
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,918 |
تعداد دریافت فایل اصل مقاله | 7,656,375 |
New fixed point theorems in midconvex subgroups of abelian Banach groups | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 13، شماره 1، خرداد 2022، صفحه 3169-3180 اصل مقاله (389.69 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.21988.2312 | ||
نویسندگان | ||
Alireza Pourmoslemi* ؛ Marjan Adib؛ Tahere Nazari | ||
Department of Mathematics, Payame Noor University, P.O.BOX 19395-3697, Tehran, Iran. | ||
تاریخ دریافت: 11 آذر 1399، تاریخ بازنگری: 09 خرداد 1400، تاریخ پذیرش: 22 خرداد 1400 | ||
چکیده | ||
In this paper, using continuous, injective, and sequentially convergent mappings on a group, new generalizations of Kannan and Chatterjea's fixed points in Banach groups are presented. we generalize contractions with constants to prove some fixed point theorems in a Banach group. Moreover, nondecreasing continuous functions from the set of positive real numbers to itself are used to introduce a new extension of contractions on normed groups. | ||
کلیدواژهها | ||
Banach groups؛ Normed groups؛ Sequentially convergent mapping؛ Kannan fixed point theorem؛ Midconvex subgroup | ||
مراجع | ||
[1] S. Banach, Sur les operations dans les ensembles abstraits et leurr application aux equations in tegrales, Fund. Math. 3 (1922) 133–181. [2] N.H. Bingham and A. J. Ostaszewski, Normed versus topological groups: dichotomy and duality, Dissertationes Math. 472 (2010) 138. [3] G. Birkhoff, A note on topological groups, Compos. Math. 3 (1936) 427–430. [4] A. Branciari, A fixed point theorem of Banach-Caccippoli type on a class of generalized metric spaces, Publ. Math. Debrecen 57 (2000) 45–48. [5] S.K. Chatterjea, Fixed point theorems, C. R. Acad. Bulgare Sci. 25(6) (1972) 727–730. [6] I. Chiswell, Abstract length functions in groups, Math. Proc. Cambridge Philos. Soc. 80 (1976) 451–463. [7] E.H. Connell, Properties of fixed point spaces, Proc. Amer. Math. Soc. 10 (1959) 974–979. [8] J. Ezeam and W. Obeng-Denteh, Aproximations in Divisible Groups, Part I, Phys. Sci. J. Int. 6(2) (2015) 112–118. [9] D.R. Farkas, The algebra of norms and expanding maps on groups, J. Algebra 133(2) (1990) 386—403. [10] A. Gillespie and B. Williams. Some theorems on fixed points in Lipschitz-Kannan type mapping, J. Math. Anal. Appl. 74 (1980) 382-–387. [11] J. Gornicki, Fixed point theorem for Kannan type mappings, J. Fixed Fixed Point Theory Appl. 19 (2017) 2145–2152. [12] J. Gornicki, Various extensions of Kannan’s fixed point theorem, J. Fixed Point Theory Appl. 20 (2018) 1045–1057. [13] S. Kakutani, Uber die Metrisation der topologischen Gruppen ¨ , (German) Proc. Imp. Acad. 12(4) (1936) 82-84. [14] R. Kannan, Some results on fixed points, Bull. Calc. Math. Soc. 60 (1968) 71–77. [15] R. Kannan, Some results on fixed points II, Amer. Math. Monthly 76 (1969) 405-–408. [16] R. Kannan, Some results on fixed points III, Fund. Math. 70 (1971) 169-–177. [17] R. Kannan, Some results on fixed points IV, Fund. Math. 74 (1972) 181-–187. [18] E. Karapinar, Revisiting the Kannan type contractions via interpolation, Adv. Theory Nonlinear Anal. Appl. 2 (2018) 85-87. [20] P.V. Koparde and B. Waghmode, On sequence of mappings in Hilbert space, Math. Educ. 25(4) (1991) 197–198. [21] R. Lyndon, Length functions in groups, Math. Scand. 12 (1963) 209–234. [22] K. Nourouzi and A.R. Pourmoslemi, Probabilistic normed groups, Iran. J. Fuzzy Syst. 14(1) (2017) 99–113. [23] S. Moradi, New Extensions of Kannan fixed point theorem on complete metric and generalized metric spaces, J. Math. Anal. 5 (2011) 2313–2320. [24] B.J. Pettis, On continuity and openness of homomorphisms in topological groups, Ann. of Math. 52(2) (1950) 293-308. [25] A.R. Pourmoslemi, M. Ferrara, B.A. Pansera and M. Salimi, Probabilistic norms on the homeomorphisms of a group, Soft Comput. 10 (2020) 1–8. [26] A.R. Pourmoslemi and K. Nourouzi, Mazur-Ulam theorem in probabilistic normed groups, Int. J. Nonlinear Anal. Appl. 8(2) (2017) 327–333. [27] P.V. Subrahmanyam, Completeness and fixed points, Monatsh. Math. 80 (1975) 325—330. | ||
آمار تعداد مشاهده مقاله: 15,792 تعداد دریافت فایل اصل مقاله: 289 |