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In this paper, the free vibration analysis of laminated composite and sandwich, cylindrical 

and spherical shells is presented using a new higher-order shear and normal deformation 

theory. The novelty of the present theory is that it includes the effects of both transverse 

shear and normal deformations along with higher order expansions of displacement field. 

A fifth-order polynomial type shape function is used in the in-plane displacements to 

represent the effect of transverse shear deformation for the first time whereas transverse 

displacement is a function of x, y, and z coordinates to account for the effect of transverse 

normal deformation. The equations of motion are derived using Hamilton’s principle. 

Navier’s solution technique is employed to obtain the non-dimensional fundamental 

frequencies. To validate the accuracy of the present theory, the present results are 

compared with other higher-order theories available in the literature. It is observed that 

the values of fundamental frequencies obtained using the present theory are in close 

agreement with those available in the literature. 

1. Introduction 

Laminated composite and sandwich shells are 
having a wide application in the area of aircraft, 
spacecraft, undermining, marine constructions, 
etc. due to their attractive features such as high 
load carrying capacity, large span-to-depth ratio, 
high strength-to-weight ratio, high stiffness-to-
weight ratio, etc.  

In the case of mechanical and structural 
industries, the structural components get 
subjected to extreme loads and deformations due 
to vibration and resonance, which leads to 
catastrophic failure. Also, in the case of aircraft, to 
avoid the severe consequences during in-flight 
conditions the wings need to be designed to 
eliminate the resonance, in the case of civil 
structures it needs to be designed considering the 
wind-induced vibration. 

Therefore, static and vibration analysis of 
laminated composite shells becomes an active 
area of research among researchers. 169 years 

ago Kirchoff [1] has developed a classical shell 
theory (CST) for the analysis of thin shells which 
neglect the effect of shear deformation. However, 
this theory is not useful for the analysis of thick 
shells. Therefore, Mindlin [2] has developed a 
first-order shear deformation theory (FSDT) 
which considers the effect of shear deformation 
for the first time. However, this theory fails to 
satisfy the zero transverse shear stress condition 
at top and bottom surfaces of the shell. These 
drawbacks of the CST and FSDT lead to the 
development of higher-order shear deformation 
theories (HSDT). Qatu [3-5], Qatu et al. [6], 
Mallikarjuna and Kant [7], Thai and Kim [8], 
Sayyad and Ghugal [9-11] have published several 
review articles on free vibration analysis of 
laminated composite beams, plates, and shells. 

Reddy [12] has developed a well-known 
parabolic shear deformation theory (PSDT) for 
the analysis of laminated composite plates and 
shells. Bhimaraddi [13] has presented a free 
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vibration analysis of doubly curved shells using 
three dimensional elasticity theory assuming that 
the ratio of shell thickness to its middle surface 
radius is negligible. Timaraci and Soldatos [14] 
studied the dynamic behavior of symmetric 
cross-ply circular shells using various shear 
deformation theories. Khare et al. [15] have 
developed a finite element formulation using a 
higher-order facet shell element for the free 
vibration analysis of laminated composite and 
sandwich cylindrical and spherical shells. A 
layerwise shear deformation theory is developed 
by Ferreira [16] for the static analysis of 
laminated composite plates. Static and free 
vibration analysis of laminated composite shells 
is presented by Ferreira et al. [17] by developing 
a meshless solution of Reddy’s higher-order shell 
theory. Garg et al. [18] presented a closed-form 
solution for the free vibration analysis of doubly 
curved laminated composite and sandwich shells. 
Pradyumna and Bandopadhyay [19] investigated 
a C0 finite element formulation based on higher-
order shear deformation theory for the static and 
free vibration analysis of laminated composite 
shells. Matsunga [20] presented free vibration 
and stability analysis of cross-ply laminated 
composite shells, considering the effect of 
transverse shear and normal deformations. 
Carrera and Brischetto [21] have presented an 
analysis of laminated composite shells using 
refined and mixed shear deformation theories. 
Brischetto et al. [22] studied a free vibration 
analysis of sandwich plates and shells by 
introducing a zig-zag function in the 
displacement field of classical and higher-order 
theories. Zhao et al. [23] have applied the Ritz 
method for the static and dynamic analysis of 
functionally graded cylindrical shells. Noh and 
Lee [24] have presented the free vibration 
analysis of laminated composite shells by 
developing a finite element formulation based on 
a third-order shear deformation theory. Bending 
and free vibration analysis of laminated 
composite plates and shells is presented by 
Mantari and Soares [25] using higher-order shear 
deformation theory. Tornabene [26, 27], 
Tornabene et al. [28, 29] have proposed a GDQ 
method for the free vibration analysis of 
laminated composite and functionally graded 
shells. Qatu and Asadi [30] presented a 
comprehensive study on free vibration analysis 
of spherical, cylindrical, and hyperbolic 
paraboloidal shells using a Ritz method for 
various boundary conditions. Asadi et al. [31] 
have presented a 3D solution for static and 
vibration analysis of thick deep laminated 
cylindrical shells. The hierarchical trigonometric 
Ritz formulation is used by Fazzolari and Carrera 
[32] for the free vibration analysis of doubly 
curved laminated composite shells. Taj and 

Chakrabarti [33] have studied the bending 
analysis of functionally graded ceramic-metal 
skew shell panels using a C0 finite element. Dai et 
al. [34] have obtained an exact series solution for 
the free vibration analysis of cylindrical shells for 
various boundary conditions. Wang et al. [35] 
have predicted the free vibration response of 
laminated composite circular panels and shells of 
revolution using a Fourier-Ritz method for 
various boundary conditions. Rawat et al. [36] 
have developed a finite element model for the 
free vibration analysis of thin circular cylindrical 
shells. Pandey and Pradyumna [37] have 
presented a thermally induced vibration analysis 
of functionally graded sandwich plates and shell 
panels. Biswal et al. [38] studied free vibration 
and stability analysis of doubly curved laminated 
shell panels based on Sander’s approximation. 
Fares et al. [39] have presented the bending and 
free vibration analysis of functionally graded 
doubly curved shells using a layerwise theory. 
Monge et al. [40] have carried out an asymptotic 
evaluation of the best theories for the free 
vibration analysis of laminated composite and 
sandwich shells. Cong et al. [41] have extended a 
third order shear deformation theory of Reddy by 
developing a new approach to investigate the 
nonlinear dynamic response of doubly curved 
sandwich shells. A semi-analytical method is used 
by Li et al. [42] and Pang et al. [43] to study the 
free vibration analysis for laminated composite 
doubly curved shells of revolution. Kiani et al. 
[44] investigated the free vibration 
characteristics of functionally graded carbon 
nanotube skew cylindrical shells based on 
Chebyshev-Ritz formulation. Sayyad and Ghugal 
[45] developed a generalized shell theory to 
investigate the static and dynamic response of 
laminated composite and sandwich spherical 
shells. Draiche et al. [46], Allam et al. [47], Zine et 
al. [48] presented a higher order shear 
deformation theory for the bending and free 
vibration analysis of laminated composite, 
sandwich plates, and shells. Arefi [49-53], Arefi 
and Rabczuk [54], Arefi and Elyas [55], Arefi and 
Amabili [56] have presented an electro-elastic 
and free vibration analysis of piezoelectric 
doubly curved nanoshells. Arefi and Zenkour [57-
58] have presented the bending and free 
vibration analysis of functionally graded 
nanobeams whereas Arefi et al. [59] presented 
the bending response of FG composite doubly 
curved nanoshells considering the thickness 
stretching effects.  

Draiche et al. [60] presented a static analysis 
of laminated reinforced plates using first order 
shear deformation theory. Belbachir et al. [61-
62], Abualnour et al. [63], Sahla et al. [64] have 
applied a four variable refined theory for the 
static and free vibration analysis of laminated 
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composite plates and shells under mechanical 
and thermal load. 

1.1. The Present Contribution 

Carrera [65] reported in his research that for 
the accurate structural analysis of composite 
laminates, higher-order theories must be 
expanded up to minimum fifth-order polynomial. 
It is also recommended by Carrera that it is 
important to consider the effect of transverse 
normal deformation for the analysis of composite 
laminates. However, limited literature is 
available on refined theories considering the 
effects of transverse normal strain. Also, refined 
theories representing higher order (minimum 
fifth-order) expansion of displacement field are 
limited. Based on these observations Sayyad and 
his coauthors Sayyad and Naik, [66], Naik and 
Sayyad, [67-69], Ghumare and Sayyad [70-72], 
Shinde and Sayyad [73] have given due 
consideration to these recommendations of 
Carrera and developed a fifth-order shear and 
normal deformation theory for the analysis of 
laminated composite, sandwich, and functionally 
graded beams, plates, and shells. In the present 
work, this theory is extended for the free 
vibration analysis of laminated shells. The theory 
considers the effects of transverse shear and 
normal deformations which is neglected by 
classical theories as well as many other higher-
order shell theories including Reddy’s theory. A 
fifth-order polynomial type shear strain function 
is used in the in-plane displacements to consider 
the effect of transverse shear deformation, 
whereas a fourth-order function is considered in 
the transverse displacement to account for the 
effect of normal deformation i.e. transverse 
normal stress. The equations of motion are 
derived using Hamilton’s principle. Navier’s 
solution technique is employed to obtain the non-
dimensional fundamental frequencies. The 
numerical results obtained for the natural 
frequencies using the present theory are 
compared with other higher-order theories 
presented by Asadi et al. [31], Bhimaraddi [13], 
Sayyad, and Ghugal [45], etc. In overall, the 
numerical results predicted by the present theory 
are in excellent agreement with the 3D elasticity 
solution.  

2. Mathematical Formulation of the 
Present Theory 

A simply supported laminated composite 
shell on rectangular planform with a width a in 
the x-direction, breadth b in the y-direction, and 
thickness h in the z-direction as shown in Fig. 1 is 
considered. The shell has N number of 
orthotropic layers made up of fibrous composite 

materials. For spherical shell R1=R2=R and for 
cylindrical shell R1=R, R2=∞. 

 
Fig. 1. Geometry and coordinate system of a spherical shell. 

The present theory is built upon classical shell 
theory. Extension and bending components 
associated with the present theory are analogous 
to the classical shell theory. Fifth-order 
polynomial type shape functions are used in the 
in-plane displacements to account for the effect 
of transverse shear deformation. Whereas, 
fourth-order shape function in terms of thickness 
coordinates is used in the transverse 
displacement to account for the effect of 
transverse normal deformations. The theory is 
presented by Sayyad and Naik, [65], Naik and 
Sayyad, [67-69], Ghumare and Sayyad [70-72] 
and, Shinde and Sayyad [73]. The displacement 
field of the present theory is as follows. 
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where u, v, and w are the displacements in the x-, 

y- and z- directions, respectively; u0, v0, and w0 are 

the unknown displacements of the mid-plane of 

the shell in x-, y- and z- directions respectively; 

( ),x x  are the shear slopes about the y-axis, 

( ),y y   are the shear slopes about the x-axis, 

( ),z z   are the shear slopes about the z-axis. All 

these shear slopes are unknowns that need to be 

determined. (‘) represents the derivative of the 

function with respect to the z coordinate. The 

present theory has nine unknowns. The following 

general strain-displacement relationships are 

used to determine nonzero strain components, 

Bhimaraddi [13]. 
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Substituting displacement expressions from 
the displacement field, stated in Eq. (1) one can 
obtain the following expressions for nonzero 
strains. 
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The three-dimensional Hooke’s law is used to 
derive expressions for stresses in the shell 
domain. 
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Ei’s (i=1, 2, 3) are the modulus of elasticity; Gij’s 

are the modulus of rigidity, and ij ’s are the 

Poisson’s ratio. The equations of motion for the 

free vibration analysis of the shell are obtained 

using Hamilton’s principle. 
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where, K represents the kinetic energy due to 

inertia forces, U represents the strain energy 

due to stresses, and V represents the potential 

energy due to external load.  is the variational 

operator. t1 and t2 are the initial and final times 

respectively. Substituting values of these 

energies in Eq. (8), one can rewrite the Eq. (8) as 
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where  represents the mass density. 

Substituting the expressions of stresses and 

strains from Eqs. (3)-(7) into the Eq. (9), 

integrating by parts, collecting the coefficients of 

( )0 0 0, , , , , , , ,x y z x y zu v w          and 

setting them equal to zero, one can derive the 

following equations of motion. 
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(10) 

Boundary conditions of the present theory are 
expressed in the following form 

Along the edges x =0 and x =a 

Either  0 0u =  or xN  is prescribed 

Either  0 0v =  or xyN  is prescribed 

Either  0 0w =  or 2

bb

xyx
dMdM

dx dy
+  is prescribed 

Either  0 0
w

x
=




 or b

xy
M  is prescribed 

Either  0
x
 =  or 1S

xM  is prescribed 

Either  0
x

 =  or 2S

xM  is prescribed 

Either  0y =  or 1S

xyM  is prescribed 

Either  0y =  or 2S

xyM  is prescribed 

Either  0z =  or 1S

xQ  is prescribed 

Either  0
z

 =  or 2S

xzQ  is prescribed 

Along with the edges y =0 and y =b, 

Either 0 0u =  or xyN  is prescribed 

Either 0 0v =  or yN  is prescribed 

Either  0 0w =  or 2

b b

y xydM dM

dy dx
+  is prescribed 

Either  0 0
w

y




=  or b

xyM  is prescribed 

Either  0
x
 =  or 1S

xyM  is prescribed 

Either  0
x

 =  or 2S

xyM  is prescribed 

Either  0y =  or 1S

yM  is prescribed 

Either  0y =  or 2S

yM  is prescribed 

Either  0z =  or 1S

yQ  is prescribed 

Either  0
z

 =  or 2S

yzQ  is prescribed 

where force and moment resultants can be 
derived from the following relations 
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The inertia constants are derived as, 
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) 

3. Analytical Solutions 

The Navier’s solution technique is used to 
obtain the analytical solutions for the free 
vibration analysis of simply supported cross-ply 
laminated composite shells. The boundary 
conditions at the simply supported edges of the 
shell are as follows. 

Along the edges x =0 and x =a 

0 0 0y y z zv w    = = = = = =  
(13) 

1 2 0b S S

x x x xM M M N= = = =  

Along the edges y =0 and y =b 

0 0 0x x z zu w    = = = = = =  

(14) 
1 2 0b S S

y y y yM M M N= = = =  

The following trigonometric form of unknown 
variables is assumed which satisfies the simply 
supported boundary conditions exactly. 
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) 

where / , /m a n b   = = ; 1i −= ;   is 

the fundamental frequency and 1 1 1 1, , , ,x xu v   

1 2 1 1 1, , , ,y y z zw     are the unknown 

parameters to be determined. Substitution of Eq. 

(15) into Eq. (10) by setting q = 0 leads to the 

following eigenvalue problem. 

       2 0K M−  =  (16) 

where [K] is stiffness matrix, [M] is the mass 

matrix, and    is the vector of amplitudes. 

Elements of these matrices are mentioned in 

Appendix. 

4. Numerical Results and Discussion 

In the present study, natural frequencies for a 
homogeneous two-layer (00/900) and three-layer 
(00/900/00) laminated composite cylindrical and 
spherical shells are obtained using MATLAB 
2015a. In laminated shells, all layers are 
considered of equal thickness. The numerical 
results are obtained for different values of the 
R/a ratio and aspect (a/h) ratio. The following 
material properties for the laminated composite 
shells are used, Bhimaraddi [13] 

3 13 231 12

2 2 2 2 2

25, 1, 0.5, 0.2,
E G GE G

E E E E E
= = = = =  

(17) 

12 13 23 0.25, constant   = = = =  

The natural frequency is presented in the 
following non-dimensional form unless and until 
specified, 

( )2

2/ /a h E  =  (18) 

The comparison of the first five natural 
frequencies of two-layer (00/900) and three-layer 
(00/900/00) laminated composite cylindrical 
shells is shown in Tables 1-2 respectively. 
Natural frequencies are presented for a/h=10 
and 20 at R/a=2, 1, 0.5. Material properties of 
laminated shells are mentioned in Eq. (17). The 
comparison shows that the present results are in 
good agreement with those results presented by 
Asadi et al. [31] by different models. It is observed 
that as the a/h ratio and R/a ratio increases the 
natural frequency increases. It is found that the 
natural frequencies are decreasing with respect 
to the increase in radius of curvature (R/a). 

Also, from Tables 1 and 2 it is clearly observed 
that the natural frequency is less in deep shells 
and more in shallow shells. The variation of 
fundamental frequency with respect to the aspect 
ratio (a/h) is also shown in Tables 1 and 2, which 
predicts that the frequency is found more in thick 
shells. 

Table 3 shows a comparison of natural 
frequencies for varying modes of vibration of a 
two-layer 00/900 laminated cylindrical shells at 
a/h=10 and R/a=1. The numerical results are 
obtained for m=n=1, 2, 3, 4, 5, 6 to change modes 
of vibration. The comparison shows that the 
present theory predicts natural frequencies in 
good agreement with those presented by 
Bhimaraddi [13] using various theories. 
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Table 4 shows the effect of R/a and h/a ratios 
on the natural frequencies of orthotropic and 
laminated composite cylindrical shells. 
Variations of natural frequencies in laminated 
composite cylindrical shells are presented with 
the help of Fig. 2. 

Table 5 through 7 and Figures.3 through 6 
deal with the natural frequencies of orthotropic 
and laminated composite spherical shells using 
the present theory. The present results are 
obtained for different modes of vibrations, a/h 
ratios, and R/a ratios. The comparison of all 
tables shows that the present results are 
compared with those presented by Bhimaraddi 
[13] and, Sayyad and Ghugal [45] using various 
theories. The present results are found in good 
agreement with previously published results for 
parameters. 

From Tables 5 through 7 it is seen that the 
fundamental frequency of laminated shells 
decreases with an increase in the radii of 
curvature (R/a ratio). These results are also 
plotted in Figures 3 through 6. 

Figures 5 and 6 show the variation of 
fundamental frequency with respect to modes of 
vibration (m, n) in a single layer (00) and a 
double-layer (00/900) laminated shell.  

From Figures 5 and 6 it is observed that as the 
mode (m, n) increases the value of frequency also 
increases. 

Table 8 shows the fundamental frequencies of 
three layered (00/core/00) sandwich spherical 
shells. The thickness of each face sheet is 0.1h and 

the middle core is 0.8h, where h is the total 
thickness of the shell. Following are the material 
properties used for the middle core of sandwich 
shell, Sayyad and Ghugal [46]: 

12
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0.23319,=
Q

Q
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11

0.010776,=
Q

Q
 

22

11

0.543104,=
Q

Q
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11

0.098276,=
Q

Q
 

33

11

0.530172,=
Q

Q
 

 
44

11

0.266810,=
Q

Q
 

55

11

0.159914,=
Q

Q
 

 
22

11

0.262931=
Q

Q
 

The elastic properties of the face sheets are 
assumed as ‘C’ times the elastic properties of the 
core and the value of C are taken as 1, 2, 5, 10, and 
15. From Table 8 it is observed that the result 
obtained by using the present theory are in good 
agreement with other theories available in the 
literature. The fundamental frequency of 
sandwich shells decreases with an increase in the 
radii of curvature (R/a). 

Also, the results quoted in Table 8 show that 
the values of fundamental frequency increase 
with an increase in softness of the core. 

 

Table 1. First five non-dimensional natural frequencies in two-layer (00/900) laminated composite cylindrical shell 
 for varying a/R and a/h ratio (R1=R and R2=∞). 

a/h R/a Theory 1  2  3  4  5  

20 

2.0 

Present 11.579 25.514 28.015 36.485 50.747 

FSDTQ [31] 11.530 25.357 27.913 36.324 50.210 

3D-FEM [31] 11.537 25.378 27.951 36.434 50.253 

1.0 

Present 15.967 26.053 34.840 38.115 50.925 

FSDTQ [31] 15.859 25.648 34.867 37.831 50.263 

3D-FEM [31] 15.861 25.658 34.890 37.942 50.297 

0.5 

Present 24.855 27.686 43.444 50.689 51.091 

FSDTQ [31] 24.809 26.193 42.664 49.382 51.170 

3D-FEM [31] 24.805 26.162 42.743 49.359 51.167 

10 

2.0 

Present 9.5271 21.995 22.464 30.415 39.651 

FSDTQ [31] 9.4577 21.676 22.150 29.959 38.608 

3D-FEM [31] 9.4855 21.743 22.246 30.193 38.745 

1.0 

Present 10.859 22.190 24.319 30.899 39.820 

FSDTQ [31] 10.666 21.705 24.090 30.368 38.722 

3D-FEM [31] 10.686 21.767 24.191 30.614 38.896 

0.5 

Present 14.099 22.496 29.446 32.266 39.788 

FSDTQ [31] 13.771 21.037 29.574 31.200 38.073 

3D-FEM [31] 13.772 21.040 29.639 31.411 38.266 
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Table 2. First five non-dimensional natural frequencies in three-layer (00/900/00) laminated composite cylindrical shell 
for varying a/R and a/h ratio (R1=R and R2=∞). 

a/h R/a Theory 1  2  3  4  5  

20 

2.0 
Present 15.353 24.850 41.093 42.808 46.932 
FSDTQ [31] 15.551 21.646 37.022 46.309 48.938 
3D-FEM [31] 15.245 21.370 36.803 43.529 46.148 

1.0 
Present 18.596 32.641 42.761 47.928 50.801 
FSDTQ [31] 18.710 21.974 36.794 49.770 49.852 
3D-FEM [31] 18.471 21.703 36.567 47.074 47.416 

0.5 
Present 25.896 42.591 49.308 51.416 66.365 
FSDTQ [31] 23.178 25.978 35.923 52.746 57.077 
3D-FEM [31] 22.924 25.840 35.668 50.360 56.448 

10 

2.0 
Present 11.982 19.324 28.921 31.916 32.717 
FSDTQ [31] 12.443 18.677 30.839 31.323 34.456 
3D-FEM [31] 11.769 18.159 28.600 30.471 31.928 

1.0 
Present 12.854 21.665 28.786  32.931 34.688 
FSDTQ [31] 13.187 18.524 30.564 32.232 34.523 
3D-FEM [31] 12.590 18.005 29.732 30.189 32.037 

0.5 
Present 15.134 27.579 28.281 33.701 42.195 
FSDTQ [31] 15.250 17.989 29.491 34.795 34.913 
3D-FEM [31] 14.840 17.468 29.094 32.464 33.046 

Table 3. Non-dimensional natural frequencies in two-layer (00/900) laminated composite cylindrical shell  

for varying modes of vibration (R1=R, R2=∞, R/a=1 and a/h=10). ( )2/ E  =  

n Source m =1 m =2 m =3 m =4 m =5 m =6 

1 Present 1.0859 2.2190 3.9820 5.8774 7.7433 9.4882 

 3D-Elasticity [13] 1.0408 2.4127 4.1157 5.9337 7.7818 9.6281 

2 Present 2.4319 3.0899 4.554 6.3011 8.0866 9.7855 

 3D-Elasticity [13] 2.0956 3.0069 4.4760 6.1778 7.9611 9.7672 

3 Present 4.1705 4.5649 5.6724 7.1589 8.7769 10.367 

 3D-Elasticity [13] 3.7949 4.4010 5.5338 6.9958 8.6193 10.316 

4 Present 6.0501 6.3079 7.1502 8.3748 9.7868 11.225 

 3D-Elasticity [13] 5.6331 6.0816 6.9643 8.1881 9.6232 11.177 

5 Present 7.9595 8.1370 8.8001 9.8109 11.025 12.300 

 3D-Elasticity [13] 7.4876 7.8550 8.5704 9.6035 10.864 12.274 

6 Present 9.8524 9.9762 10.514 11.360 12.402 13.520 

 3D-Elasticity [13] 8.6842 9.4979 10.254 11.143 12.258 13.536 

Table 4. Non-dimensional natural frequencies in laminated composite cylindrical shell (R1=R, R2=∞)  

for different R/a and a/h ratios. ( )2/ E  =  

R/a Source 
Orthotropic  00/900 

h/a=0.05 h/a =0.1 h/a=0.15  h/a =0.05 h/a =0.1 h/a =0.15 

1 Present 0.8727 1.2919 1.5740  0.7983 1.0859 1.3714 

 3D-Elasticity [13] 0.8917 1.3241 1.6169  0.7868 1.0408 1.2909 

2 Present 0.7602 1.2495 1.5609  0.5789 0.9527 1.2815 

 3D-Elasticity [13] 0.7663 1.2674 1.5924  0.5725 0.9362 1.2537 

3 Present 0.7354 1.2407 1.5582  0.5243 0.9231 1.2609 

 3D-Elasticity [13] 0.7396 1.2562 1.5878  0.5207 0.9144 1.2450 

4 Present 0.7263 1.2376 1.5573  0.5034 0.9120 1.2529 

 3D-Elasticity [13] 0.7304 1.2522 1.5452  0.5011 0.9061 1.2409 

5 Present 0.7220 1.2361 1.5568  0.4933 0.9067 1.2487 

 3D-Elasticity [13] 0.7255 1.2503 1.5842  0.4916 0.9020 1.2384 

10 Present 0.7163 1.2342 1.5563  0.4793 0.8989 1.2423 

 3D-Elasticity [13] 0.7194 1.2473 1.5825  0.4785 0.8956 1.2337 

20 Present 0.7149 1.2337 1.5562  0.4757 0.8965 1.2399 

 3D-Elasticity [13] 0.7179 1.2463 1.5821  0.4750 0.8934 1.2314 

∞ Present 0.7144 1.2336 1.5562  0.4743 0.8952 1.2381 

 3D-Elasticity [13] 0.7173 1.2461 1.5812  0.4736 0.8917 1.2290 
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Table 5. Non-dimensional natural frequencies in two-layer (00/900) laminated composite spherical shell (R1= R2=R) 

 for varying modes of vibration (R/a=1 and a/h=10). ( )2/ E  =  

n Source m=1 m =2 m =3 m =4 m =5 m =6 

1 Present 1.4818 2.6042 4.3235 6.2130 8.0999 9.8893 

 3D-Elasticity [13] 1.3997 2.4387 4.0531 5.8455 7.6895 8.7973 

2 Present 2.5333 3.2067 4.6702 6.4332 8.2533 10.006 

 3D-Elasticity [13] 2.4420 3.0452 4.4168 5.7938 8.0320 9.6841 

3 Present 4.1621 4.5650 5.6853 7.2038 8.8718 10.534 

 3D-Elasticity [13] 4.0841 4.4327 5.4741 6.9051 8.5234 10.226 

4 Present 5.9659 6.2301 7.0901 8.3601 9.8434 11.383 

 3D-Elasticity [13] 5.7102 6.1128 6.9091 8.0983 9.5244 11.083 

5 Present 7.7957 7.9834 8.6702 9.7402 11.051 12.465 

 3D-Elasticity [13] 7.4002 7.8904 8.5227 9.5188 10.766 12.177 

6 Present 9.5939 9.7358 10.306 11.226 12.393 13.692 

 3D-Elasticity [13] 9.0324 9.6948 10.214 11.065 12.164 13.440 

Table 6. Non-dimensional natural frequencies in two-layer (00/900) laminated composite spherical shell (R1= R2=R)  
for different R/a and a/h ratios.  

R/a Theory 
a/h 

5 10 20 50 100 

5 Present 7.6370 9.3431 10.932 16.7371 29.0279 

 PSDT [45] 7.6781 9.3424 10.923 16.7059 29.0271 

 ESDT [45] 7.7826 9.3759 10.931 16.7068 29.0272 

10 Present 7.5733 9.0750 9.8931 11.8618 16.8058 

 PSDT [45] 7.6122 9.0738 9.8893 11.8560 16.8218 

 FSDT [45] 7.6482 9.0991 9.8978 11.8575 16.8222 

50 Present 7.5527 8.9870 9.5339 9.7865 10.0960 

 PSDT [45] 7.5908 8.9856 9.5323 9.7943 10.1312 

 ESDT [45] 7.6974 9.0208 9.5420 9.7959 10.1316 

100 Present 7.5520 8.9842 9.5225 9.7144 9.8121 

 PSDT [45] 7.5902 8.9828 9.5209 9.7227 9.8487 

 ESDT [45] 7.6967 9.0180 9.5307 9.7243 9.8491 

Plate Present 7.5753 9.0123 9.5498 9.7220 9.7476 

 PSDT [45] 7.5899 9.9819 9.5171 9.6988 9.7527 

 ESDT [45] 7.6965 9.0171 9.5269 9.7004 9.7531 

Table 7. Non-dimensional natural frequencies in three-layer (00/900/00) laminated composite spherical shell (R1= R2=R) 
for different R/a and a/h ratios.  

R/a Theory 

a/h 

5 10 20 50 100 

5 Present 8.3515 12.0792 15.1567 20.4682 31.4974 

 PSDT [45] 8.3200 12.0613 15.0499 20.2525 31.2192 

 ESDT [45] 8.3425 12.0412 15.0365 20.2601 31.2189 

10 Present 8.2908 11.8770 14.4306 16.6907 20.6521 

 PSDT [45] 8.2593 11.8633 14.3366 16.5276 20.4844 

 ESDT [45] 8.2820 11.8428 14.3225 16.5247 20.4837 

50 Present 8.2711 11.8111 14.1887 15.2760 15.6296 

 PSDT [45] 8.2396 11.7988 14.0991 15.1334 15.5166 

 ESDT [45] 8.2625 11.7781 14.0847 15.1302 15.5158 

100 Present 8.2705 11.8090 14.1811 15.2296 15.4460 

 PSDT [45] 8.2390 11.7968 14.0916 15.0876 15.3352 

 ESDT [45] 8.2619 11.7760 14.0772 15.0845 15.3343 

Plate Present 8.2878 11.8281 14.1997 15.2359 15.4063 

 PSDT [45] 8.2388 11.7961 14.0891 15.0724 15.2742 

 ESDT [45] 8.2617 11.7754 14.0747 15.0692 15.2734 
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Table 8. Non-dimensional natural frequencies in three-layer (00/core/00) sandwich laminated composite spherical shell (R1= R2=R)  
for different R/a ratios. 

R/a Model 
C 

1 2 5 10 15 

5 Present 5.0011 5.9644 8.0349 10.2930 11.868 

 PSDT [45] 5.0209 5.9690 8.0090 10.023 10.249 

 ESDT [45] 5.0205 5.9683 8.0076 10.0216 10.246 

10 Present 5.0480 5.9841 8.0227 10.041 10.269 

 PSDT [45] 4.8082 5.7718 7.8223 10.035 11.563 

 ESDT [45] 4.8274 5.6883 7.6248 9.9028 11.332 

20 Present 4.8280 5.6882 7.6236 9.9008 11.329 

 PSDT [45] 4.8556 5.7042 7.6392 9.9209 11.353 

 ESDT [45] 4.7585 5.7225 7.7681 9.9693 11.485 

50 Present 4.7771 5.6150 7.5237 9.8689 11.645 

 PSDT [45] 4.7783 5.6156 7.5241 9.8692 11.645 

 ESDT [45] 4.8061 5.6318 7.5399 9.8895 11.669 

100 Present 4.7635 5.5953 7.4971 9.8623 11.741 

 PSDT [45] 4.7630 5.5944 7.4956 9.8600 11.738 

 ESDT [45] 4.7642 5.5951 7.4959 9.8602 11.738 

Plate Present 4.7425 5.7066 7.7507 9.9482 11.460 

 PSDT [45] 4.7615 5.5923 7.4931 9.8610 11.754 

 ESDT [45] 4.7610 5.5915 7.4916 9.8587 11.751 

 

 
Fig. 2. Variations of natural frequencies with respect to 

 R/a ratio in laminated composite cylindrical shell. 

 

Fig. 3. Variations of natural frequencies with respect to 
R/a ratio in laminated composite spherical shell 

 

Fig. 4. Variations of natural frequencies with respect to 
a/h ratio in laminated composite spherical shell. 

 

Fig. 5. Variations of natural frequencies with respect to 
modes of vibration in orthotropic spherical shell. 
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Fig. 6. Variations of natural frequencies ( )  with respect to 

modes of vibration in two layered (00/900) laminated 
composite spherical shell. 

5. Conclusion 

In the present study, a new fifth-order shear 
and normal deformation theory is developed and 
applied for the free vibration analysis of 
laminated composite and sandwich shells. The 
present theory includes the effects of both 
transverse shear and normal deformations. A 
polynomial type transverse shear strain shape 
function is used in the displacement field to 
account for these effects. The fundamental 
frequency analysis is performed for different 
types of shell problems, to prove the efficacy and 
validity of the present theory. Based on the 
numerical results and discussion, the following 
conclusions are drawn.  
1. The present results are compared with 

previously published results and found in 
good agreement with those.  

2. Natural frequencies of laminated shells 
decrease with an increase in the radii of 
curvature which shows that the deep shells 
predict higher frequencies whereas shallow 
shells predict lower frequencies. 

3. It is concluded that the natural frequency 
increases with an increase in a/h ratio which 
ultimately shows that the thin shell predicts 
higher frequency whereas the thick shell 
predicts lower frequency.   

4. In the case of sandwich shells, natural 
frequency increases with the increase in 
softness of the core material.  

Based on the literature review, illustrated 
examples, numerical results, and discussion, the 
authors recommend the use of the present theory 
for many other problems of composite shells. 
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The elements of stiffness matrix [K] in Eq. (16) 
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