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Abstract

In this paper, we introduce a new 2- parameters family of distributions named [0,1] Truncated Inverse
Weibull - G family ([0,1] TIW-G) family, to generate new types of continues distributions. A special
model namely, [0,1] Truncated Inverse Weibull Rayleigh distribution ([0,1] TIWR) distribution is
considered and defined and some of the statistical properties are derived. Parameter’s estimations
using MLE method is provided and a simulation is given to determine the accuracy of the method
used above. To demonstrate the utility of the distribution in nowday’s applications, we explore and
investigate the death rates of COVID-19 in Iraq in the period from 14 December 2020 to 30 April
2021.

Keywords: Rayleigh distribution, [0,1] Truncated, Inverse Weibull family, Maximum likelihood
Estimation.

1. Introduction

The interest in generating new families of distribution has increased rapidly during the last few
years. Researchers always look for new distributions in order to fit real life data. In most cases, these
distributions have more flexibility than their predecessors and provide more fitness for empirical data.
There are many ways to generate new families of distributions, one such way is adding new parameters
to an already exist model. This procedure provides a better modeling of data and extends the study
of the original distributions as well. Many new families had been developed in the previous few
decades for example beta-G by Eugene et al. (2002) [11], Marshal-Olkin generated family (MO-G) by
Marshal and Olkin (2007) [16] ,Kumaraswamy-G by Cordeiro and de Castro (2011) [9], log-gamma-G
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by Amini (2012) [8], exponentiated generalized-G by Cordeiro (2013) [10], Transformed-Transformer
(T-X) by Alzaatreh (2013) [3], Kumaraswamy odd log-logistic-G by Alizadeh (2015) [5] and The
Marshall-Olkin and Topp Leone-G family by Khaleel et al ( 2020) [15].
Eugene et al [11] introduce beta-G by using the logit of beta distribution. A random variable X has
a beta-G cumulative distribution function (cdf) defined by:

F (x) =
1

B (α, β)

∫ G(x)

0

tα−1(1− t)β−1dt;α, β > 0, (1.1)

Where G(x) is a cdf of another random variable. Many pioneering works had been established on
this works.
Alzaatreh et al [7] has posted a new family of distributions named T-X family, its cdf has the form:

F (x;α, β) =

∫ W (G(x;α))

a

f(t; β)dt (1.2)

Where the random variable T ∈ [a, b] for −∞ < a < b < ∞. And the function W (x) satisfies
the conditions:

• W (G (x;α)) ∈ [a, b],

• W (G (x;α)) is differentiable and monotonically non-decreasing,

• W (G (x;α)) −→ a as x −→ −∞ and W (G (x;α)) −→ b as x −→∞.

This family add one more parameter to a given distribution and renders it more flexible and
richer model.
Salah et al. [2] defined a new truncated family of distribution named [0,1] truncated-G family by
defining the new cdf M as:

M (x) =
F (G (x))− F (0)

F (1)− F (0)
(1.3)

Where both F and G are cdf of another random variables.
In this paper we defined our new family of distribution by sets F equal to the cdf of inverse

Weibull distribution in (1.3) namely:
F (x; a, b) = exp (−bx−a) ;x > 0 and a, b > 0 . we call this family [0, 1] TIW −G family.

The paper is divided as follows: in section 2 we give a definition of the cdf and pdf of the new family
and then we consider a special model the: [0, 1] inverse Weibull Rayleigh distribution ([0,1] TIWR
Distribution) along with the survival and hazard functions followed by a series representation of both
cdf and pdf functions. Section 3 is devoted to the statistical properties such as moments, quantile
function, median, entropies and stress-strength reliability. Section 4 addresses the estimations of
parameters using ML method. In section 5 we define the order statistics of the distribution. Section
6 demonstrate the estimation study of the parameters using R software and finally section 7 we study
some applications of our model to a life data. We wrapp up with conclusions in section 8.
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2. [0, 1] TIW −G Family And The [0,1] Truncated Inverse Weibull Rayleigh Distribu-
tion ([0,1] TIWR Distribution)

As we mentioned above the cumulative distribution function (cdf) of the [0, 1] TIW -G family is
given by sets F equal to the cdf of inverse Weibull distribution in (1.3) to get:

F[0,1] TIW−G = exp
(
−bG (x)−a

)
/exp(−b) ; x > 0 and a, b > 0 (2.1)

A differentiation with respect to x gives the pdf:

f (x; a, b) = abg (x) [G (x)]−(a+1)exp
(
−bG (x)−a

)
/exp(−b) ; (2.2)

The cumulative distribution function (cdf) of the [0,1] TIWR distribution is given by set G(x)
and g(x) equal to the cdf and pdf of the Rayleigh distribution respectively to obtain:

F (x; a, b, λ) =
exp(−b[1− exp (−λx2) ]

−a
)

exp(−b)
, x > 0 and a, b, λ > 0 (2.3)

A differentiation with respect to x gives the probability distribution function (pdf):

f (x; a, b, λ) =
2abλ

exp(−b)
xexp

(
−λx2

)
[1−exp

(
−λx2)

] −(a+1)
exp(−b

[
1− exp

(
−λx2

) ]−a
) (2.4)

The survival and hazard function are given by the following equations:

S (x; a, b, λ) = 1− F (x; a, b, λ) = 1− exp(−b[1− exp (−λx2) ]
−a

)

exp(−b)
(2.5)

And,

H (x; a, b, λ) =
f(x; a, b, λ)

S (x; a, b, λ)

H (x; a, b, λ) =

2abλ
exp(−b) xexp (−λx2) [1− exp (−λx2] −(a+1)

exp(−b[1− exp (−λx2) ]
−a

)(
1− exp(−b[1−exp(−λx2) ]−a)

exp(−b)

) (2.6)

respectively. Here a and b are shape parameters while λ is a scale parameter.
For illustration purposes, the plots for the pdf and hazard function of [0,1] TIWR distribution for

different values of parameter are presented in Figures 1 and 2 respectively. Many different shape for
pdf we can see like right skewed, left skewed, and exponential. For the hazard function we can see
also different shapes such as increase, decrease, bathtub, reverse J, and increase-decrease-increase.

Proposition 2.1. The pdf given in (1.2) has the following expansion:

f (x; a, b, λ) =
2λ

exp(−b)

∞∑
i1,i2=0

τi1,i2x exp(−λi2x2) (2.7)

Where,

τi1,i2 =
(−1)i1+1bi1Γ (ai1 + i2)

i1! (i2 − 1)!Γ (ai1)
.
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Figure 1: The pdf plot for [0,1] TIWR distribution with different parameters.

Figure 2: The hazard plot for [0,1] TIWR distribution with different parameters.
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Proof . First, let us give an expansion for the cdf. Using the exponential Taylor series and the
generalized binomial theorem we get:

F (x; a, b, λ) =
exp

(
−b[1− exp (−λx2) ]

−a
)

exp (−b)
=

1

exp(−b)

∞∑
i1,i2=0

(−1)i1bi1Γ (ai1 + i2)

i1!i2!Γ (ai1)
exp(−λi2x2)

�
A differentiation with respect to x gives the desired result. It follows that the pdf of the [0, 1] IWR

distribution can be expand as a linear combination of the pdf of the Weibull distribution. The next
proposition has a useful application later.

Proposition 2.2. For the pdf given in (1.2) the following holds:

f(x; a, b, λ)ν =

(
2abλ

exp (−b)

)ν ∞∑
i1,i2=0

(−1)i1 νi1bi1Γ(ν (a+ 1) + ai1 + i2)

i1!i2!Γ(ν (a+ 1) + ai1)
xνexp(−λ (ν + i2)x

2) (2.8)

Proof . The proof follows by raising (1.2) to ν and using the exponential Taylor series and the
generalized binomial theorem to obtain the desired result. �

3. Statistical Properties

In this section we will provide some useful statistical properties of the [0, 1] TIWR distribution
such as moments, quantile function, median, entropy and Stress-Strength Reliability.

3.1. r th Moments

Now, we consider the moments of the [0, 1] TIWR distribution. By making use of proposition 2.1
and formulas (3.326) of Gradshteyn and Ryzhik (1965) [12], we obtain:

E (xn) =

∫ +∞

0

xnf (x; a, b, λ) dx =
2λ

exp (−b)

∞∑
i1,i2=0

τi1,i2

∫ +∞

0

xn+1exp
(
−λi2x2

)
dx

=
Γ(γ)

exp (−b) λγ−1
∞∑

i1,i2=0

τi1,i2
iγ2

, γ =
n+ 2

2
. (3.1)

In particular,

µ′1 = E (x) =

√
π
λ

2 exp (−b)

∞∑
i1,i2=0

τi1,i2

i
3
2
2

(3.2)

And,

µ′2 = E
(
x2
)

=
1

exp (−b) λ

∞∑
i1,i2=0

τi1,i2
i22

(3.3)

And the variance can be obtained from the formulas above using, σ2 = µ′2− (µ′1)
2
. The skewness

and kurtosis are crucial in describing the statistical analysis of distributions. For the [0, 1] TIWR
distribution, they are given by the following formulas [1]:
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sk =
µ′3

(µ′2)
3
2

=

3
√
π

4exp(−b)λ
3
2

∑∞
i1,i2=0

τi1,i2

i
5
2
2(

1
exp(−b) λ

) 3
2
[∑∞

i1,i2=0

τi1,i2
i22

] 3
2

=
3
√
π

4exp
(
b
2

)

∑∞

i1,i2=0

τi1,i2

i
5
2
2[∑∞

i1,i2=0

τi1,i2
i22

] 3
2

 (3.4)

and,

kr =
µ′4

(µ′2)
2 =

2
exp(−b)λ2

∑∞
i1,i2=0

τi1,i2
i32(

1
exp(−b) λ

)2[∑∞
i1,i2=0

τi1,i2
i22

]2 =
2

exp(b)

 ∑∞
i1,i2=0

τi1,i2
i32[∑∞

i1,i2=0

τi1,i2
i22

]2
 . (3.5)

respectively. Using the moments formula and Taylor expansion, the moments generating Mx (t)
function is given by:

MX (t) = E(exp(tx)) =
∞∑
n=0

tn

n!
E (xn) =

∞∑
n=0

tn

n!

Γ (γ)

exp (−b) λγ−1
∞∑

i1,i2=0

τi1,i2
iγ2

=
Γ (γ)

exp (−b) λγ−1
∞∑

i1,i2,n=0

tnτi1,i2
n!iγ2

. (3.6)

Replacing t by (it) gives the characteristic function Ψx (t):

Ψx (t) =
Γ (γ)

exp (−b) λγ−1
∞∑

i1,i2,n=0

intnτi1,i2
n!iγ2

. (3.7)

3.2. Quantile Function and Median

The quantile functionQ(p; a, b, λ) can be obtained by solving the equation
exp(−b[1−exp(−λQ2) ]

−a
)

exp(−b) =
p for Q. A simple arithmetic yield:

Q (p) =

√√√√√ ln

(
1

1− a
√

b
b−lnp

)
λ

, λ > 0 (3.8)

Therefore, the median can be computed by letting p = 1
2

in equation (3.3) to get [3]:

Me =

√√√√√√√ ln

 1

1− a

√
b

b−ln 1
2


λ

(3.9)
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3.3. Entropy

The entropy is an essential concept in statistical analysis, it gives raise to the computations of
the uncertainty inherited in the variable’s outcomes and it has lots of applications in information
theory. There are many measures of entropy but we will confine our self with only two [4]: Rényi
entropy and Shannon entropy. Let X be a random variable with pdf f(x; ζ). Then, Rényi Entropy
is given by:

Rν =
1

1− ν
log

{∫ +∞

−∞
f(x, ζ)νdx

}
(3.10)

For the [0, 1] TIWR distribution, the Rényi Entropy is obtained from proposition 2.2 and formula
(3.326) of Gradshteyn and Ryzhik:

Rν =
1

1− ν
log

{(
2abλ

exp (−b)

)ν ∞∑
i1,i2=0

(−1)i1 νi1bi1Γ(ν (a+ 1) + ai1 + i2)

i1!i2!Γ(ν (a+ 1) + ai1)

∫ +∞

0

xνexp(−λ (ν + i2)x
2) dx

}

=
1

1− ν
log

{(
2abλ

exp (−b)

)ν Γ(ν+1
2

)

2λ
ν+1
2

∞∑
i1,i2=0

(−1)i1νi1bi1Γ(ν (a+ 1) + ai1 + i2)

i1!i2!Γ(ν (a+ 1) + ai1)

1

2(ν + i2)
ν+1
2

}
(3.11)

Shannon entropy is given by:

H = −
{∫ +∞

−∞
log( f(x; ζ)f(x; ζ)dx

}
(3.12)

Using proposition 2.1, In our case we get:

H = −

{
2λ

exp (−b)

∞∑
i1,i2=0

τi1,i2

∫ +∞

0

log

(
2abλ

exp (−b)

)
x exp

(
−λi2x2

)
+ log (x)x exp

(
−λi2x2

)
− λx3exp

(
−λi2x2

)
− (a+ 1) log

(
1− exp

(
−λx2

) )
x exp

(
−λi2x2

)
− b(

[
1− exp

(
−λx2

) ]−a
)x exp

(
−λi2x2

)
)dx

}
Calculating the integrals above, we get:

I1 = log

(
2abλ

exp (−b)

) ∫ ∞
0

xexp
(
−λi2x2

)
dx = log

(
2abλ

exp (−b)

)
1

2λi2

I2 =

∫ +∞

0

log (x) xexp
(
−λi2x2

)
dx =− 1

4λi2
(C + log (λi2) )

I3 = −λ
∫ +∞

0

x3exp
(
−λi2x2

)
dx =

−1

2λi22

I4 = (a+ 1)
∞∑

m1=1

1

m1

∫ +∞

0

xexp(−λ (m1 + i2)x
2) dx =

(a+ 1)

2λ

∞∑
m1=1

1

m1 (m1 + i2)

I5 = −b
∞∑

m2=0

Γ (a+m2)

m2!Γ (a)

∫ +∞

0

xexp
(
−λ (m2 + i2)x

2
)
dx = − b

2λ

∞∑
m2=0

Γ (a+m2)

m2!Γ (a)

1

(m2 + i2)
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Where C is Euler’s constant and binomial expansion and Taylor expansion of ln(1− x) were
used. Putting everything together, we obtain:

H = −

{
2λ

exp (−b)

∞∑
i1,i2=0

τi1,i2

[
log

(
2abλ

exp (−b)

)
1

2λi2
− 1

4λi2
(C + log (λi2) )− 1

2λi22

+
(a+ 1)

2λ

∞∑
m1=1

1

m1 (m1 + i2)
− b

2λ

∞∑
m2=0

Γ (a+m2)

m2!Γ (a)

1

(m2 + i2)

]}
(3.13)

3.4. Stress-Strength Reliability

Stress-Strength analysis shows in many physical as well as statistical applications. Let X1 ∼
[0, 1] TIWR with parameters a1, b1, λ1 and X2 ∼ [0, 1] TIWR with parameters a2, b2, λ2 the stress-
strength reliability of the [0, 1]−TIWR distribution is given by [6]:

R =

∫ +∞

0

f1 (x)F2 (x) dx (3.14)

Using expansions of proposition 2.1 we obtain:

R =

∫ ∞
0

{
2λ1

exp(−b1)

∞∑
i1,i2=0

(−1)i1+1bi11 Γ (a1i1 + i2)

i1! (i2 − 1)!Γ (a1i1)
x exp(−λ1i2x2)

× 1

exp (−b2)

∞∑
i3,i4

(−1)i3bi32 Γ (a2i3 + i4)

i3!i4!Γ (a2i3)
exp(−λ2i4x2)

}
dx

=
2λ1

exp(−(b1 + b2))

∞∑
i1,i2,i3,i4=0

(−1)i1+i3+1bi11 b
i3
2 Γ (a1i1 + i2) Γ (a2i3 + i4)

i1! (i2 − 1)!i3!i4!Γ (a1i1) Γ (a2i3)

∫ +∞

0

x exp(−(λ1i2 + λ2i4)x
2)dx

=
λ1

exp(−(b1+b2))

∞∑
i1,i2,i3,i4=0

(−1)i1+i3+1bi11 b
i3
2 Γ (a1i1+i2) Γ (a2i3+i4)

i1! (i2−1) !i3!i4!Γ (a1i1) Γ (a2i3)λ1i2+λ2i4)
. (3.15)

4. Maximum Likelihood Estimation

In this section we consider the maximum likelihood estimator of the [0, 1] TIWR’s parameters.
Let x1,x2,. . . ,xn be the observed values of the [0, 1]−TIWR distribution with unknown parameters
a, b and λ.The total log-likelihood function for [0, 1] TIWR distribution has the form:

L (a, b, λ) =nlog2 + nloga + nlogb + nlogλ+ b+
∑

logxi − λ
∑

x2i

− (a+ 1)
∑

log
(
1− exp

(
−λx2i

) )
− b
∑(

1− exp
(
−λx2i

) )−a
(4.1)

Hence the MLEs that maximize L(a, b, λ), must satisfy the following equations:
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∂

∂a
L (a, b, λ) =

n

a
−
∑

log
(
1− exp

(
−λx2

) )
+ b
∑(

1− exp
(
−λx2i

) )−a
ln
(
1− exp

(
−λx2i

) )
= 0 (4.2)

∂

∂b
L (a, b, λ) =

n

b
+ 1−

∑(
1− exp

(
−λx2i

) )−a
= 0 (4.3)

∂

∂λ
L (a, b, λ) =

n

λ
−
∑

x2i − (a+ 1) ∗
∑ x2i exp(−λx2i )

1− exp (−λx2i )
+ ab

∑
x2i exp

(
−λx2i

) (
1− exp

(
−λx2i

) )−(a+1)
= 0 (4.4)

Equation (4.3) gives the MLE of b as a function of a and λ :

b̂ = b̂ (a, λ) =
n∑

(1− exp (−λx2i ) )
−a − 1

(4.5)

Substituting (4.5) in equations (4.2) and (4.4) gives two equations satisfied by â and λ̂.The
equations above have a very complicated form and cannot be solved algebraically. Therefore, we
resort to numerical method to solve them. In most cases Newton- Raphson method is a good
candidate.

5. Order Statistics

Order statistics play an important role in many aspects of statistical analysis and random variables
behavior. In this section we briefly address the order statistic of the [0, 1] TIWR distribution. Let
X1, X2, . . . , Xn be a random simple from [0, 1] TIWR. The pdf of the jth random simple is given by
[14]:

fX(j) (x) =
n!

(j − 1)! (n− j)!
f (x) [F (x)]j−1[1− F (x)]n−j, j = 1, 2, . . . , n (5.1)

Using some expansion techniques, we obtain the following expression:

fX(j) (x) =
n!

(j − 1)! (n− j)!
2abλ

exp(−bj)

∞∑
i1,i2=0

n−j∑
k=0

(
n− j
k

)
si1,i2,kxexp(−λ (i2 + 1)x2 + kb) (5.2)

Where,

si1,i2,k =
(−1)i1bi1 (j + k)i1Γ(a (i1 + 1) + 1 + i2)

i1i2Γ(a (i1 + 1) + 1)

and X(j)denotes the jth order statistic. Substitute j = 1 and j = n gives the pdf of the first and
last order statistics respectively.

From the table 1. We that when we increase the value of a the value of mean will increase too
and the value of variance decrease. When we increase the value of b, the value of mean will increase
too and the value of variance decrease. When we increase the value ofλ, the value of mean will
decrease and the value of variance decrease.
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Table 1: The Expected value and variance for the [0, 1] TIWR distribution with selected values of
the parameters

a b λ E(x) V ar(x)

0.5 1 1 0.743501297 0.162640413

1 1 1 1.016115450 0.141072419

2 1 1 1.271932629 0.116206007

1 1 0.5 1.437004250 0.282144839

1 1 2 0.718502124 0.070536210

1 2 0.5 1.727403145 0.279461300

0.5 2 1 0.962277987 0.167548324

6. Simulation study

In this section we study the effectiveness of the MLE method for estimating the parameters of
the [0, 1] TIWR distribution using a Monte Carlo simulation study With 250 replications.

Here we calculate the means of the parameter estimates, bias and Root-mean-square deviation
(RMSE) using the R softwire. We generate N = 2500 samples of sizes n = 75, 150, 250 from
[0, 1] TIWR distribution with three sets of parameters (I : a = 1, b = 2, λ = 0.9),
(II : a = 0.5, b = 1, λ = 2) , (III : a = 1, b = 0.8, λ = 2) . we note that the estimated biases decrease
as the sample size increases. Furthermore, the RMSE tend to zero as we increase the sample size
which reveals the effectiveness and consistence of the distribution compared with observed data.
Finally, the means also decrease with respect to increasing sample size. The empirical results are
given in Table 2.

Table 2: Means, Bias and RMSE for the [0, 1] TIWR distribution. parameters

Set n
Means Bias RMSE

a b λ a b λ a b λ

I

75 1.083 2.054 0.911 0.083 0.054 0.011 0.312 0.868 0.141

150 1.043 2.062 0.904 0.043 0.062 0.004 0.238 0.742 0.101

250 1.023 2.067 0.905 0.023 0.067 0.005 0.183 0.632 0.083

II

75 0.521 1.115 2.082 0.021 0.115 0.082 0.136 0.608 0.489

150 0.510 1.071 2.039 0.010 0.071 0.039 0.101 0.444 0.347

250 0.506 1.053 2.034 0.006 0.053 0.034 0.080 0.354 0.280

III

75 1.039 0.912 2.064 0.039 0.112 0.064 0.254 0.537 0.457

150 1.015 0.881 2.036 0.015 0.081 0.036 0.191 0.412 0.331

250 1.007 0.859 2.030 0.007 0.059 0.030 0.148 0.328 0.276
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7. Applications

In this section we give a real data application for the [0,1] TIWR distribution which also shows a better
fitting compared with other distributions. The comparison includes their negative log-likelihood
(NLL), Akaike Information Criteria (AIC), Consistent Akaike Information Criteria (CAIC), Bayesian
Information Criteria (BIC), Hanan and Quinn Information Criteria (HQIC), Kolmogorov-Smirnov
(KS) and Anderson Darling (AD) values.
The application we considered is the deaths rate of COVID-19 in Iraq in 137 days from 14 December
2020 to 30 April 2021. The observations are:
11, 22, 14, 20, 10, 17, 10, 13, 15, 12, 7, 11, 12, 27, 11, 29, 30, 11, 5, 5, 10, 12, 9, 4, 8, 4, 14, 11, 5, 4,
7, 10, 3, 9, 9, 9, 6, 9, 7, 4, 5, 7, 10, 8, 6, 12, 5, 6, 10, 11, 11, 12, 8, 9, 8, 6, 4, 13, 7, 15, 6, 7, 12, 16,
12, 13, 27, 23, 16, 13, 27, 14, 18, 23, 22, 30, 25, 24, 30, 11, 24, 24, 22, 27, 26, 25, 23, 32, 37, 39, 33,
36, 41, 32, 21, 22, 30, 29, 33, 29, 20, 35, 37, 37, 37, 37, 30, 40, 33, 39, 33, 37, 34, 35, 34, 35, 37, 35,
44, 39, 40, 49, 30, 33, 33, 45, 34, 38, 30, 46, 43, 40, 46, 45, 44, 41, 32.
The results are demonstrated in table 3.

Table 3: Comparison of the results of data fitting between the [0,1] TIWR distributions and other
distributions.

Distributions NLL AIC CAIC BIC HQIC KS A

[0,1]TIW-R 214.95 435.91 436.09 444.67 439.47 0.01955 2.5623

[0,1]TEE-R 218.10 442.21 442.39 450.97 445.77 0.02898 2.9352

Beta-R 217.07 440.14 440.32 448.90 443.70 0.02761 2.8297

Kumaraswamy-R 217.29 440.58 440.76 449.34 444.14 0.02624 2.8552

EG-R 217.29 440.58 440.76 449.34 444.14 0.02788 2.8546

We-R 217.98 441.96 442.14 450.72 445.52 0.02353 2.9190

Go-R 220.53 447.07 447.25 455.83 450.63 0.00012 2.8245

MO-R 218.72 441.44 441.53 447.28 443.81 0.01511 2.9457

RAY 220.58 443.17 443.20 446.09 444.36 0.00021 2.8830

Our suggested distribution shows a significantly better fitting of data compared to the other distri-
butions we considered here as it has the lowest values for the NLL, AIC, CAIC, BIC, HQIC, KS and
A values.
The MLE estimations of the parameters is given in table 4.
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Table 4: The parameters estimations using ML method.

Distribution Estimations

[0,1]TIWR α̂ =0.2297252 , β̂ =2.2089408 ,λ̂ =0.1081969

[0,1]TEER α̂ =19.992322762, β̂ =0.784775493, λ̂ =0.007010988

BE-R α̂ = 0.7397223, β̂ =0.4336251, λ̂ =0.3186380

Ku-R α̂ =0.7601221, β̂ =0.8637753, λ̂ =0.1559698

EG-R α̂ =2.84984935, β̂ =0.76713200, λ̂ =0.04671613

We-R α̂ =0.8572101, β̂ =2.0922150, λ̂ =0.3573170

Go-R α̂ = 2.61430129, β̂ =0.09492149, λ̂ =0.05856151

MO-R α̂ =0.5528685, β̂ =0.1193882

RAY α̂ = 0.1585135

The histogram plot is presented in Figure 3 while the empirical cdf (ecdf) plot is presented in
Figure 4 for COVID-19 data. In Figure 3, the curve for the [0,1]TIWR distribution has the highest
peak and fits the histogram of the dataset better than the other competing models. Figure 4 shows
the ecdf plot. The plots in Figure 4 support the ones in Figure 3 as the cdf plot for the [0,1] TIWR
distribution fits the Covid-19 dataset than the other competing models.

Figure 3: The pdf plot for all the competing models using the COVID-19 dataset.
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Figure 4: The ecdf plot for all the competing models using the COVID-19 dataset.

8. Conclusions

The [0,1] TIW-G family is a promising model for generating flexible continuous random variables
and extends the study of other known distributions. It has the potential to provides a better fitting
of data compared to other families. The special model ([0,1] TIWR distribution) seems to give a
relatively accurate fitting for data. In this paper many useful result and properties were derived
such as series expansion, moments, skewness, kurtosis, quantile function, median, entropies and
many other results and statistical properties. We recommend a more extensive study given that our
limited study concerns a new dataset and more studies could reveals more interesting results.
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