063 2.033 0.2 

9.5 3.465 3.141 0.3 

9.5 4.181 3.787 0.4 

8.5 5.282 4.842 0.5 

6.5 8.581 8.010 0.6 

11 8.533 7.569 0.7 

14 10.035 8.616 0.8 

4.5 10.905 10.435 0.9 

 
Fig. 2. Contact force versus indentation for different  

values of ply thickness (lay-up [0/90/0/90]) 
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Fig. 3. Distribution of contact pressure for different values 
 of ply thickness (lay-up [0/90/0/90]) 

 

Fig. 4. Contact force versus indentation for  
different lay-ups 

 
Fig. 5. Distribution of contact pressure at the contact 

 force of 600 N for different lay-ups 

Contact force versus indentation curves for 
different lay-ups are illustrated in Fig. 4. As it can 
be seen, the curves are very close together except 
for the case [90/90/90/90] which has less 
resistance to indentation than the other cases 
studied. So, choosing a proper lay-up can improve 
the indentation response of composite beams. 

Figure 5 shows the distribution of contact 
pressure at the contact force of 600 N for 
different lay-ups. It is observed that the lay-up 
[90/90/90/90] gives the maximum contact 
length and the minimum contact pressure, while 
the lay-up [0/0/0/0] produces the minimum 
contact length and the maximum contact 
pressure. 

Contact force versus indentation curves for 
lay-up [0/90/0/90] and different values of 
indenter radius are shown in Fig. 6. It is seen that 
as the indenter radius increases, the indentation 
decreases and the contact force increases. 

 
Fig. 6.Contact force versus indentation for different values 

 of indenter radius (lay-up [0/90/0/90]) 

 
Fig. 7. Distribution of contact pressure for different values of 

indenter radius (lay-up [0/90/0/90]) 

 
Fig. 8. Deflection of the front surface, the bottom surface, and 

the midplane of the beam in the longitudinal direction at 
the maximum impact force (V=1 m/s and L=0.1 m) 

The distribution of contact pressure for lay-up 
[0/90/0/90] and different values of indenter 
radius is presented in Fig. 7. As it is observed, by 
increasing the indenter radius the contact length 
increases and the contact pressure decreases. 

Deflections of the front surface, the back 
surface, and the midplane of the beam in the 
longitudinal direction at the maximum impact 
force for V=1 m/s and L=0.1 m are shown in Fig. 
8. It is seen that the front and the back surfaces 
find the largest and the smallest deflections, 
respectively, so that at the center of the beam, the 
deflection of the front surface is approximately 
twice the deflection of the back surface. 

Maximum indentation versus impact velocity 
and maximum contact force versus impact 
velocity curves are illustrated in Figs. 9 and 10 
respectively. As it is observed, increasing the 
impact velocity causes the maximum indentation 
and the maximum contact force to increase 
nonlinearly. 
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Fig. 9. Maximum indentation versus impact velocity 

 
Fig. 10. Maximum contact force versus impact velocity 

5. Conclusion 

Considering the widespread and increasing 
use of composite structures and the importance 
of impact on these structures, in this paper, for 
the first time, using an assumed contact stress 
approach, the problem of contact between a rigid 
cylindrical indenter and a laminated composite 
beam is analyzed. The analytical results of the 
relationship between contact force-length and 
tension were extracted. Then, the results of the 
beam indentation analysis were generalized to 
obtain the response of the low velocity impact 
problem. The results obtained by the presented 
analytical model were compared and validated 
with the results that existed in the literature. 
Also, by performing a parametric study, the 
influences of important parameters on the 
indentation and the low velocity impact 
responses of a composite beam were 
investigated. The results revealed that with 
increasing the impact velocity, the maximum 
indentation and the maximum contact force 
increase nonlinearly. Also, increasing the ply 
thickness increases the contact force. 
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